
Informatica 37 (2013) 3–8 3

The Child Machine vs the World Brain
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Machine learning research can be thought of as building two different types of entities: Turing’s Child
Machine and H.G. Wells’ World Brain. The former is a machine that learns incrementally by receiving
instruction from a trainer or by its own trial-and-error. The latter is a permanent repository that makes all
human knowledge accessible to anyone in the world. While machine learning began following the Child
Machine model, recent research has been more focussed on “organising the world’s knowledge”

Povzetek: Raziskovanje strojnega učenja je predstavljeno skozi dve paradigmi: Turingov Child Machine
in H.G. Wellsov World Brain.

1 Encountering Alan Turing
through Donald Michie

My most immediate knowledge of Alan Turing is through
many entertaining and informative conversations with Don-
ald Michie. As a young man, barely out of school, Donald
went to work at Bletchley Park as a code breaker. He be-
came Alan Turing’s chess partner because they both en-
joyed playing but neither was in the same league as the
other excellent players at Bletchley. Possessing similar
mediocre abilities, they were a good match for each other.
This was fortunate for young Donald because, when not
playing chess, he learned much from Turing about compu-
tation and intelligence. AlthoughTuring’s investigation of
machine intelligence was cut short by his tragic death, Don-
ald continued his legacy. After an extraordinarily success-
ful career in genetics, Donald founded the first AI group in
Britain and made Edinburgh one of the top laboratories in
the world, and, through a shared interest in chess with Ivan
Bratko, established a connection with Slovenian AI.

I first met Donald when I was as a visiting assistant pro-
fessor at the University of Illinois at Urbana-Champaign,
working with Ryszard Michalski. Much of the team that
Donald had assembled in Edinburgh had dispersed as a
result of the Lighthill report. This was a misguided and
damning report on machine intelligence research in the
UK. Following the release of the report, Donald was given
the choice of either teaching or finding his own means of
funding himself. He chose the latter. Part of his strategy
was to spend a semester each year at Illinois, at Michal-
ski’s invitation, because the university was trying to build
up its research in AI at that time. The topic of a seminar
that Donald gave in 1983 was “Artificial Intelligence: The
first 2,400 years". He traced the history of ideas that lead to
the current state of AI, dating back to Aristotle. Of course,
Alan Turing played a prominent role in that story. His 1950
Mind paper [1] is rightly remembered as a landmark in

the history AI and famously describes the imitation game.
However, Donald always lamented that the final section of
the paper was largely ignored even though, in his opinion,
that was the most important part. In it, Turing suggested
that to build a computer system capable of achieving the
level of intelligence required to pass the imitation game, it
would have to be educated, much like a human child.

Instead of trying to produce a programme to sim-
ulate the adult mind, why not rather try to pro-
duce one which simulates the child’s? If this
were then subjected to an appropriate course of
education one would obtain the adult brain. Pre-
sumably the child-brain is something like a note-
book as one buys from the stationers. Rather lit-
tle mechanism, and lots of blank sheets... Our
hope is that there is so little mechanism in the
child-brain that something like it can be easily
programmed. The amount of work in the educa-
tion we can assume, as a first approximation, to
be much the same as for the human child.

He went on to speculate about the kinds of learning
mechanisms needed for the child machine’s training. The
style of learning was always incremental. That is, the ma-
chine acquires knowledge by being told or by its own ex-
ploration and this knowledge accumulates so that it can
learn increasingly complex concepts and solve increasingly
complex problems.

Early efforts in Machine Learning adopted this
paradigm. For example, the Michie and Chambers [2]
BOXES program learned to balance a pole and cart sys-
tem by trial-and-error receiving punishments are rewards,
much as Turing described, and like subsequent reinforce-
ment learning systems. My own efforts, much later, with
the Marvin program [3] were directed towards building a
system that could accumulate learn and accumulate con-
cepts expressed in a form of first order logic. More recent
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systems that learn in this manner include the Robot Sci-
entist [4] and the Xpero robot learning project [5]. How-
ever, most current machine learning research has adopted a
somewhat different style. Turing could not have foreseen
the internet and the effect it would have on AI. Access to
huge amounts of data and computing resources suggest a
kind of intelligence that may be built in a very different
way than human intelligence.

Another significant historical figure did anticipate some-
thing like the internet. At around the same time of Tur-
ing’s paper on computing machines [6], H.G. Wells specu-
lated on what he called “the world brain" [7], a permanent
world encyclopedia that would provide, “...a sort of mental
clearing house for the mind, a depot where knowledge and
ideas are received, sorted, summarised, digested, clarified
and compared.... any student, in any part of the world, will
be able to sit with his projector in his own study at his or
her convenience to examine any book, any document, in an
exact replica.”

Wells thought that the technology for this repository of
knowledge would be microfilm. He could not have known
that the World Wide Web, Wikipedia and internet search
engines could bring about his vision on a far larger scale
than he imagined. Indeed, Google’s company mission is
“. . . to organize the world’s information and make it uni-
versally accessible and useful”1. A core technology for
such search engines is machine learning. However, it is
of a form that is somewhat different form that described
by Turing for his Child Machine. Unlike a human child,
acquiring new knowledge incrementally, machine learning
systems can access the enormous amounts of data avail-
able throughout the internet to produce, in some instances,
superhuman performance. However, this is usually all-at-
once and single-concept-at-a-time learning that must still
be guided by humans.

The first programs capable of efficiently learning from
moderately large numbers of examples began with Michal-
ski’s Aq [8] and Quinlan’s ID3 [9], both of whom were
influenced by Donald Michie. Quinlan was a PhD student
studying with psychologist Earl Hunt when he attended a
lecture by Michie at Stanford University. Donald chal-
lenged the students to devise a method of learning to de-
termine a win in a chess end-game and Quinlan responded
with the first version of his decision tree learner. The utility
of these programs for finding patterns in large data sets en-
couraged new research into “batch” learning systems, even-
tually leading to the large-scale statistical learning methods
commonly in use today. A characteristic of most systems
that are used for mining patterns in “big data” is that they
use fairly simple features and rely of masses of data to build
robust classifiers. Structure in representation is generally
created by the human data analyst. Currently, the construc-
tion of the world brain is a partnership between human and
machine. But how far can this continue? Will humans
be able to structure truly large knowledge sources as the
amount and complexity of information increases, or will

1http://www.google.com/about/company/

machines have to take over at least some of that job too? If
that is the case, what mechanisms can be employed to do
this?

Some search engines are already beginning to incorpo-
rate some semantic integration. For example, Google’s
Knowledge Graph2 uses what is essentially a semantic
net to supplement search information with the properties
of objects and their relationships to other objects. How-
ever, most of the semantic information is derived from hu-
man built ontologies, and this poses a problem. Hand-
crafted ontologies reflect a knowledge engineers assump-
tions about structure in the data, which are not necessar-
ily true, whereas a machine built ontology should be more
faithful to the actual evidence for a particular semantic
structure. Learning systems are capable if finding rela-
tions between entities [10] but the complexity is greater
than learning propositional representations. This complex-
ity can be reduced if concepts are learned incrementally.
That is simple concepts are learned first and become back-
ground knowledge for further learning. Learning can also
be assisted if the systems is capable of selected its own ex-
amples to test hypotheses. When these elements are incor-
porated, machine learning research once again resembles
Turing’s model of a child machine, but perhaps not entirely
as he envisaged because it will also include the capabilities
of the “world brain”.

The study of learning in the style of the child machine,
which accumulates knowledge active experimentation as
been neglected, although there are some notable exceptions
[11, 12, 13, 14]. There are some very significant open ques-
tions that are yet to be answered for this approach to work.
We discuss these in the next section.

2 Cumulative active learning
Many of the problems associated with building a Child Ma-
chine have been addressed in the past. An unfortunate ef-
fect of the success of the “big data” approach to machine
learning has been to distract researchers from investigating
what I have termed cumulative active learning, which is
essential for the Child Machine. The structure of a cumu-
lative, or never-ending, learning system that acquires data
by experimentation was nicely illustrated by Mitchell et al.
[15] in 1983 (Figure 1) and his more recent work on never-
ending language learning [13] follows a similar structure.
An experiment or test of a hypothesis is created by a prob-
lem generator, the problem solver performs the experiment
whose outcome is judged by a critic. The critic labels the
results of the experiments as positive, if the problem solver
succeeded in its task or negative if it failed. The learner
then updates its hypothesis, based on the new training data
and the process repeats as long as there are remaining learn-
ing tasks.

A requirement for cumulative learning is a mechanism

2http://www.google.com/insidesearch/features/
search/knowledge.html
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Figure 1: A theory is a network of concepts.

for storing and using learned concepts as background
knowledge. Representing concepts in the form of expres-
sions in first order logic makes this relatively easy. To my
knowledge, Banerji [16] was the first propose such a mech-
anism and the first implementation of a learning system that
could use learned concepts for further learning was by Co-
hen [17]. With Brian Cohen, I elaborated this idea to create
a learning system in which the concepts were represented
as logic programs and were, thus, executable [18]. This
work evolved into Marvin [19] and other related systems
[20, 21] developed similar capabilities. The ability to use
of background knowledge has become one of the distin-
guish features Inductive Logic Programming [22]. How-
ever, even many ILP systems that use background knowl-
edge to learn new concepts do not close the loop to allow
those learned concepts to, themselves, become part of the
background knowledge for future learning. Other systems,
such NELL [13] currently only use background knowledge
that is in the form of ground clauses [23].

3 Learning as debugging a logic
program

Since, in practice, a learning agent can never be exposed to
all instances of a concept, it is prone to making mistakes of
two kinds:

– The system may observe an event for which there is
no prior knowledge about how to respond.

– The system may observe an event for which there is
prior knowledge. However, the known concepts are
too general and the system may respond inappropri-
ately.

When the system is learning only one concept at a time,
repairing a theory is relatively easy. We just specialise an

over-general theory or generalise a theory that is too spe-
cific. However, in a system that accumulates knowledge
over time, learning many concepts, localising the error is
not so easy. We can think of a theory as being a network of
interdependent concepts, as in Figure 2, where the defini-
tion of concepts S and T rely on the definition of Q, which
depends on P and E. Suppose we discover an error in the
theory while attempting to use concept, T , but the real error
is due to an incorrect definition of concept, E.

S T

Q

R

P

E

Figure 2: A concept hierarchy.

When we use a logical representation of concepts, a con-
cept description is also an executable computer program, so
one way of locating the problem is to trace through the ex-
ecution of the program that lead to the unexpected result,
testing each concept. That is, we debug the program, as
Shapiro [24] did with MIS. To locate an error when an in-
correct solution has been given (i.e. the theory contains an
over-generalisation) Shapiro’s debugging algorithm works
backwards through the failed proof of a goal, searching for
the procedure that caused the failure. In Figure 2, backtrac-
ing would begin with the last goal satisfied, that is, T . The
debugger begins stepping back through the proof, i.e. down
the dark path to node Q, then P if necessary, asking an or-
acle if the partial solution at each point is correct. If this
is not true, then an erroneous clause has been found. Note
that the algorithm assumes the existence of an infallible or-
acle. In a reactive environment, the learning program may
do without an oracle since the program is able to perform
experiments to test a concept. Thus, a failure suggests that
the initial set of experiments that resulted in the formation
of the concepts along the solution path was not extensive
enough for at least one of the concepts.

A concept that is too specific may prevent the program
from producing any solution at all. That is, the logic pro-
gram that is supposed to satisfy the goal does not cover the
initial conditions of the task. An attempt at debugging the
theory can only be made when a correct solution has been
seen, otherwise the learner has no indication that the task
really is possible. A correct solution may be found, either
by “mutating" the current theory in the hope that the goal
can be satisfied by the mutant or the learner may observe
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another agent in the world performing the task. Shapiro’s
debugging method for programs that fail to produce an an-
swer is equivalent to the second alternative, that is, the or-
acle supplies the correct solution. The debugger again tries
to work backwards seeking clauses in the program which
could have produced the given solution. Once such a clause
is found, its body provides further goals that should be sat-
isfied in order to arrive at the solution. The debugger con-
siders each of these intermediate goals to see if they can
also be produced by other clauses. Any goal that cannot be
achieved indicates where the program or theory is deficient.

Up to this point, we have described mostly past research
that addresses many of the problems that are needed to
build a Child Machine but further work is still required.
In the next section we look at a problem that has received
very little attention, mainly because we have not yet built
AI systems that are sufficiently complex.

4 The Economics of learning and
theory revision

Detecting and repairing an error in a single concept is one
thing, but repairing an entire theory is another matter. Re-
member that in Figure 2, we envisaged a world model or
domain theory as a hierarchy of concepts. Using a horn
clause representation, the head of a clause corresponds to
a parent node and the goals in the body correspond to the
children. These goals match other clause heads and form
links to the rest of the network. Also in Figure 2, we imag-
ined that one concept, represented by the shaded node, E,
was in error. When the concept is repaired, what effect will
that have on the concepts which referred to the old con-
cept? Since P , Q, R, S and T refer, directly or indirectly,
to the erroneous node they must have been learned in the
presence of the error. Are they, therefore also in error or
will correcting E alone correct them all?

When faced with the problem of ensuring the consis-
tency of its knowledge base, two strategies are available
to the learning system.

1. After correcting E, the system may test each of the
concepts that depend on E. However revising all of
the concepts dependent on one that just been modified
could involve a lot of work if the network of concepts
is very extensive.

2. The system may wait to see if any further errors show
up. In this case, each concept will be debugged as
necessary. Although more economical this method re-
quires a method for tolerating errors if the program
has been assigned a task which it must continue to
perform.

When a learning system is connected to the physical
world, as in a robot, it cannot rely on the accuracy of mea-
surements from vision systems, touch sensors, etc. Thus,

a program may fail because its world model does not ac-
curately reflect the real state of the world. This being the
case, the learning system must not revise its domain theory
prematurely since there may not, in fact, be any errors in
its theory. Therefore, a prudent approach to error recovery
is to delay revision of a domain theory until sufficient evi-
dence has accumulated to suggest the appropriate changes.

Richards and Mooney [25] proposed a theory revision
system, based on earlier work by Muggleton [26, 20]. Wro-
bel [27] also proposed a first order theory refinement sys-
tem. The main idea behind these methods is to consider
repairing a theory as a kind of compression. That is, the
set of clauses that form a theory may be rewritten so that
the same or greater coverage is achieved by a theory that
is more compact in an information theoretic sense. An im-
portant operation for this is predicate invention [20, 14].
That is, the learner must have the ability to invent its own
concepts when it detects patterns that can be reused in the
description of other concepts.

When an experiment fails, we must not invalidate the
concepts used in planning the experiment for, as mentioned
earlier, the failure may be due to noise. Instead, we note the
circumstances of the failure and augment the failed concept
with a description of these circumstances. Several things
could happen to the concept when this is done:

– The description of the concept is modified to the ex-
tent that it becomes correct. If an alternative, correct
description already existed, then the alternative do-
main theories of which these concepts were compo-
nents, converge.

– After several failures, there is no generalisation which
covers the circumstances of failure. In this case, the
failures may be either due attributed to noise or to
some phenomenon not yet known to the system. In
either case, nothing can be done.

A truth maintenance system (TMS) [28] may be used to
maintain the network of concepts that form a domain the-
ory. The TMS stores dependencies which, when errors are
found will indicate where other potential weaknesses in the
theory lie. The TMS may also allow a learning program to
experiment with alternative domain theories by maintain-
ing multiple worlds.

Whatever mechanisms are used, some important ques-
tions to investigate are: what is the cost of learning and
when it it worthwhile adopting a new theory in favour of
an existing one. That is, putting up with occasional errors
in an existing theory my cost less than building a new the-
ory.

5 Deep knowledge vs shallow
knowledge

Before concluding, I want to return to Turing’s paper on the
imitation game and what is needed in a child machine to be
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able to pass the test. Turing proposed the following criteria
for success:

I believe that in about fifty years time it will be
possible to programme computers with a storage
capacity of about 109 to make them play the im-
itation game so well that an average interrogator
will not have more than 70 per cent chance of
making the right identification after five minutes
of questioning.

It should be noted that these conditions are not particu-
larly onerous if the conversation is confined to superficial
chat, but according to Donald Michie, Alan Turing never
engaged in superficial chat, so the test should be under-
stood to pose questions that require some thought. Turing,
however, was not a typical conversationalist. Many human
dialogues can be conducted with “canned” responses, for
example, interactions at a supermarket or enquiries to a
call centre, where, in fact, the operators follow quite strict
scripts.

Leading up to the 50th anniversary of Turing’s paper in
2000, Donald Michie suggested to me that we should try
to build a conversational agent, to see how close AI was to
Turing’s prediction that the test could be passed within 50
years of the publication of the paper. We implemented sev-
eral frameworks for building a conversational agent [29],
borrowing partly from natural language processing theory,
which represents deep understanding of an utterance, and
also from chatterbots, which mostly rely on simple pattern
matching rules, much like Eliza [30]. The idea of mixing
deep and shallow knowledge is consistent with a theme of
Donald’s work, namely that many tasks that we think re-
quire conscious, deliberative thought are actually achieved
by simpler, subcognitive processes. He was fond of a quote
from A.N. Whitehead [31]:

It is a profoundly erroneous truism. . . that we
should cultivate the habit of thinking what we are
doing. The precise opposite is the case. Civili-
sation advances by extending the number of im-
portant operations which we can perform without
thinking about them.

This applies even to conversation. There are many cir-
cumstances in which we can, legitimately, talk without
thinking. Even many aspects of an expert’s decision mak-
ing are subcognitive. An expert may be defined as someone
who knows his or her job so well that it can be done with
little thought, only requiring real deliberation when an un-
usual case is encountered. Learning subcognitive skills was
one of Donald’s great interests for many years. He coined
the term behavioural cloning [32] to describe the process
of building an operational model of an expert’s skill by
observing and recording traces of the behaviour and using
them to create training examples for a learning program.

There are advantages, for the Child Machine, of having
a mixture or representations, reasoning and learning meth-
ods. Shallow reasoning is usually fast and covers the most

common cases encountered but may break when an unusual
case is seen. Reasoning methods that require complex rep-
resentations and inferences are computationally expensive
to perform and to learn but they are more general and may
work when shallow reasoning fails.

6 Conclusion

From its initial beginnings as an attempt to perform human-
like learning, Machine Learning is now in danger of be-
coming just another branch of statistics. The majority of
research done today only concerns itself with data analy-
sis. The field has forgotten that there is more to learning
than just looking for patterns in very large data sets. While
this can be useful, machine learning will eventually hit the
limitations of shallow representations and will have to face
the problems that a human learner experiences in trying to
make sense of the world over a lifetime of accumulated
experience. So while we are currently preoccupied with
building the world brain, eventually this effort will have to
change to making the world brain into a child machine.

This essay reviewed some of the research that is needed
to create a child machine and discussed open problems that
are still unanswered. Indeed, some of the questions I posed
are drawn from a 1991 paper [? ] that set the program for
much of our group’s research since then, and will continue
well into the future. In the words of Alan Turing, “We can
only see a short distance ahead, but we can see plenty there
that needs to be done” [6].
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