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Classification and regression models, either automatically generated from data by machine learning algo-
rithms, or manually encoded with the help of domain experts, are daily used to predict the labels of new
instances. Each such individual prediction, in order to be accepted/trusted by users, should be accompanied
by an explanation of the prediction as well as by an estimate of its reliability. We have recently developed a
general methodology for explaining individual predictions as well as for estimating their reliability. Both,
explanation and reliability estimation are general techniques, independent of the underlying model and
provide on-line (effective and efficient) support to the users of prediction models.

Povzetek: Razvita je metodologija za razlago napovedi s pripadajočo verjetnostjo pri klasifikacijskih in
regresijskih modelov strojnega učenja.

1 Introduction

In a typical machine learning scenario a machine learning
algorithm is used to construct a model of the relationships
between the input features and the target variable with the
purpose to predict the target variable of new, yet unseen
instances. Explaining the learned relationships is also an
important part of machine learning. Some models, such
as additive models or small decision trees, are inherently
transparent and require little or no additional post process-
ing [14, 32]. Other, more complex and often better per-
forming models are non-transparent and require additional
explanation. Therefore, model-specific explanation meth-
ods have been developed for models such as artificial neural
networks and SVM. In practice, dealing with several dif-
ferent explanation methods requires undesirable additional
effort and makes it difficult to compare models of different
types. To address this issue, general explanation methods
are used – methods, which treat each model as a black-box
and can be used independent of the model’s type. Most
general explanation methods are based on marginalization
of features [17, 35]. This approach is computationally ef-
ficient. It is also effective as long as the model is additive
(that is, as long as the features do not interact). However,
several widely-used machine learning models are not addi-
tive, which leads to misleading and incorrect explanations
of the importance and influence of features [29]. Unlike ex-
isting general explanation methods, our method, described
in Section 2, takes into account not only the marginal effect
of single features but also the effect of subsets of features.

In supervised learning, one of the goals is to get the
best possible prediction accuracy on new and unknown

instances. As current prediction systems do not provide
enough information about single predictions, experts find
it hard to trust them. Common evaluation methods for
classification and regression machine learning models give
an averaged accuracy assessment of models, and in gen-
eral, predictive models do not provide reliability estimates
for their individual predictions. In many areas, appropri-
ate reliability estimates may provide additional informa-
tion about the prediction correctness and can enable the
user (e.g. medical doctor) to differentiate between more
and less reliable predictions. In Section 3 we describe our
approaches to estimating the reliability of individual pre-
dictions. Finally, in Section 4 we overview directions of
current research, carried out in LKM.

2 Explaining individual predictions

The idea behind our method for explaining individual pre-
dictions is to compute the contributions of individual fea-
tures to the model’s prediction for a particular instance by
decomposing the difference between the model’s predic-
tion for the given instance and the model’s expected pre-
diction (i.e., the model’s predictions if none of the features’
values were known). We adopt, with minor modifications,
the notation used in [30]. Let A = A1 ×A2 × · · · ×An be
our feature space, where each feature Ai is a set of values.
Let p be the probability mass function defined on the sam-
ple space A. Let fc : A→ [0, 1] describe the classification
model’s prediction for class value c. Our goal is a general
explanation method which can be used with any model, so
no other assumptions are made about fc. Therefore, we are
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limited to changing the inputs of the model and observing
the outputs.

Let S = A1, . . . , An be the set of all features. The influ-
ence of a certain subset Q of S for classification of a given
instance is defined as:

∆(Q)(x) = E [f |Q(x)]− E [f ] (1)

where Q(x) are values of features in Q for x. The value of
the above function for the entire set of features S is exactly
the difference between the model’s prediction for a given
instance and the model’s expected prediction that we wish
to decompose. Note that we omit the class value in the no-
tation of f . Suppose that for every subset of features Q the
value of ∆(Q) is known. The goal is to decompose ∆(S)
in a way that assigns each feature a fair contribution with
respect its influence on the model’s prediction. In [29] a
solution is proposed that is equivalent to the Shapley value
[27] for the coalition game with the n features as players
and ∆ as the characteristic function. The contribution of
the i-th feature is defined as

φi(x) =
∑

Q⊆S{i}

|Q|! (|Q| − 1)!

|S|!
δ(Q, x, i), (2)

where

δ(Q, x, i) = ∆(Q ∪ {i})(x)−∆(Q)(x). (3)

These contributions have some desirable properties. Their
sum for the given instance x equals ∆(S), which was our
initial goal and ensures implicit normalization. A feature
that does not influence the prediction will be assigned no
contribution. And, features that influence the prediction in
a symmetrical way will be assigned equal contributions.

The computation of Eq. 2 is infeasible for large n as the
computation time grows exponentially with n. The approx-
imation algorithm is proposed in [31, 30], where we show
its efficiency and effectiveness. It is based on the assump-
tion that p is such that individual features are mutually
independent. With this assumption and using an alterna-
tive formulation of the Shapley value we get a formulation
which facilitates random sampling. For a global view on
features’ contributions, we define the contribution of the
feature’s value as the expected value of that feature’s con-
tribution for a given value. Again, random sampling can be
used to estimate the expected value [30]. Let us illustrate
the use of the features’ local and global contributions us-
ing a simple data set with 5 numerical features A1, . . . , A5

with unit domains [0, 1]. The binary class value equals 1
if A1 > 0.5 or A2 > 0.7 or A3 > 0.5. Otherwise, the
class value is 0. Therefore, only the first three features are
relevant for predicting the class value. This problem can
be modeled with a decision tree. Figure 1 shows expla-
nations for such a decision tree. The global contributions
of each feature’s values are plotted separately. The black
line consists of points obtained by running the approxima-
tion algorithm for the corresponding feature and its value

Figure 1: Explanation of a decision tree.

corresponding the value on the x-axis. The lighter line cor-
responds to the standard deviation of the samples across
all values of that particular feature and can therefore be
interpreted as the overall importance of the feature. The
lighter lines reveal that only the first three features are im-
portant. The black lines reveal the areas where features
contribute towards/against class value 1. For example, if
the value of feature A1 is higher than 0.5 it strongly con-
tributes towards class value being 1. If it is lower, it con-
tributes against class value being 1. For example, the in-
stance x = (0.47, 0.82, 0.53, 0.58, 0.59) belongs to class
1, which the decision tree correctly predicts. The visual-
ization on Figure 2 shows the individual features’ contribu-
tions for this instance. The last two features have a 0 con-
tribution. The only feature value that contributes towards
class = 1 is A2 = 0.82, while the remaining two features’
values have a negative contribution.

We have successfully applied this research to post-
processing tools for breast cancer recurrence prediction
[31], maximum shear stress prediction from hemodynamic
simulations [6], and businesses’ economic results preci-
sion [24].
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Figure 2: Visualization of the individual features’ contribu-
tions for particular instance.

2.1 Efficient RBF network explanation

A lot of effort has been invested into increasing the inter-
pretability of complex models such as artificial neural net-
works [2, 21]. Presented explanations method can be used
with any type of classification model including neural net-
works. Below we show how for a special type of neural
networks the approximations required to estimate Eq. 1 in
[31, 30] can be especially efficient and require no relearn-
ing of the classification model [26]

The probabilistic radial basis function network classi-
fier (PRBF) is an effective but non-transparent prediction
model [11, 33]. The PRBF is a special case of the RBF
network [3]. It adopts a cluster interpretation of the base
functions, where each cluster can generate observations for
any class. Therefore, it is a generalization of the Gaussian
mixture model [3, 20]. We show how the PRBF can be effi-
ciently explained with two presented explanation methods
[25, 29].

Consider a classification problem with c classes yk (k =
1, . . . , c) and input instances x = (A1, . . . , Aa). For this
problem, the corresponding PRBF classifier has a inputs
and c outputs, one for each class. Each output provides
and estimate of the probability density p(x|yk) of the cor-
responding class yk. Assume that we have M components
(hidden units), each one computing a probability density
value fj(x) of the input x. In the PRBF network all com-
ponent density functions fj(x) are utilized for estimating
the conditional densities of all classes by considering the
components as a common pool [33]. Thus, for each class a
conditional density function p(x|yk) is modeled as a mix-
ture model of the form:

p(x|yk) =

M∑
j=1

πjkfj(x), k = 1, . . . , c, (4)

where the mixing coefficients πjk are probability vectors;
they take positive values and satisfy the following con-

straint:
M∑
j=1

πjk = 1, k = 1, . . . , c. (5)

Once the outputs p(x|yk) have been computed, the class
of data point x is determined using the Bayes rule, i.e. x
is assigned to the class with maximum posterior p(yk|x)
computed by

p(yk|x) =
p(x|yk)Pk∑c
`=1 p(x|y`)P`

(6)

The class priors Pk are usually computed as the percentage
of training instances belonging to class yk.

In the following, we assume the Gaussian component
densities of the general form:

fj(x) =
1

(2π)a/2|Σj |1/2
· (7)

exp

{
−1

2
(x− µj)TΣ−1j (x− µj)

}
where µj ∈ <a represents the mean of component j, while
Σj represents the corresponding a × a covariance matrix.
The whole adjustable parameter vector of the model con-
sists of the mixing coefficients πjk and the component pa-
rameters (means µj and covariances Σj).

A notable convenient characteristic of the Gaussian dis-
tribution is the marginalization property: if the joint distri-
bution of a set of random variables S = {A1, . . . , Aa} is
Gaussian with mean µ and covariance matrix Σ, then for
any subset A of these variables, the joint distribution of the
subsetQ = S−A of the remaining variables is also a Gaus-
sian. The mean µ\A of this Gaussian is obtained by remov-
ing from µ the components corresponding to the variables
in subset A and covariance matrix Σ\A is obtained by re-
moving the rows and columns of Σ corresponding to the
variables in subset A. Therefore, if we know the mean and
covariance of the joint distribution of a set of variables, we
can immediately obtain the distribution of any subset of
these variables.

The basis for the explanation is ∆(Q)(x) from Eq. 1,
so for a given instance x we need the prediction using the
set of all features {1, 2, ...a}, the prediction using only a
subset of features Q, and the prediction using the empty
set of features {}. Let these predictions be h(x{1,2,...a}),
h(xQ), and h(x{}), respectively. Since an instance x is
fixed in explanation, for readability sake we omit it from
expressions below, but remain aware that the dependence
exists.

For an input x = (A1 = v1, . . . , Aa = va) each out-
put p(x|yk), k = 1, . . . , c of the PRBF is computed as a
mixture of Gaussians:

p(x|yk) =

M∑
j=1

πjkN (x;µj ,Σj) (8)
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Consequently, based on the marginalization property of the
Gaussian distribution, for a subset of features Q we get

h(xQ|yk) =

M∑
j=1

πjkN (xQ;µjQ,ΣjQ) (9)

where µjQ and ΣjQ are obtained by retaining only the ele-
ments from Q in µj and Σj . We obtain h(yk|xQ) as

h(yk|xQ) =
h(xQ|yk)Pk∑c
`=1 h(xQ|y`)P`

(10)

and use it in the approximation via Eqs. (2) and (2).
As a consequence, with PRBF models approximations

become more efficient and exact as no approximation of
the conditional predictions is needed. Classification with
a subset of features requires only a mask which selects
appropriate elements from µ and appropriate rows and
columns from Σ matrix.

3 Reliability of individual
predictions

Because model independent approaches are general, they
cannot exploit specific parameters of a given predictive
model, but rather focus on influencing the parameters that
are available in the standard supervised learning framework
(e.g. a learning set and attributes). We expect from reli-
ability estimators to give insight into the prediction error
and we expect to find positive correlation between the two.
There exist two distinct types of estimates – point estima-
tors are covered in the first subsection and interval estima-
tors are presented in the latter.

3.1 Point estimators
The first two algorithms described in this section are based
on Reverse transduction and Local sensitivity analysis and
follow the same transductive idea, though the first is ap-
plicable only to classification, and the second to regression
models. Other algorithms are general and need only minor
adaptations when converted from regression to classifica-
tion models, or vice versa.

3.1.1 Reverse transduction and Local sensitivity
analysis

Transduction can be used in the reverse direction, in the
sense of observing the model’s behavior when inserting
modified learning instances of the unseen and unlabeled
instance [15, 16]. Let x represent an instance and let y
be its class label. Let us denote a learning instance with
known label y as (x, y) and let (x, _) be an unseen and
unlabeled instance, for which we wish to estimate the reli-
ability of an initial prediction K. It is possible to create a
modified learning instance by inserting the unseen instance
(x, _) into the learning set and label it with the same (first)

or different class (second best or last) as predicted by the
initial model. The distance between the initial probabil-
ity vector and that from the rebuilt model forms the reli-
ability estimate. The three reliability estimators for clas-
sification models derived from three instances are labeled
TRANSfirst, TRANSsecond and TRANSlast.

In the regression the procedure is similar except that the
predicted label is first slightly corrupted: y = K + δ and
then we insert the newly generated instance (x, y) into the
learning set and rebuild the predictive model. We define
δ = ε(lmax− lmin), where ε expresses the proportion of the
distance between largest (lmax) and smallest (lmin) predic-
tion. In this way we obtain a sensitivity model, which com-
putes a sensitivity estimate Kε for the instance (x, _). To
widen the observation window in local problem space and
make the measures robust to local anomalies, the reliability
measures use estimates from the sensitivity models, gained
and averaged across different values of ε ∈ E. For more
details see [4]. Let us assume we have a set of nonnegative
ε values E = ε1, ε2, . . . , ε|E|. We define the estimates as
follows:

– Estimate SAvar
(Sensitivity Analysis local variance):

SAvar =

∑
ε∈E (Kε −K−ε)

|E|
(11)

– Estimate SAbias
(Sensitivity Analysis local bias):

SAbias =

∑
ε∈E (Kε −K) + (K−ε −K)

2 |E|
(12)

3.1.2 Bagging variance

In related work, the variance of predictions in the bagged
aggregate of artificial neural networks has been used to es-
timate the reliability of the aggregated prediction [13, 9].
The proposed reliability estimate is generalized to other
models [5].

Let Ki, i = 1 . . .m, be the predictor’s class probability
distribution for a given unlabeled example (x, _). Given a
bagged aggregate of m predictive models, where each of
the models yields a prediction Bk, k = 1 . . .m, the relia-
bility estimator BAGV is defined as the variance of pre-
dictions’ class probability distribution:

BAGV =
1

m

m∑
k=1

∑
i

(Bk,i −Ki)
2
. (13)

The algorithm uses a bagged aggregate of 50 predictive
models as default.

3.1.3 Local cross-validation

The LCV (Local Cross-Validation) reliability estimate is
computed using the local leave-one-out (LOO) procedure.
Focusing on the subspace defined by k nearest neighbors,
we generate k local models, each of them excluding one of



Explanation and Reliability of. . . Informatica 37 (2013) 41–48 45

the k nearest neighbors. Using the generated models, we
compute the leave-one-out predictions Ki, i = 1 . . . k, for
each of the k excluded nearest neighbors. Since the labels
Ci, i = 1 . . . k, of the nearest neighbors are known, we are
able to calculate the local leave-one-out prediction error as
the average of the nearest neighbors’ local errors:

LCV =
1

k

∑
i

|Ci −Ki| . (14)

In experiment, the parameter k was assigned to one tenth
of the size of the learning set.

3.1.4 Local error modeling

Given a set of k nearest neighbors, where Ci is the true
label of the i-th nearest neighbor, the estimate CNK
(CNeighbors −K) is defined as the difference between av-
erage label of the k nearest neighbors and the instance’s
prediction K:

CNK =

∑
i Ci
k
−K. (15)

CNK is not a suitable reliability estimate for the k-nearest
neighbors algorithm, as they both work by the same princi-
ple. In our experiments we used k = 5. In regression tests,
CNK-a denotes the absolute value of the estimate, whereas
CNK-s denotes the signed value.

3.1.5 Density based estimation

This approach assumes that an error is lower for predictions
in denser problem subspaces, and higher for predictions in
sparser subspaces. Note that it does not consider the learn-
ing instances’ labels. The reliability estimator DENS is
a value of the estimated probability density function for a
given unlabeled example.

3.1.6 Applications of point estimators

The proposed reliability estimation methodology has been
implemented in several applications of machine learning
and data mining in areas of medicine, financial applica-
tions, economy. In these application domains, the bare re-
gression predictions have been supplemented with a suit-
able reliability estimator (the best performing among the
proposed was chosen after the initial evaluation study),
which helped the users of predictive systems gain greater
insight into the trustworthiness of individual predictions.
The most interesting of these applications are:

– breast cancer recurrence prediction problem for the
Institute of Oncology, Ljubljana [31]. The collected
dataset included data for 1023 patients, for whom the
task was to predict potential cancer recurrence for the
period of future 20 years. Given that a predictive
timespan is so wide and that it reaches into the far
future, the difficulty of the predictive problem was al-
leviated by implementing reliability estimators,

– electricity load forecast prediction problem for a par-
ticular European country [6]. Two regression mod-
els were implemented, the neural network and the k
nearest neighbors algorithm and their predictions were
corrected using the reliability estimator CNK. The re-
sults showed that the accuracy of corrected predictions
using CNK is favorable in comparison to accuracy
of predictions corrected with referential Kalman filter
method.

– predicting maximum wall shear stress magnitude and
its coordinates in the model of human carotid artery
bifurcation [7]. Since one of the most common
causes of human death is stroke, a medical expert sys-
tem could significantly aid medical experts to detect
hemodynamic abnormalities. Based on the acquired
simulated data, we applied several prediction reliabil-
ity estimators and the model explanation methodology
that provided a useful tool for the given problem do-
main.

3.2 Interval estimators

Here we focus on standard regression problems where the
data follows some continuous function and is somehow
corrupted with additive noise – yi = f(~xi) + ε(~xi).

Confidence intervals are concerned with the accuracy of
the model’s estimate ŷi = ŷ(~xi) of the true but unknown
function f(~xi). They strive to capture the distribution of
the quantity f(~xi)− ŷi, however in applications, it is more
informative to quantify the accuracy of the model’s output
with respect to the realized observations yi. Prediction in-
tervals (PIs) should capture the distribution of individual
future points and are concerned with the quantity yi − ŷi.
Expanding the first term, yi − ŷi = f(~xi) + ε(~x) − ŷi =
[f(~xi)− ŷi] + ε(~x) , we see that the PI should enclose
the confidence interval. In real world applications, PIs are
more practical than confidence intervals because the former
are concerned with the accuracy with which it is possible
to predict the observed value itself, and not only with the
accuracy of the estimate of the true conditional mean.

3.2.1 Bootstrap and maximum likelihood

The first family of methods is based on the idea of ex-
plaining the total prediction error as a sum of the model’s
error and the error caused by noise inherent to the data
[13]. Noise in data and non-uniform distribution of exam-
ples represent a challenge for learning algorithms, leading
to different prediction accuracies in different parts of the
problem space. This component is called the data noise
variance and is labeled as σ2

d. Apart from the distribution
of learning examples there are also other causes that influ-
ence the accuracy of prediction models and these factors
form the component called the model uncertainty variance,
σ2
m. The two components are assumed to be independent

of each other and their sum is the total prediction variance:
σ2 = σ2

m + σ2
d.
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The most straightforward approach was formed in [34].
Given a fixed model with available learning algorithm and
training set, the reinterpretation of the method goes as fol-
lows. To estimate σ2

m(~x), bagging is done with the training
data, using the model at hand. Confidence intervals are
formed by assuming the normal distribution and calculat-
ing σ̂2

m(~x), the variance of the bagged predictions. Then
a radial basis function network (RBFN) is trained on the
residuals of the bagging predictions on the training dataset
and is used to provide the estimate σ̂2

d(~x). Assuming nor-
mal distribution, σ̂2(~x) equals to σ̂2

m (~x)+σ̂2
d (~x), so the PI

is ŷbag(~x)± zα/2σ̂(~x) where ŷbag is the bagged prediction
of the model. This method is labeled as BagMLa.

Generalizing the method from [13], we label it BagMLb.
Here, σ̂2

m(~x) is again obtained by calculating the vari-
ance of the bagged model. Estimation of σ2

d(~x) is done
by a RBFN trained on the out–of–sample bagged residu-
als. Assuming a locally normal distribution, the BagMLb
PI is ŷ(~x) ± zα/2σ̂(~x) where ŷ is the model’s prediction.
Keen readers would notice that BagMLa PIs are centered
on ŷbag(~x) but with BagMLb, the PIs are centered on ŷ(~x).
The idea is that ŷbag(~x) provides a more stable estimate of
the true function f(~x) than ŷ(~x) does.

3.2.2 Local neighborhood

The second family assumes that samples, which are close
in the attribute domain, will behave similarly. These ap-
proaches estimate the conditional prediction variance with
use of the local neighborhoods for direct estimation of σ2.
As such, they can be applied even in cases where there is no
access to the learning algorithm or the bootstrap procedure
would be just too time consuming.

Adopting the idea from [28], we implemented k-means
clustering on the training data. The number of clusters is
defined with the common heuristic k =

√
n/2, where n

is the size of the training set. LNcl PIs are constructed
for each cluster directly from its empiric distribution of the
residuals, by taking the appropriate percentiles, i.e. the 2.5
and 97.5 percentiles for 95% PIs. For an unseen example,
the PI is defined by that of the nearest cluster.

The nearest neighbor algorithm can be used to construct
PIs in the following way. First, signed residuals are ob-
tained from the training set. From the nearest neighbors
residuals, their mean r̄ serves for bias correction and their
standard deviation gives us σ̂2(~x). The number of used
neighbors is relative to the size of the data set. With method
LN5, the size of the neighborhood is 5% of the total popu-
lation. Our second variant LN100 is computationally even
simpler, as it covers the whole (100%) population and is
therefore equivalent to analytic methods that assume con-
stant variance. Here we assume the Student’s t-distribution
with degrees of freedom equal to the number of neighbors,
so the PIs take the form ŷ + r̄ ± tα/2 · σ̂2(~x).

Natural progression would suggest use of adaptive
neighborhood procedures. Random forests [8] were rein-
terpreted as a weighted mean of the observed response

variables in [18] and generalized to Quantile Regression
Forests in [19]. In this case, trees in these ensembles are
not pruned and the values of all observations are kept in
the leafs. This preserves information about the underlying
distribution and makes estimation of conditional quantiles
possible. The conditional distribution of residuals given
X = x can be written as F (r|X = x) = P (R ≤ r|X =
x) = E(1R≤r|X = x), where 1Ri≤r is an indicator vari-
able with value 1 if Ri ≤ r and 0 otherwise. This ex-
pression is approximated by the weighted mean over the
indicator variables and the estimator is

F̂ (r|X = x) =

n∑
i=1

wi(x)1Ri≤r.

The weightswi are averaged weights from the collection of
trees and a weight in the individual tree is the inverse of the
number of observations in the corresponding leaf. Weights
sum to one, so they represent the distribution of possible
values for the response variable. When a new sample is
dropped trough the collection of trees, the weights are ob-
tained. The corresponding ri values are sorted in ascend-
ing order and for 95% PIs, we need to find rl for which∑l
i=1 wi ≥ 0.025 and ru for which

∑u
i=1 wi ≥ 0.975

hold. The interval [ŷ + rl, ŷ + ru] is our sought PI.

3.2.3 Evaluation of interval estimators

In Figure 3 we can see the results on a collection of 36
real-world and artificial datasets. It shows how the lowest
achieved PICP values and those closest to the target PICP
value are distributed among the used methods. In this re-
gard, QRF seems best.

If two methods achieve the same PICP, the one with a
lower RMPI value would have more narrow intervals and
should be regarded as the better option. Small RMPI values
are mostly achieved by LN methods due to their nature of
producing optimal intervals and extremely low RMPI val-
ues are usually accompanied with zero prediction coverage.
Largest RMPI values were produced by BagML methods,
though the corresponding PICP values are 1.0. This means
that all test examples enclosed on the account of very wide
PIs. According to the figure, QRF did not produce any
extreme RMPI values and is even in this respect the best
method to use.

4 Current research directions

Our current research is focused on several topics. One re-
search area is related to evaluation of ordinal features in the
context of surveys and customer satisfaction in marketing,
learning of imbalanced classification problems, and apply-
ing evolutionary computation to data mining (focused on
using ant colony optimization for rule learning). Some-
what different area is spatial data mining of multi-level
directed graphs with applications in oceanography [22].



Explanation and Reliability of. . . Informatica 37 (2013) 41–48 47

Figure 3: Distribution of experiments (their percentage)
of achieved PICP values closest to the target (positive)
and furthest (negative) compared to the distribution of the
smallest (positive) and largest (negative) achieved RMPI
values among the methods.

We recently restored our research in inductive logic pro-
gramming (ILP) which is focused on employing back-
ground knowledge analysis for search space reduction in
bottom-up ILP. Yet another branch of research is profil-
ing of web users in an online advertising network together
with heuristic search methods in clickstream mining [23],
employing algebraic methods, particularly matrix factor-
ization for text summarization, and modeling the progres-
sion of team sports matches and evaluation of the indi-
vidual player’s contributions. We also continue our long-
term research in medical problems, particularly detection
of (non)-ischaemic episodes in ECG signals [12]. The re-
search, described in this paper, continues by adapting the
reliability estimators and the explanation methodology for
online learning (data streams).
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