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Abstract: Cloud computing is one of the widest phenomena embraced in information technology. This result from 

numerous advantages associated with it making many organizations and individuals offload their data to the cloud. 

Encryption schemes restrict access to data from unauthorized clients, helping attain confidentiality and privacy. The 

modification of the ciphertext of clients’ data on the cloud demand downloading, deciphering, editing, and finally 

uploading back to the cloud by sharing their private key with the cloud service provider making it tedious. The 

application of homomorphism, allows computation to be performed on ciphertext with no decipher activity which helps 

to avoid the surfacing of sensitive client data stored on the cloud. In this paper, an Enhanced Homomorphism Scheme 

(EHS) is proposed based on Good Prime Numbers (GPN), Linear Congruential Generator (LCG), Fixed Sliding 

Window Algorithm (FSWA), and Gentry’s homomorphism scheme. A dataset from the Kaggle database was used to test 

the proposed algorithm. A variety of tests were conducted using the proposed algorithm such as the Uniqueness of 

ciphertext, addition and multiplication property of full homomorphism, and the execution times using 2𝑛(𝑛 ∈ 2,3,4,5)  

data sizes. A comparison of the execution time of the proposed EHS was conducted with the New Fully Homomorphism 

Scheme (NFHS), and the Enhanced Homomorphism Encryption Scheme (EHES). From the comparison, the proposed 

EHS algorithm had the lowest encryption time when a data size of 24kb was executed but with a higher decryption time 

of 567.6667 ± 96.38911when a data size of 8kb was used. On the other hand, with a data size of 32kb, EHES had the 

highest decryption time of 1274ms with the proposed EHS having the lowest decryption time of 551.2222 ± 82.68746 

indicating a decryption percentage decrease of 56.73%. This confirms that execution times are dependent on the size of 

the encryption key but not on data size. 

 

Povzetek: Nov kriptografski algoritem z imenom EHS se je izkazal z izboljšanimi časi izvajanja na nekaj standardnih 

testnih domenah.

1   Introduction 
The use of cloud services has risen due to the 

convenience associated with their usage. Cloud 

computing is considered one of the emerging internet-

based technologies in the Information Technology 

industry [1]. Cloud computing is an internet-based 

system that provides multi-tenancy, scalability, 

elasticity, pay-as-you-go, and self-provision of resources 

to the cloud client by the cloud service provider such as 

Amazon S3, and Google Cloud as shown in figure 1 [2]. 

This helps cloud clients to be able to distantly distribute 

the huge amount of information and workloads to the 

cloud and take advantage of unlimited computing 

resources and applications in the on-request high-quality 

services [3].  

Cloud computing helps ease the burden of storage 

management, having access to information independent 

of regions, and decreases capital use on equipment, 

programs, and staff. Regardless of these, privacy and 

confidentiality of data issue is the basic factor that  

 

obstructs the far and wide reception of cloud computing 

[4]. 

 

 
Figure 1: Cloud computing model [39] 

 

There have been numerous attempts by researchers 

to propose the most robust cryptographic scheme to 
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secure data at rest and in transit, but there exist many 

hindrances in achieving this aim, such as security threats 

and third parties securing data on behalf of organizations 

[5]. Another consideration that comes into mind is data 

modification by unauthorized entities and the hacking 

into systems by hackers when valuable data is 

outsourced to a third party for storage [6].  

To address these security concerns most 

appropriately, homomorphism encryption schemes are 

proposed. Homomorphism has the capability that allows 

the evaluation of ciphertext, which results in encrypted 

data, and the result can be decrypted when the same 

function is applied to the plaintext [7]. Privacy and 

confidentiality become paramount if computations can 

be performed on ciphertext without knowledge of the 

plaintext, which is the advantage of homomorphism [8]. 

1.1  Homomorphism 

Homomorphism is a cryptographic scheme that performs 

computations on ciphertext resulting in an encrypted 

output with no knowledge of the data upon which 

computations are performed [13], and [14]. 

Homomorphism helps in analyzing stored data in the 

cloud without deciphering it. This is because the 

resultant computation on the encrypted data after 

deciphering is similar to the corresponding message from 

the sender [32]. 

Gentry in 2009, proposed the maiden Fully 

Homomorphism scheme which supported additive and 

multiplicative characteristics which were lattice-based 

[8], [9], [10], and [11]. This opened the door for variants 

of fully homomorphism encryption schemes such as 

Homomorphism Authenticators (HA), and 

Homomorphism Authenticated Encryption (HAE) to be 

proposed and has been proven to be one of the security 

schemes that support the confidentiality and privacy of 

data on the cloud [12].  

Dijk et al. [17] proposed revised fully 

homomorphism encryption algorithms ((Van Dijk, 

Gentry, Halevi, and Vaikuntanathan) (DGHV scheme)) 

using prime numbers in 2012.  Their algorithm was 

based on the computation of integers to achieve full 

homomorphism. A re-encryption property in their work 

increased the noise level in their algorithm, resulting in 

higher complexity time. 

There are four (4) stages of homomorphism [15]. 

These are; 

Stage 1: Key Generation 

Two keys are selected by the cloud client as 

indicated in equation 1. The public key  𝑃𝑘 and security 

key  𝑆𝑘.  Such that; 

 (𝑃𝑘 , 𝑆𝑘) = 𝐾𝑒𝑦𝑠 … … … … … … … ….(1) 

Stage 2: Encryption 

The plaintext (𝑀) is accepted by the encryption 

algorithm to produce a ciphertext (𝐶)  by applying 

equation 2 using the private key. 

𝐶 = 𝐸𝑛𝑐𝑝𝑘(𝑀) … … … … … … … … ….(2) 

Stage 3: Evaluation 

The evaluation function 𝑓  is performed on the ciphertext 

𝐶 using the generated security key 𝑆𝑘 using equation 3.  

𝐸 = 𝐸𝑣𝑎𝑙𝑠𝑘(𝑓, 𝐶) … … … … … … … … ..(3) 

Stage 4: Decryption 

The reversal of the ciphertext 𝐶 using the private key 𝑝𝑘 to 

obtain the plaintext 𝑀 by applying equation 4. 

𝑀 = 𝐷𝑒𝑐𝑆𝑘(𝑪) … … … … … … … … ….(4) 

 

Based on the four stages of homomorphism operations, 

homomorphism can be grouped into full homomorphism 

and partial homomorphism encryption schemes. Partial 

homomorphism encryption algorithms can perform either 

addition or multiplicative properties only while fully 

homomorphism encryption supports both additive and 

multiplicative properties. A somewhat (SWHE) 

homomorphism encryption algorithm is also proposed 

which is a sub-category of a full homomorphism algorithm 

and can perform addition and or multiplication properties. 

1.2 Fully homomorphic encryption 

algorithm 

An encryption algorithm is fully homomorphism if it 

supports both multiplication and addition properties [16]. 

Assuming there are five (5) variables (M, F, R, Q, L) such 

that M is the plaintext, F the ciphertext, R and Q the 

encryption and decryption algorithms respectively, and L 

the secret key. It can be deduced that, for every value 

of  𝑅 ∈ 𝑅, using an encryption algorithm rule 𝑒𝑘 ∈ 𝑄  

with a corresponding decryption rule  𝑑𝑘  ∈ 𝐿. Hence, if 

the plaintext 𝑀 and ciphertext 𝐹, then 𝑒𝑘   links from 𝑀 𝑡𝑜  

𝐹  and 𝑑𝑘 links from ciphertext 𝐹 to plaintext  𝑀. 

This implies 

 𝑒𝑘  ⇒ 𝑀 → 𝐹 and 𝑑𝑘  ⇒ 𝐹 →  𝑀 

From this, it can be deduced that considering all characters 

of plaintext  𝑀, the ciphertext will be obtained using 

equations 5, 6, 7, and 8; 

𝒆𝒌(𝒂 + 𝒑𝒃) = 𝒆𝒌𝒂 + 𝒑𝒃𝑒𝑘 … … … …(5) 

𝒆𝒌(𝒂 ∗ 𝒑𝒃) = 𝒆𝒌𝒂 ∗ 𝒑𝒃𝑒𝑘 … … … ….(6) 

𝒅𝒌(𝒄𝒂 ∗  𝒄𝒃) = 𝒅𝒌𝒄𝒂 ∗ 𝒅𝒌𝑐𝑏 … … ….(7) 

𝒅𝒌(𝒄𝒂 +  𝒄𝒃) = 𝒅𝒌𝑐𝑎 + 𝒅𝒌 … … . ..(8) 

The encryption algorithm is considered fully 

homomorphism from equations 5, 6, 7, and 8.  

Shihab and Makki, [12], and Dijk et al. [17] proposed a 

variant of the homomorphism scheme. Their proposed 

algorithm, Fully Homomorphism Encryption by Prime 

Modular Operation (SAM Scheme), pined its security 

strength on the random selection of big prime integers and 
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constant random big integers.  Again, their algorithm 

encrypted the plaintext, character by character.  

Even though their algorithm was promising the 

selection of big numbers used as seeds for the encryption 

and decryption process makes the execution times of 

their proposed algorithm linear and high. This makes the 

execution times to be proportional to data size [7], [10], 

and [12]. Again, the selection of big integers and big 

prime numbers generates high values which require high 

Central Processing Unit (CPU) capabilities to execute 

any data. 

This, therefore, raises the need for a full 

homomorphism scheme that is non-deterministic, with 

low execution time, and non-linear. A full 

homomorphism encryption scheme is proposed in this 

work by integrating Good Prime Numbers (GPN), Linear 

Congruential Generator (LCG), Sliding Window 

Algorithm (SWA), and Gentry’s algorithm. 

1.3 Our contribution 

Homomorphism is considered the solution to the security 

challenges of cloud computing which is hindering 

organizations and individuals from fully outsourcing to 

the cloud. There are variants of homomorphism schemes 

that are proposed, but their execution times are always 

linear (O (n)), making execution time predictable, and 

high. A robust high-security full homomorphism 

algorithm is proposed, which helps to attain privacy and 

confidentiality of data on the cloud with lower execution 

(O (log n)), non-linear and non-deterministic execution 

time. This is achieved through the application of the 

Fixed Sliding Window Algorithm on the selected 

numbers from the Linear Congruential Generator which 

breaks down the secret keys to smaller values to reduce 

the number of iterations performed by the processor to 

attain a lower execution time. The uniqueness of 

ciphertext is computed, the addition and multiplication 

property of homomorphism are tested, and the 

generation time for the four (4) arrays for the encryption 

and decryption of data using (
𝒏(𝒂[𝒊])

𝟑
) and the execution 

time of data sizes of 2𝑛𝑘𝑏 (𝑛 ∈ 2, 3, 4) was conducted 

using the smaller encryption key aiding in lower 

execution time. 

The paper is organized into five sections supported 

by sub-sections to give much clarity to the work. Section 

one discusses the introduction with its sub-sections, 

section two literature review, section three methodology, 

section four results and discussion, and section five 

conclusion. 

2 Related work 
   This discusses the works of other authors that are 

linked to ensuring data confidentiality and privacy on the 

cloud by employing homomorphism. The works of Ren et 

al.  

(2014) and Lakhan et al. [21] and [39] respectively are 

good examples. In the work of Ren et al, they proposed an 

exclusive – or (XOR) homomorphism encryption scheme. 

Their scheme encrypts data by randomizing it by 

performing an XOR operation based on a randomized 

string of bits. This scheme can protect data against the 

analysis of ciphertext by randomizing the data in transit 

thereby ensuring data confidentiality and privacy. Even 

though the algorithm is fast, its execution time is linear. 

Lakhan et, al. (2022), also proposed a secured vehicular 

fog cloud computing (FCN) that uses a Mobility-Aware 

Multi-Scenario Offloading Phase (MAMSOP) to attain 

mobility as well as offloading execution in their system. 

They employed full homomorphism encryption to attain 

the confidentiality of personal data on the cloud. Their 

scheme allowed for computation to be performed on 

locally stored data without decryption but is also linear. 

The works of Agwa et.al, [22] and Chang and Li [23] 

proposed an encryption algorithm based on 

homomorphism and secret sharing aimed at ensuring cloud 

data confidentiality and privacy. Their approach was 

flexible and could add and remove shareholders as well as 

add them. The integration of the algorithms aimed to 

reduce the time complexity of Lagrange computations 

which was achieved by leveraging their data to the cloud. 

Despite the security strength of their proposed algorithm, 

the execution time is linear making it predictable. Again, 

the works of Loyka et, al. (2018), [26] proposed an affine-

based homomorphism encryption scheme based on ASCII 

values of alphabets of plaintext to ensure privacy and 

confidentiality. Their scheme was the first to use an affine 

security scheme and its operations considered only strings 

and integers. Their approach considered the lookup and 

concatenation of encrypted text which uses the addition 

and subtraction of ciphertext operations. Their algorithm 

had linear encryption time with non-linear decryption 

time. 

Torres et al. (2015) [24], proposed a privacy scheme using 

a protocol, based on iris authentication by employing a 

lattice-based full homomorphism encryption scheme. 

Because they adopted homomorphism encryption, their 

scheme provided an unlimited computation of the 

ciphertext and also prevented the transfer of private keys 

to any third party. Their approach is very promising but is 

still prone to several attacks as indicated in [24] and also 

linear.   
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Yang et, al. [29], proposed an optimized re-linearization 

scheme of CDKS19 to ensure cloud data privacy. Their 

proposed scheme reduces the linearization complexity 

thereby decreasing the homomorphism evaluation 

process through the reorganization of the evaluation key 

in the key generation process. The security of the 

proposed security  

algorithm is promising but linear which makes it 

predictable.  

The work of Hong et al. [25], ensured the 

confidentiality of data by employing model inference 

processes using a secure multi-labeled classifier utilizing 

an approximate homomorphism encryption algorithm. 

Their approach allowed for efficient data encryption 

which reduced the execution time but the data encryption 

is linear making it predictable.  

Aono et al. [27] proposed integrating a key rotatable 

and security updating homomorphism algorithm (KR-

SU-HE) which is a public-key scheme. Their scheme 

rotated the key for the encryption and rotated the  

ciphertext and updated it as well still maintaining its 

privacy and confidentiality. Their approach seemed good 

but was also linear. 

In 2018 Gazizullina, [28] proposed a probabilistic 

algorithm using third-degree polynomial time to ensure 

data privacy. The proposed scheme has a reduced 

execution time due to reduced calculation times. The 

security of the algorithm is based on employing product 

tables which allowed the usage of rational values.  There 

was no comparison with existing algorithms and was not 

used to encrypt genomic data but is also linear. 

A summary of the related works is shown in Table 

1, indicating their methodology, weaknesses, and 

strength associated with the proposed algorithms. 

Considering the above works, we propose a full 

homomorphism scheme to ensure the privacy and 

confidentiality of data on the cloud using Good Prime 

Numbers (GPN), Linear Congruential Generator (LCG), 

Fixed Sliding Window Algorithm (FSW), and Gentry’s 

algorithm with lower execution, non-deterministic times 

and non-linear time. 

 

3 Methodology 
A privacy and confidentiality enhancement scheme 

dubbed Enhanced Homomorphism Scheme (EHS) for 

cloud data is proposed. EHS is an integration of Good 

Prime Numbers (GPN), Linear Congruential Generator 

(LCG), Fixed Sliding Window Algorithm (FSWA), and 

Gentry’s Algorithm. The algorithm is made up of two 

stages, Key Generation and the homomorphism scheme. 

The flow and the architectural diagram of EHS are shown 

in Figures 2 and 3. 

The key generation in EHS is computed using three 

procedural stages. The first stage involves the generation 

of two Good Prime Numbers. The product of the two  

 

selected numbers are considered the seed for the Linear 

Congruential Generator to generate twelve integers. The 

twelve integers are then subjected to the Fixed Sliding 

Window Algorithm to obtain four numbers using a sub-

array of three (
𝒏(𝒂[𝒊])

𝟑
). The initial value generated serves 

as 𝒔𝒊, the second computed value 𝒔𝒋, the third value 𝒔𝒌, the 

fourth value is 𝒔𝒍,  and M is the plaintext. The encryption 

of plaintext is achieved through the application of equation 

9 and the decryption of the ciphertext is computed using 

equation 10. 

 

𝐶 = 𝑀 + 𝑠𝑖 ∗ 𝑠𝑗 + 𝑠𝑘 ∗ 𝑠𝑙 … . … … … …(9) 

𝑀 = 𝐶 𝑚𝑜𝑑 𝑠𝑘 … … … … … … . . … … … (10) 

 

In the architectural diagram of the proposed EHS diagram 

shown in Figure 3, the cloud client secures data 𝑴𝟏 and 

𝑴𝟐 using Full Homomorphism encryption and offloads 

data to the cloud service provider. A common secret key is 

generated by the cloud client and cloud service provider to 

allow for synchronization. Upon synchronization, the 

cloud client requests modification of any data which is 

delivered as a function of 𝑓(𝑀1,𝑀2) without decryption 

as 𝒇(𝑬(𝑴𝟏), 𝑬(𝑴𝟐)). 
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Figure 2: Flow diagram of proposed Fully Homomorphism Encryption (FHE) schema 

 

 

 
Figure 3: Architectural Framework of proposed EHS 

algorithm 

 

3.1 Generation of keys 

3.1.1 Good prime numbers (GPN) 

A number whose square is greater than the product of two 

prime numbers positioned before and after in the sequence 

of the prime is considered a good prime [18]. Good Prime 

Numbers are computed using equation 11. 

𝑷𝒏
𝟐 > 𝑷(𝒏 − 𝒊) ∗ 𝑷(𝒏 + 𝒊) … … … … .. (11) 

The 𝑛  value indicates the prime numbers, 𝑃(𝑛 − 𝑖) 

represents the initial prime number resulting from the 

chosen primes while 𝑃(𝑛 + 𝑖)  suggests the subsequent 

prime fulfilling the condition 1 ≤ 𝑖 ≤ 𝑛 − 1. For 

example, first ten (10) prime numbers are: 2, 3, 5, 7, 11, 

13, 17, 19, 23, and 29. Using the formula in equation 11, 

the first good prime can be computed as; 

  52  > 3 ∗ 7, 52  > 2 ∗ 11. From this, the first ten 

good prime numbers are 5, 11, 17, 29, 37, 41, 53, 59, 67, 

and 71. Based on equation (11), select any two good prime 

numbers as P and Q, where 𝑃 ∗ 𝑄 = 𝐻, 𝑃 ≠ 𝑄,𝑃 ∈  𝑍𝑘, 

and  𝑄 ∈  𝑍𝑘. The product of 𝑷 and 𝑸  results in 𝑯 which 

serves as the seed value for the Linear Congruential 

Generator in the next stage of the key generation. 

3.1.2 Apply linear congruential generator 

(LCG) 

LCG is used to generate random numbers which are 

computed using a sporadic equation [12]. The formula in 

equation (12) is used to generate the sequence of numbers 

between 𝑉1, 𝑉2, … . . 𝑎𝑛𝑑 0, 𝑚 − 1 based on the condition 

that; 

  𝒎 > 𝟎,𝒂 < 𝒎,𝒄 < 𝒎, 𝑿𝒊 < 𝒎 

𝑿𝒊+𝟏 = (𝒂 𝑿𝒊 + 𝑪)𝒎𝒐𝒅 𝒎 … … … … …(12)  

 

In equation (12), 𝒂 is a multiplier, 𝒄  is an increment, 

m is the modulus and 𝑋𝑖 is the seed value (𝑯). The 

resultant of 𝑷 and 𝑸 is the seed value in equation (12) 

which is used to generate a hundred thousand random 

numbers. Twelve numbers are selected at random which 

serve as the seed numbers for the Fixed Sliding Window 

Algorithm (FSWA) to generate four numbers as 𝒔𝒊,  𝒔𝒋, 

𝒔𝒌, and 𝒔𝒍  for the encryption of the plaintext in equation 

21. 

3.1.3 Apply fixed sliding window algorithm 

(FSWA) 

In identifying the range of numbers in an array the Fixed 

Sliding Window is applied. This helps to reduce the 

number of loops in a nested loop aiming at reducing time 

complexity from 𝑂 (𝑛2) to 𝑂 (𝑛). The main objective of 

the Fixed Sliding Window algorithm is to generate the 
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greatest and minor numbers resulting from a continued 

range based on any given array [20]. 

 
Figure 4. Sliding window with 12 array length 

 

 
Figure 5. Sliding window with 3 sub-array length 

 

The Fixed Sliding Window algorithm is applied to the 

array using equations 13, 14, 15, and 16. This is used to 

generate four numbers (𝑎𝑦 , 𝑎𝑦1, 𝑎𝑦2, 𝑎𝑦3,) using 

(𝑛(𝑎[𝑖]))/3 based on the twelve arrays depicted in 

Figures 4 and, 5. 

 

𝑎𝑦 = 𝑎𝑖 + 𝑎𝑖+1 + 𝑎𝑖+2   … … … …(13) 

𝑎𝑦1 = 𝑎𝑖+3 + 𝑎𝑖+4 + 𝑎𝑖+5   … … …(14) 

𝑎𝑦2 = 𝑎𝑖+6 + 𝑎𝑖+7 + 𝑎𝑖+8   … … ….(15) 

𝑎𝑦3 = 𝑎𝑖+9 + 𝑎𝑖+10 + 𝑎𝑖+11 … … … ..(16) 

 

The four arrays are computed using equations 17, 18, 

19, and 20. Where 𝒔𝒊, 𝒔𝒋, 𝒔𝒌, and 𝒔𝒍 are the list of arrays 

after applying the Fixed Sliding Window Algorithm on 

the 12 arrays generated. 

 

𝒔𝒊 = ∑ 𝒂𝒚𝒏

𝟐

𝒏=𝟎

… … … … … … … … (17) 

𝒔𝒋 = ∑ 𝒂𝒚𝒏

𝟓

𝒏=𝟑

… … … … … … … … . (18) 

𝒔𝒌 = ∑ 𝒂𝒚𝒏

𝟖

𝒏=𝟔

… … … … … … … … . (19) 

𝒔𝒍 = ∑ 𝒂𝒚𝒏

𝟏𝟏

𝒏=𝟗

… … … … … … … … . . (20) 

3.1.4 Encryption 

This is the conversion of plaintext into ciphertext. To 

encrypt a message  𝑴, the ciphertext is computed using 

equation 21. 

 

𝐶𝐼 = 𝑀𝑡 + 𝑠𝑖 ∗ 𝑠𝑗 + 𝑠𝑘 ∗ 𝑠𝑙    … … … (21) 

 

Such that 𝑝𝑘,𝑚 ∈ [0, 𝑝 − 1). Where 𝑠𝒊 is the noise 

(initial value from the fixed sliding window), 𝒔𝒋 second 

value, 𝒔𝒌 the third value, 𝒔𝒍 fourth value, and, 𝑴 is the 

message. 

3.1.5 Addition homomorphism 

This operation is performed on the ciphertext to 

authenticate its similarity with the plaintext. This allows 

for the modification of documents without an idea of the 

plaintext by applying equation 22 where  Cn the storage 

location and CI is the subsequent addition of ciphertext 

values. 

 

  Cn+=  CI … … … … … … … … … … … … (22) 

3.1.6 Decryption 

The encrypted data is converted to plaintext by 

applying equation 23 to the ciphertext. Where 𝑴 is the 

plaintext, 𝑪 is the ciphertext, and 𝒔𝒌 is the third value 

generated from the application of the Sliding Window 

Algorithm in equation 23. 

𝑀 = 𝐶𝑛 𝑚𝑜𝑑 𝑠𝑘 … … … … … … … … …. (23) 

3.1.7 Multiplication homomorphism 

An additional computation can be performed on the 

ciphertext using multiplication operators to confirm its 

similarity with the plaintext by the application of equation 

24. 

Ct ∗= Ci … … … … … … . … … … … … … (24)     

 

The framework for the proposed algorithm is shown in 

figure 2 and presented in algorithm1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Experimental analysis, results, 

and discussion 

4.1 Experimental analysis 

The implementation of the proposed algorithm to 

ensure privacy, and confidentiality of cloud data dubbed 

Enhanced Homomorphism Scheme (EHS) is presented in 

this section. In this proposed algorithm, a Fixed Sliding 
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Window Algorithm (FSWA) is applied to the twelve 

arrayed numbers generated using the seed value from the 

Good Prime numbers on Linear Congruential Generator 

(LCG) to obtain four sequential numbers 𝑆𝑖 ,  𝑆𝑗 , 𝑆𝑘 , and 

𝑆𝑙  as indicated in figure 2 and algorithm 1. The random 

generation of the resultant values from equations 17, 18, 

19, and 20 makes the proposed algorithm unpredictable 

and again serves as the security basis of this algorithm. 

The plaintext is encoded by computing the product of the 

first value 𝑆𝑖  by the third 𝑆𝑘  value and added to the ASCII 

value of the alphabet in the message. The snippet of the 

codes for the encryption, decryption, addition and 

multiplication properties in the homomorphism algorithm 

is shown in Figures 6 and 7. This is then added to the 

product of the second value 𝑆𝑘  and the fourth value 𝑆𝑙 to 

obtain the ciphertext using equation 21. An addition 

homomorphism operation is performed on the ciphertext 

to confirm their similarity with the plaintext by using 

equation 22. A multiplication homomorphism is again 

performed on the ciphertext to confirm its similarity with 

the plaintext by using equation 24. The snippet for the 

generation of the keys for the proposed EHS algorithm by 

the integration of Good Prime numbers (GPN), Linear 

Congruential Generator, and Fixed Sliding Window 

Algorithm (FSWA) are shown in Figures 6 and 7. 

 

 

 
Figure 6: Snippet for the generation of the keys for the 

proposed EHS algorithm. 

 
Figure 7: Snippet of the codes for the encryption, 

decryption, addition, and multiplication properties in the 

homomorphism algorithm. 

4.2 Environment and data for the 

experiment 

The simulation of the proposed EHS algorithm was 

conducted on an i7 Lenovo computer with a processor 

speed of 2.10GHz using a C# language. Predesigned Data 

sizes of 2𝑛(𝑛 ∈ 2,3,5)  using the Kaggle dataset [30] to 

evaluate the average execution times for EHS. A 

simulation interface is depicted in Figures 8 and 9. A 

dataset size of 2kb was taken from the Kaggle database 

and a simulation was performed using the Enhanced 

Homomorphism Scheme (EHS). The encryption time 

was 12ms and 61ms for the decryption time. The data to 

be transmitted is encrypted from the client’s computer to 

the cloud service provider. The cloud service provider 

has no idea of the content of the data. The decryption of 

the content happens only when the cloud client request 

for retrieval of data as depicted in figure 10. 

 

 
Figure 8: A 2kb dataset from Kaggle for simulation. 
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Figure 9: Encryption and Decryption times for a 2kb 

Kaggle dataset for proposed EHS. 

 

 

4.3 Results and discussion 

The proposed algorithm was tested for the uniqueness of 

ciphertext, Homomorphism test property, and the 

encryption and decryption time for data sizes of 

2𝑛(𝑛 ∈ 2,3,5). 

4.3.1 Uniqueness of ciphertext test 

The uniqueness of ciphertext is the encoded message 

produced by an algorithm. A different encoded message 

is produced anytime the same message is encoded using 

different secret keys. To prove the accuracy of the 

algorithm the same plaintext should produce different 

ciphertext anytime the algorithm is executed. As a result, 

in attempting to control the security challenge in the 

cloud, anytime data is encrypted, a different encoded text 

should be produced anytime the algorithm is run. The aim 

of ensuring data confidentiality and privacy is attained. 

Compared with all encryption schemes, EHS generates 

exclusive encoded text for each string of plaintext as 

shown in Table 2. 

 

 

 

 

 

Table 2: Uniqueness of ciphertext test 

NO MESSAGE ENCODED TEXT DECRYPTED 

TEXT 

EVALUATION 

1 CD 10893459098602660107 CD YES 

2 CD 196048421532347120159743969974510 CD YES 

3 GH 2857582766089353527 GH YES 

4 55 12306163028248793884 55 YES 

4.3.2 Homomorphic algorithm testing 

property   

Full homomorphism algorithms are distinguished from 

somewhat and partial homomorphism algorithms 

because of their ability to perform addition and 

multiplication operations on ciphertext to obtain another 

ciphertext without an idea of the plaintext. EHS 

algorithm supports addition and multiplication 

operations. Assuming there are 𝑀𝑛, 𝑎𝑛𝑑 𝑀𝑘 plaintext. 

When the messages 𝑀𝑛, 𝑎𝑛𝑑 𝑀𝑘  are encrypted using 

the formula;  

 CI = Mt + si ∗ sj + sk ∗ sl,  

results in a ciphertext. An addition operation of 𝑀𝑛,

𝑎𝑛𝑑 𝑀𝑘  using the equation 𝐶𝑛+=  𝐶𝐼  should result in 

another ciphertext. Decrypting the ciphertext using the 

equation Mn = Cn mod sk results in another ciphertext 

which is equivalent to adding  𝑀𝑛, 𝑎𝑛𝑑 𝑀𝑘 as shown in 

table 3. In multiplicative homomorphism,  𝑀𝑛 , 𝑎𝑛𝑑 𝑀𝑘 

are encrypted to get ciphertext by applying the formula; 

 𝐶𝐼 = 𝑀𝑡 + 𝑠𝑖 ∗ 𝑠𝑗 + 𝑠𝑘 ∗ 𝑠𝑙 .  

If the ciphertext is decrypted using the 

equation Mn = Cn mod sk, the plaintext is produced 
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Figure 10: Pictorial view of simulated data 

representation in cloud using 

homomorphism. 

 



 

which is equivalent to the product of the plaintext using 

the equation 𝑪𝒕 ∗= 𝑪𝒊  as indicated in Table 3.  

4.3.3 Encryption and decryption times for 

data sizes of 𝟐𝒏(𝒏 ∈ 𝟐, 𝟑, 𝟓). 

Encryption and decryption time explain the conversion of 

plaintext into ciphertext and the reversal of ciphertext to 

plaintext. An algorithm with the fastest encryption and 

decryption time is considered an efficient algorithm [32], 

and [33]. A comparison of the execution time was 

conducted with New Fully Homomorphism Scheme 

(NFHS) [37], Enhanced Homomorphism Encryption 

Scheme (EHES) [7], Loyka, et al. 2018 [26], and the 

proposed Enhance Homomorphism Scheme (EHS). The 

algorithm is executed thirty times using different data 

sizes and their respective averages and standard errors 

computed. The comparison analysis of the runtime for 

encryption and decryption was performed based on data 

sizes of 2𝑛(𝑛 ∈ 2,3,4,5) using a dataset from Kaggle [30] 

and the output is indicated in Tables 4 and 5. 

From Table 4, with 4kb data, NFHE had the lowest 

encryption time compared with EHES and the proposed 

algorithm Enhance Homomorphism Scheme (EHS). On 

the other hand, when the data size was increased to 24kb, 

the proposed algorithm had the lowest encryption time of 

376.7778 ± 77.37333 followed by NFHE and EHES 

having the highest encryption time indicating a 52.55% 

decrease in execution time. From table 5, EHES had the 

highest decryption time of 653ms, followed by NFHE of 

594ms with the proposed EHS algorithm having the 

lowest decryption time of 503.2222 ± 83.59256 when a 

data size of 4kb was used. On the other hand, with a data 

size of 32kb, EHES had the highest decryption time of 

1274ms with the proposed EHS having the lowest 

decryption time of 551.2222 ± 82.68746 indicating a 

decryption percentage decrease of 56.73%.  

From Table 1, it can be observed that authors [21], 

[22], [23], [24], [25], [27], [28], [29], and [38] have their 

algorithms producing predictable, high execution and 

linear execution time, contrarily,  Loyka et al. 2018 [26], 

proposed an algorithm, using homomorphism scheme 

based on an affine cipher, which produced similar non-

linear results as the proposed Enhanced Homomorphism 

Scheme when text only was executed as shown in table 6, 

but the encryption and decryption time for numbers only 

was linear as shown in Table 7, whiles that of EHS is non-

linear which makes the work of Loyka et al. (2018) to be 

defeated by the works of [34], [35], and [36] that 

execution time depends on the size of security key used 

for the execution process. From, this it can be concluded 

that the proposed Enhanced Homomorphism scheme’s 

execution time is not dependent on data size but on the 

secret key used for the encryption as proposed by authors 

[34], [35], and [36]. 

 

 

Table 3: Test property for homomorphism algorithm 

Plaintext Mn + Mk Mn * Mk Ciphertext Decryption Evaluation 

55 106 2809 23024260351412088 55 YES 

CD 135 4556 85034133229062951 CD YES 

gh 207 10712 23244261176668167 gh YES 

 

Table 4: Encryption of plaintext based on different data sizes 

Plaintext (kb) EHES [37] (ms) NFHE[7] (ms) Proposed EHS (ms) 

4 582 493 558.4444 ± 67.30881 

8 634 562 501.7778 ± 93.74089 

16 720 693 630.8889  ±  109.938 

24 794 754 376.7778 ± 77.37333 

32 825 797 540.2222 ± 82.48851 

 

Table 5: Decryption of Ciphertext base of different data sizes 

The ciphertext 

(kb) 

EHES [37] (ms) NFHE (7)ms Proposed EHS (ms) 

4 653 594 503.2222 ± 83.59256 

8 864 782 567.6667 ± 96.38911 

16 961 842 433.4444 ±  114.3691 

24 1049 985 389.3333 ± 77.40047 

32 1274 1167 551.2222 ± 82.68746 
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Table 6. Encryption and decryption time with text only (Loyka et al 2018) [26] 

Data Size Encryption Time Decryption Time 

28 3567.829 5117.220 

216 3545.013 5121.104 

232 3635.781 5069.406 

264 3534.376 5084.582 

2128 3437.900 5144.918 

 

Table 7. Encryption and decryption time with numbers only (Loyka et al 2018) [26] 

No of Digits Encryption Time Decryption Time 

1 0.017 0.033 

2 0.031 0.037 

3 0.036 0.046 

4 0.038 0.048 

 

5 Conclusion 
The benefits of cloud computing are enormous; hence 

much effort should be applied to ensure its utmost 

security and sustainability. The most outstanding security 

challenge in the cloud due to its wide usage is 

confidentiality and privacy. The homomorphic scheme is 

considered the best among all the encryption algorithms 

used to secure data in the cloud. Somewhat, partial or full 

homomorphism allows varying levels of computation to 

be performed on encrypted data which is the advantage 

of homomorphism. This paper proposes a 

homomorphism algorithm dubbed Enhanced Homomo- 

rphic Scheme (EHS) with lower execution, non-

deterministic execution time, and non-linear execution 

time. The proposed algorithm was tested using a dataset 

from Kaggle [30] and a comparison of its execution time 

was performed against New Fully Homomorphism 

Scheme (NFHS), Loyka et al 2018), and Enhance 

Homomorphism Encryption Scheme (EHES). Other 

analyses were also conducted such as the ciphertext 

uniqueness test, and the homomorphism property test 

(addition and multiplication property) were also 

conducted. The experiment proved that the proposed 

algorithm EHS supports the addition and multiplication 

properties applied in a homomorphism scheme. The 

proposed algorithm EHS had the lowest encryption time 

when a data size of 24kb was executed but with a higher 

decryption time of 567.6667 ± 96.38911with a data size 

of 8kb. Future work should be conducted on throughput, 

CPU, and memory usage. 
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