
Informatica 37 (2013) 21–25 21

Data Stream Mining: the Bounded Rationality

João Gama
LIAAD-INESC TEC, and FEP, University of Porto
R. Ceuta 118-6, 4050-190 Porto, Portugal
E-mail: jgama@fep.up.pt

Keywords: data stream mining, bounded rationality

Received: October 12, 2012

The developments of information and communication technologies dramatically change the data collection
and processing methods. Data mining is now moving to the era of bounded rationality. In this work we
discuss the implications of the resource constraints impose by the data stream computational model in the
design of learning algorithms. We analyze the behavior of stream mining algorithms and present future
research directions including ubiquitous stream mining and self-adaption models.

Povzetek: V prispevku so predstavljeni algoritmi rudarjenja pretakanja podatkov.

1 Introduction
Herbert Simon, one of the AI pioneers, developed the idea
of bounded rationality [28]:

in decision-making, rationality of individuals is
limited by the information they have, the cog-
nitive limitations of their minds, and the finite
amount of time they have to make a decision.
In complex situations, individuals who intend to
make rational choices are bound to make satis-
factory (rather than maximizing) choices.

The developments of information and communication
technologies dramatically change the data collection and
processing methods. What distinguish current data sets
from earlier ones are automatic data feeds. We do not just
have people entering information into a computer. We have
computers entering data into each other [24]. Moreover,
advances in miniaturization and sensor technology lead to
sensor networks, collecting high detailed spatio-temporal
data about the environment. These scenarios impose strong
constraints in the way we think and design data mining al-
gorithms. In short, data mining algorithms must take into
account that computational resources are limited, and the
design of learning algorithms must be thought in the con-
text of bounded rationality.

The computational model of data streams [24] requires
resource-aware algorithms. Hulten and Domingos [16]
identify desirable properties of learning systems for ef-
ficient mining continuous, high-volume, open-ended data
streams:

– Require small constant time per data example;

– Use fix amount of main memory, irrespective to the
total number of examples;

– Built a decision model using a single scan over the
training data;

– Generating a anytime model independent from the or-
der of the examples;

– Ability to deal with concept drift;

– For stationary data, ability to produce decision models
that are nearly identical to the ones we would obtain
using a batch learner.

In this paper we review the techniques used in learning
from data streams related to the bounded rationality. We
also discuss ubiquitous data mining contexts where both
data sources and processing devices are distributed.

2 Data streams

In the data stream computational model examples are pro-
cessed once, using restricted computational resources and
storage capabilities. The goal of data stream mining con-
sists of learning a decision model, under these constraints,
from sequences of observations generated from environ-
ments with unknown dynamics. Most of the stream min-
ing works focus on centralized approaches. The phenome-
nal growth of mobile and embedded devices coupled with
their ever-increasing computational and communications
capacity presents exciting new opportunities for real-time,
distributed intelligent data analysis in ubiquitous environ-
ments. In domains like sensor networks, smart grids, so-
cial cars, ambient intelligence, etc. centralized approaches
have limitations due to communication constraints, power
consumption, and privacy concerns. Distributed online al-
gorithms are highly needed to address the above concerns.
These applications require distributed stream algorithms,
highly scalable, computationally efficient and resource-
aware. Table 1 summarizes the main differences between
data base processing and data stream processing.

22 Informatica 37 (2013) 21–25 J. Gama

Data bases Data Streams
Data access Random Sequential
Number of passes Multiple Single
Processing Time Unlimited Restricted
Available Memory Unlimited Fixed
Result Accurate Approximate
Distributed No Yes

Table 1: Summary of the main differences between data
base processing and data stream processing.

2.1 Approximation and randomization

Bounded rationality appears in a fundamental aspect in
stream processing: the tradeoff between time and space
required to solve a query and the accuracy of the answer.
Data stream management systems developed a set of tech-
niques that store compact stream summaries enough to
approximately solve queries. These approaches require
a trade-off between accuracy and the amount of memory
used to store the summaries, with an additional constrain
of small time to process data items [24, 2]. The most com-
mon problems end up to compute quantiles, frequent item
sets, and to store frequent counts along with error bounds
on their true frequency. The techniques developed are used
in very high dimensions both in the number of examples
and in the cardinality of the variables.

Many fundamental questions, like counting, require
space linear in the input to obtain exact answers. Within
data stream framework, approximation techniques, that is,
answers that are correct within some small fraction ε of er-
ror; and randomization [23], that allows a small probability
δ of failure, are used to obtain answers that with probability
1−δ are in an interval of radius ε. Algorithms that use both
approximation and randomization are referred to as (ε, δ)
approximations. The base idea consists of mapping a very
large input space to a small synopsis of size O(1

ε2 log(1
δ)).

Approximation and randomization techniques are the
most illustrative examples of bounded rationality in data
stream processing. They are used to solve problems like
measuring the entropy of a stream [6], association rule min-
ing frequent items [21], k-means clustering for distributed
data streams using only local information [9], etc.

2.2 Time windows

Most of the time, we are not interested in computing statis-
tics over all the past, but only over the recent past. The
assumption behind all these models is that most recent in-
formation is more relevant than historical data. The sim-
plest situation uses sliding windows of fixed size. These
types of windows are similar to first in, first out data struc-
tures. Whenever an element j is observed and inserted into
the window, another element j − w, where w represents
the window size, is forgotten. Computing statistics in the
sliding window model requires storing all data inside the

window. Exponential histograms [10] are used to approx-
imately compute statistics over sliding windows requiring
sublinear space in the size of the window.

Monitoring, analyzing and extracting knowledge from
high speed streams might explore multiple levels of gran-
ularity, where the recent history is analyzed at fine levels
of granularity and the need of precision decreases with the
age of the data. As a consequence, the most recent data can
be stored at the finest granularity, while more distant data
at coarser granularity. This is called the tilted time win-
dow model. It might be implemented using exponential
histograms [10].

2.3 Change detection

Sequence based windows is a general technique to deal
with changes in the process that generates data. A reference
algorithm is the AdWin – ADaptive sliding WINdow pre-
sented by Bifet and Gavaldà [4]. AdWin keeps a variable-
length window of recently seen items, with the property
that the window has the maximal length statistically con-
sistent with the hypothesis there has been no change in
the average value inside the window. More precisely, an
older fragment of the window is dropped if and only if
there is enough evidence that its average value differs from
that of the rest of the window. This has two consequences:
first, that change is reliably declared whenever the window
shrinks; and second, that at any time the average over the
existing window can be reliably taken as an estimate of the
current average in the stream (barring a very small or very
recent change that is still not statistically visible). AdWin
does not maintain the window explicitly, but compresses
it using a variant of the exponential histogram technique.
This means that it keeps a window of length W using only
O(logW) memory andO(logW) processing time per item.

2.4 Sampling

Sampling is a common practice for selecting a subset of
data to be analyzed. Instead of dealing with an entire data
stream, we select instances at periodic intervals. Sam-
pling is used to compute statistics (expected values) of the
stream. While sampling methods reduce the amount of data
to process, and, by consequence, the computational costs,
they can also be a source of errors, namely in monitor-
ing applications that require to detect anomalies or extreme
values.

The main problem is to obtain a representative sample,
that is, a subset of data that has approximately the same
properties of the original data. In statistics, most techniques
require to know the length of the stream. For data streams,
we need to modify these techniques. The simplest form
of sampling is random sampling, where each element has
equal probability of being selected [1]. The reservoir sam-
pling technique [31] is the classic algorithm to maintain an
online random sample. The base idea consists of maintain-
ing a sample of size k, called the reservoir. As the stream

Data Stream Mining: the Bounded Rationality Informatica 37 (2013) 21–25 23

flows, every new element has a probability k/n, where n
is the number of elements seen so far, of replacing an old
element in the reservoir.

A similar technique, load shedding, drops sequences in
the stream, when bursts cause bottlenecks in the process-
ing capabilities. Tatbul et al. [29] discuss load shedding
techniques in querying high-speed data streams.

2.5 Synopsis, sketches and summaries

Synopses are compact data structures that summarize data
for further querying. Several methods have been used, in-
cluding: wavelets [15], exponential histograms [10], fre-
quency moments [3], etc. Data sketching via random pro-
jections is a tool for dimensionality reduction. Sketching
uses random projections of data points with dimension d
to a space of a subset of dimensions. It has been used for
moment estimation [3], computing L-norms [24] and dot
product of streams [1].

Cormode and Muthukrishnan [8] present a data stream
summary, the so called count-min sketch, used for (ε, δ)
approximations to solve point queries, range queries, and
inner product queries. Consider an implicit vector a of di-
mension n that is incrementally updated over time. At each
moment, the element ai represents the counter associated
with element i. A point-query is to estimate the value of an
entry in the vector a. The count-min sketch data structure,
with parameters (ε, δ), is an array of w × d in size, where
d = log(1/δ), and w = 2/ε. For each incoming value
of the stream, the algorithm use d hash functions to map
entries to [1, . . . , w]. The counters in each row are incre-
mented to reflect the update. From this data structure, we
can estimate at any time, the number of occurrences of any
item j by taking mindCM [d, hd(j)]. Since the space used
by the sketch CM is typically much smaller than that re-
quired to represent the vector a exactly, there is necessarily
some approximation in the estimate. The estimate âj , has
the following guarantees: aj ≤ âj , and, with probability at
least 1− δ, âi ≤ ai + ε||a||1. The error of the estimate is at
most ε with probability at least 1− δ in space O(1

ε log(1
δ)).

3 Algorithms for learning from data
streams

Data Mining studies the automated acquisition of domain
knowledge looking for the improvement of systems perfor-
mance as result of experience. Data stream mining systems
address the problems of data processing, modeling, pre-
diction, clustering, and control in changing and evolving
environments. They self-evolve their structure and knowl-
edge on the environment [12]. In this section we address
two challenging problems in stream mining that enforce the
idea of bounded rationality.

3.1 Mining infinite data
Hulten and Domingos [16] present a general method to
learn from arbitrarily large databases. The method con-
sists of deriving an upper bound for the learner’s loss as a
function of the number of examples used in each step of
the algorithm. Then use this to minimize the number of
examples required at each step, while guaranteeing that the
model produced does not differ significantly from the one
that would be obtained with infinite data. This method-
ology has been successfully applied in k-means cluster-
ing [16], hierarchical clustering of variables [26], decision
trees [11, 17], regression trees [18], decision rules [14], etc.

The most representative algorithm in this line is the Very
Fast Decision Tree [11]. VFDT is a decision-tree learn-
ing algorithm that dynamically adjusts its bias accordingly
to the availability of data. In decision tree induction, the
main issue is the decision of when to expand the tree, in-
stalling a splitting-test and generating new leaves. The ba-
sic idea consists of using a small set of examples to select
the splitting-test to incorporate in a decision tree node. If
after seeing a set of examples, the difference of the merit
between the two best splitting-tests does not satisfy a sta-
tistical test (the Hoeffding bound), VFDT proceeds by ex-
amining more examples. It only makes a decision (i.e.,
adds a splitting-test in that node), when there is enough
statistical evidence in favor of a particular test. This strat-
egy guarantees model stability (low variance) and controls
overfiting – examples are processed once without the need
of model regularization (pruning). This profile is quite dif-
ferent from the standard decision trees model using greedy
search and static data sets. Using static datasets, the deci-
sions in deeper nodes of the tree are based on less and less
examples. Statistical support decreases as the tree grows,
and regularization is mandatory. In VFDT like algorithms
the number of examples needed to grow a node is only
defined by the statistical significance of the difference be-
tween the two best alternatives. Deeper nodes of the tree
might require more examples than those used in the root of
the tree!

3.2 Mining ubiquitous streams
The phenomenal growth of mobile and embedded devices
coupled with their ever-increasing computational and com-
munications capacity presents an exciting new opportunity
for real-time, distributed intelligent data analysis in ubiqui-
tous environments. Learning from distributed data, require
efficient methods in minimizing the communication over-
heads between nodes [27]. The strong limitations of cen-
tralized solutions is discussed in depth in [20]. The authors
point out a mismatch between the architecture of most off-
the-shelf data mining algorithms and the needs of mining
systems for distributed applications. Such mismatch may
cause a bottleneck in many emerging applications, namely
hardware limitations related to the limited bandwidth chan-
nels. Most important, in applications like monitoring, cen-
tralized solutions introduce delays in event detection and

24 Informatica 37 (2013) 21–25 J. Gama

reaction, that can make mining systems useless.
Ubiquitous data stream mining implies new require-

ments to the bounded rationality to be considered [22]: i)
the algorithms will process local information and ii) need to
communicate with other agents in order to infer the global
learning context; iii) the budget for communications (band-
width, battery) are limited.

Typical applications include clustering sensor net-
works [25], autonomous vehicles [30], analysis of large so-
cial networks [19], multiple classification models exploring
distributed processing [7], etc.

4 Concluding remarks

There is a fundamental difference between learning from
small datasets and streaming data: mining data streams is
a continuous process. This observation opens the ability
to monitor the evolution of the learning process; to use
change detection mechanisms to self-diagnosis the evolu-
tion of this process, and to react and repair decision mod-
els [13]. Continuous learning, forgetting, self-adaptation,
and self-reaction are main characteristics of any intelligent
system. They are characteristic properties of stream learn-
ing algorithms. From a bias-variance analysis there is a
fundamental difference [5]: while learning from small data
sets requires an emphasis in variance reduction, learning
from large data sets is more effective when using algo-
rithms that place greater emphasis on bias management.

Bounded rationality is in the core of next generation of
data mining systems. Learning algorithms must be able to
adapt continuously to changing environmental conditions
(including their own condition) and evolving user needs.
Learning must consider the real-time constrains of limited
computing power and communication resources.

Acknowledgment

This work is funded by the ERDF through the Pro-
gramme COMPETE PEst-C/SAU/UI0753/2011 and by
FCT project PTDC/EIA/098355/2008, Knowledge Discov-
ery from Ubiquitous Data Streams.

References
[1] Aggarwal, C. (2006). On biased reservoir sampling in

the presence of stream evolution. In Proceedings Inter-
national Conference on Very Large Data Bases, Seoul,
Korea, pp. 607–618. ACM.

[2] Aggarwal, C. (Ed.) (2007). Data Streams – Models and
Algorithms. Springer.

[3] Alon, N., Y. Matias, and M. Szegedy (1999). The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences 58, 137–147.

[4] Bifet, A. and R. Gavaldà (2006). Kalman filters and
adaptive windows for learning in data streams. In Pro-
ceedings of the 9th Discovery Science, Volume 4265 of
Lecture Notes Artificial Intelligence, Barcelona, Spain,
pp. 29–40. Springer.

[5] Brain, D. and G. Webb (2002). The need for low bias
algorithms in classification learning from large data sets.
In Principles of Data Mining and Knowledge Discovery
PKDD, Volume 2431 of Lecture Notes in Artificial In-
telligence, Helsinki, Finland, pp. 62–73. Springer.

[6] Chakrabarti, A., K. D. Ba, and S. Muthukrishnan
(2006). Estimating entropy and entropy norm on data
streams. In STACS: 23rd Annual Symposium on Theo-
retical Aspects of Computer Science, Marseille, France,
pp. 196–205.

[7] Chen, R., K. Sivakumar, and H. Kargupta (2004). Col-
lective mining of Bayesian networks from heteroge-
neous data. Knowledge and Information Systems Jour-
nal 6(2), 164–187.

[8] Cormode, G. and S. Muthukrishnan (2005). An im-
proved data stream summary: the count-min sketch and
its applications. Journal of Algorithms 55(1), 58–75.

[9] Cormode, G., S. Muthukrishnan, and W. Zhuang
(2007). Conquering the divide: Continuous clustering
of distributed data streams. In ICDE: Proceedings of
the International Conference on Data Engineering, Is-
tanbul, Turkey, pp. 1036–1045.

[10] Datar, M., A. Gionis, P. Indyk, and R. Motwani
(2002). Maintaining stream statistics over sliding win-
dows. In Proceedings of Annual ACM-SIAM Symposium
on Discrete Algorithms, San Francisco, USA, pp. 635–
644. Society for Industrial and Applied Mathematics.

[11] Domingos, P. and G. Hulten (2000). Mining High-
Speed Data Streams. In Proceedings of the ACM Sixth
International Conference on Knowledge Discovery and
Data Mining, Boston, USA, pp. 71–80. ACM Press.

[12] Gama, J. (2010). KnowledgeDiscovery from Data
Streams. Data Mining and Knowledge Discovery. At-
lanta, US: Chapman & Hall CRC Press.

[13] Gama, J. and P. Kosina (2011a). Learning about the
learning process. In Advances in Intelligent Data Analy-
sis, Volume 7014 of Lecture Notes in Computer Science,
pp. 162–172. Springer.

[14] Gama, J. and P. Kosina (2011b). Learning decision
rules from data streams. In Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence,
IJCAI, pp. 1255–1260.

[15] Gilbert, A. C., Y. Kotidis, S. Muthukrishnan, and
M. Strauss (2001). Surfing wavelets on streams: One-
pass summaries for approximate aggregate queries. In
VLDB, Rome, Italy, pp. 79–88.

Data Stream Mining: the Bounded Rationality Informatica 37 (2013) 21–25 25

[16] Hulten, G. and P. Domingos (2001). Catching up with
the data: research issues in mining data streams. In
Proc. of Workshop on Research Issues in Data Mining
and Knowledge Discovery, Santa Barbara, USA.

[17] Hulten, G., L. Spencer, and P. Domingos (2001). Min-
ing time-changing data streams. In Proceedings of the
7th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, Cali-
fornia, pp. 97–106. ACM Press.

[18] Ikonomovska, E., J. Gama, and S. Dzeroski (2011).
Learning model trees from evolving data streams. Data
Mining and Knowledge Discovery 23, 128–168.

[19] Kang, U., C. E. Tsourakakis, and C. Faloutsos
(2011). Pegasus: mining peta-scale graphs. Knowl. Inf.
Syst. 27(2), 303–325.

[20] Kargupta, H., A. Joshi, K. Sivakumar, and Y. Yesha
(2004). Data Mining: Next Generation Challenges and
Future Directions. AAAI Press and MIT Press.

[21] Manku, G. S. and R. Motwani (2002). Approximate
frequency counts over data streams. In Proceedings
of 28th International Conference on Very Large Data
Bases, Hong Kong, pp. 346–357. Morgan Kaufmann.

[22] May, M. and L. Saitta (Eds.) (2010). Ubiquitous
Knowledge Discovery. LNAI 6202, Springer.

[23] Motwani, R. and P. Raghavan (1997). Randomized
Algorithms. Cambridge University Press.

[24] Muthukrishnan, S. (2005). Data Streams: Algorithms
and Applications. Now Publishers.

[25] Rodrigues, P. P., J. Gama, and L. Lopes (2009).
Knowledge discovery for sensor network comprehen-
sion. In Intelligent Techniques for Warehousing and
Mining Sensor Network Data, pp. 118–134. Information
Science.

[26] Rodrigues, P. P., J. Gama, and J. P. Pedroso (2008).
Hierarchical clustering of time series data streams.
IEEE Transactions on Knowledge and Data Engineer-
ing 20(5), 615–627.

[27] Sharfman, I., A. Schuster, and D. Keren (2007). A ge-
ometric approach to monitoring threshold functions over
distributed data streams. ACM Transactions Database
Systems 32(4), 301–312.

[28] Simon, H. (1957). Models of Man. John Wiley.

[29] Tatbul, N., U. Cetintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker (2003). Load shedding in a data
stream manager. In Proceedings of the International
Conference on Very Large Data Bases, Berlin, Germany,
pp. 309–320. VLDB Endowment.

[30] Thrun, S. (2010). Toward robotic cars. Communica-
tions ACM 53(4), 99–106.

[31] Vitter, J. S. (1985). Random sampling with a
reservoir. ACM Transactions on Mathematical Soft-
ware 11(1), 37–57.

26 Informatica 37 (2013) 21–25 J. Gama

