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Convolutional neural network (CNN) has emerged as one of the most accurate methods for sentiment
analysis, but it is largely uninterpretable, while case-based reasoning (CBR) is less accurate but offers
interpretable outputs in the form of arguments from analogy. This paper presents an approach to combine
these two methods, CNN for accuracy and CBR for explainability, using an assumption-based argumentation
(ABA) framework. Our approach focuses on justifying CNN outputs using analogous sentences from CBR
while ensuring that the combined process is argumentative and hence self-explainable. To demonstrate
the proposal, we construct a CNN modelM1 and a CBR modelM2 for sentiment analysis using different
subsets of a dataset of which the remaining part is used for testing and comparing these input models with
combined models. For an input sentence, ifM1 andM2 predict the same sentiment, then the analogous
sentence, which M2 finds, is used to explain the sentiment. If they give conflicting sentiments, a hybrid
modelM3 determines which one should be followed using a system of strict rules that takes into account
how assertiveM1 andM2 are. Another hybrid modelM4, which is implemented by an ABA framework,
improves on M3 by considering the probability distribution of the set of all labels from M1, and the
second (or third) most similar sentences fromM2. M3 andM4 preserve the accuracy of the CNN model
(specifically, 88.32% and 88.28% in comparison with the 87.59% accuracy of the CNN). They justify
69.95% and 74.53% of CNN outputs, respectively.

Povzetek: Obravnavana je analiza emisij termoelektrarn z metodami mehkih množic in učenjem na osnovi
primerov.

1 Introduction
Sentiment analysis (SA) [1, 2] is an area of natural lan-

guage processing (NLP) that analyzes extremely large tex-
tual datasets, such as customer reviews, to determine writ-
ers’ sentiments as expressed in a text. Classical approaches
to SA are mostly machine learning (ML) techniques (such
as naı̈ve bayes (NB) and support vector machine (SVM),
maximum entropy (MaxEnt) and logistic regression (LR)
[3]) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Deep learning (DL)
methods [14, 15, 16, 17] (especially CNN) emerged as one
of the most accurate methods [18, 19]. Unfortunately, for
humans, CNN is like a black-box, offering virtually no ex-
planation of why an input sentence should be labeled in
the way it is. In the meantime, decision tree (DT) and
case-based reasoning (CBR) are interpretable but cannot
compete with CNN in terms of accuracy. Explainable arti-
ficial intelligence (XAI) [20] is a recent emerging AI field
to address the uninterpretable problem of ML/DL models
by either model-specific (intrinsic) explanation or model-
agnostic (post-hoc) explanation. The intrinsic explanation

mostly interprets the simple and transparent (white-box)
models such as DT and rule-based systems. However, the
complicated and well-trained black-box models lose their
transparency while having high accuracies. These black-
box models cannot be directly interpreted because it is
difficult to access their internal mechanisms. Hence, the
post-hoc explanation uses model-agnostic methods (i.e. in-
terpretable) to justify the black-box models at either the
model level (global) or the instance level (local) after the
training process. The global model-agnostic methods (such
as Partial Dependence Plot (PDP)) compute the measures of
individual features that are critical and effective to the over-
all model performance. For example, PDP describes the
average behavior of a trained model by computing the con-
tribution of the individual features to the outputs. When a
model has hyperparameters, the local model-agnostic meth-
ods (such as local interpretable model-agnostic explanations
(LIME)) are more beneficial than the global methods for
interpreting the classification decisions of the model. For
example, LIME [21] figures out the relationship between
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input-output pairs of a trained model and takes each pair
as an instance. Then it explains individual classification
for each specific instance. The advantage of using local
model-agnostic methods is that they can prevent sacrificing
accuracy for achieving interpretability.

In this paper, we propose hybrid models of CNN and
CBR that combine their strengths, i.e. accuracy from CNN
and explainability from CBR, using the ABA framework.
The goal of this paper is to justify the CNN outputs using
analogous sentences from the CBR while ensuring that the
combination of CNN and CBR models is argumentative.
Similar to the local model-agnostic methods, our hybrid
models primarily explain the sentiment classification of the
CNN model at the instance level. The motivation for us-
ing the CBR for interpretability is that it provides an easier
and more satisfying explanation than a chain of rules, and
the model’s failure can be easily diagnosed because its out-
comes can be traced back to prior analogous sentences. Our
approach is graphically depicted in Figure 1.
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Figure 1: Overview of our hybrid approach where 𝑃𝑖 refers
to the conditional probability of 𝑖𝑡ℎ sentiment given the
input sentence.

In order to test our model, we construct CNN and CBR
models using a dataset containing 25,104 annotated sen-
tences (i.e. ground truth), which are customer reviews
written in the Myanmar language. Specifically, the entire
datasetD is divided into three subsets: 61% ofD (denoted
by D1) is used to train the CNN model (calledM1), 18%
of D (denoted by D2) is used to build the CBR model
(calledM2), and the rest (21%) of D (denoted by D3) is
used to test the models, including our hybrid models. For
an input sentence 𝑛, the CNN modelM1 using softmax as
the squashing function in the output layer produces a prob-
ability distribution of sentiments. The CBR model M2
searches in D2 for similar sentences to the input sentence
denoted by 𝑛 and ascribes the labels of those sentences to
𝑛 (often, the most similar sentence is used). IfM1 andM2
agree on the label of 𝑛, then it is clear that the hybrid models
use that label as well. Moreover, the most similar sentence
thatM2 finds can be used to explain the label in this case.
This means that the explanation takes the form of an argu-
ment from analogy. In the case of disagreement, the hybrid
model needs to decide whether to follow M1 or M2. In
this paper, we first present a rule-based hybrid model called
M3 using a system of strict rules to make this decision. We

then reviseM3 by adding exceptions to some strict rules of
M3, to make finer decisions, taking into account the labels
of the second-most, third-most (etc.) similar sentences of
the input sentence. The result is a new modelM4, which
is implemented by a structured argumentation framework
called ABA. Thus, both hybrid models,M3 andM4, justify
M1’s outputs via analogous sentences from M2. Hence,
the presence of sentiment words (i.e. positive, negative) in
the sentences derives the model’s classification. We com-
pare the performance of all models using the same dataset
D3. The results show that our hybrid models are 88.32%
and 88.28% accurate, respectively, while the CNN model
and the CBR model achieve 87.59% and 71.57% accuracy,
respectively. Hence, we can say that the hybrid models are
on a par with CNN in terms of accuracy but are more in-
terpretable. As will be seen, the hybrid models can explain
around 70% and 74% of their outputs, respectively.

This paper contributes to XAI in three ways: (i) it uses
CBR to justify CNN outputs; (ii) it ensures that the CNN-
CBR combination is argumentative and self-explainable
through argumentation; and (iii) it retains CNN accuracy
while providing explainability. The interpretability of our
approach is primarily post-hoc. In [22], Prakken and
Ratsma describe a top-level model that explains the outputs
of ML-based decision-making applications. Their work’s
interpretability is also post-hoc based on AI and law studies
using argumentation with cases, and it can be extended with
more detailed analyses of case similarities. Similar to their
work, we also develop hybrid models built on top of the
CNN model for justifying CNN outputs using analogous
sentences from the CBR model, which is natural by con-
sidering input data to the model as cases. We use cosine
similarity in the CBR model to compute the similarity be-
tween sentences and applies to a different domain (text anal-
ysis). Meanwhile, the existing local model-agnostic meth-
ods, such as LIME do not interpret the internal process of the
black-box models. Instead, LIME deals with input-output
pairs of an ML model, such as 𝑓 (𝑥) = 𝑦 for a given point
(𝑥, 𝑦) of the model 𝑓 , where 𝑥 is an instance and 𝑦 is a target.
It generates a dataset D𝑥 = {(𝑥′, 𝑦′) |𝑦′ = 𝑓 (𝑥′),where 𝑥′ is
a point near 𝑥}, and then uses D𝑥 to train an interpretable
model. Like LIME, our approach also takes input-output
pairs of the CNN model for each sentence. The CBR model
is built using the different dataset D2, which computes
the similarity between the input and analogous sentences.
These analogous sentences then justify the output of the
input sentence (i.e. the CNN’s sentiment classification).

Let us briefly review computational argumentation and
the recent line of work on XAI that leverages the wide array
of reasoning abstractions and explanation delivery methods
of argumentation, hence called Argumentative XAI [23].
Computational argumentation (as it is studied in AI) is in-
spired by the human ability to reach conclusions via the
exchange of arguments. Recent developments in the field
are greatly influenced by Dung’s AA framework (recalled
in Section 3.3), which is defined simply as a pair (𝐴𝑟, 𝐴𝑡𝑡)
of a set of arguments 𝐴𝑟 and a binary attacking relation
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𝐴𝑡𝑡 between arguments. As mentioned above, in this paper,
we use ABA, an instance of AA that treats arguments as
deductive proofs from assumptions using inference rules.
As discussed in [23], extension-based semantics of AA, as
well as ABA, can be equivalently understood in terms of
dispute trees [24] which have formed the basis of several
approaches to argumentation-based XAI, for example, by
providing content for the so-called dialogical explanations.
This paper contributes to Argumentative XAI, but we re-
strict ourselves to the interpretable model combination. For
an illustration, consider the following input sentence: “The
monthly internet package is affordable and sufficient for the
average user.” Although both the CNN and CBR models
predict that the sentence has a positive sentiment, the CNN
gives no justification while the CBR basically says that the
sentence is similar to another sentence “I recommend a
monthly unlimited internet package with a reasonable price
and basic speed” in terms of individual words. Since the
latter has been assigned a positive sentiment, the former
should be assigned the same sentiment. Hence, we could
“borrow” this argument from analogy to explain the deci-
sion of the CNN. When the CNN and CBR models predict
different sentiments for the same input sentence, we need
to decide which model we shall follow. If we follow the
CBR, we can still use the argument from analogy but bear
a greater risk of the wrong prediction since in general, the
CBR is less accurate than the CNN. In this paper, we model
this decision process by a rule-based system and then by an
ABA framework.

It is worth noting that the problem of classification com-
bination is not new, but the existing literature does not
include an argumentation-based approach as in our pa-
per. Common approaches deploy information fusion tech-
niques, notably the Dempster-Shafer theory (DST), as done
in [25, 26, 27, 28, 29, 30, 31]. The basic idea here is to view
the output of a classification system as a DST mass function
(aka a basic probability assignment) and use different DST
combination rules to combine the outputs of a classification
ensemble. One of the early known works in this direction
was conducted by Xu et al. [26]. But these common ap-
proaches do not include an argumentation-based approach
as in our paper. More recent works using DST include in-
formation fusion [32], a combination of SVM and Bayesian
density model [33], and hybrid approaches [34, 35, 36, 37].

The remaining part of this paper is structured as follows.
Section 2 discusses existing approaches to SA. Section 3
recalls the formal theories used in this paper. In Section 4,
we describe our hybrid method applied to sentiment analysis
(SA). Section 5 provides technical details and comparisons.
We discuss in Section 6 and conclude in Section 7.

2 Existing approaches to Sentiment
Analysis

Current approaches to SA make a distinction between
three levels: document level [7, 8, 9, 10, 13, 38], sentence
level [11, 12, 39, 40, 41], and aspect level [5, 6, 42]. They

are based on lexicons [10, 12, 43, 44, 45, 46, 47], ML
[5, 48, 49, 50], hybrid of lexicons and ML [50, 51, 52],
and deep learning [18, 53, 54, 55, 56]. In [57], the paper
surveyed multiple-word representation models with their
power of expression using ML algorithms for NLP-related
tasks. For example, in [43], the authors proposed a lexicons-
based SA approach for mining food and restaurant reviews
written in the Myanmar language. For a recent review
of approaches based on DL, readers can refer to studies
[18, 58]. In [4, 59, 60, 61, 62, 63, 64, 65, 66], the authors
demonstrated that CNN provided better results than the
other approaches.

In [59], the authors described an SA approach based on
a CNN model, in which the parameter weights of the CNN
were initialized for classifying tweets at both the message
and phrase levels. Initially, they trained a word2vec model
that was refined by the CNN model on a distantly super-
vised corpus. Finally, the pre-trained parameters from the
word2vec model were used to initialize the CNN model,
which was trained on the supervised training corpus from
Semeval-2015. In [60], the authors proposed a deep CNN
model that performed character- to sentence-level sentiment
analysis of short texts. The network involved two convo-
lutional layers to extract relevant features from words and
sentences. The network was evaluated using the Stanford
Sentiment Treebank (i.e. movie reviews) and the Stanford
Twitter Sentiment corpus (i.e. Twitter messages). In [61],
the author applied two DL models, long short-term memory
(LSTM) and dynamic CNN, to classify Thai Twitter data by
investigating the effect of word order in Thai tweets. They
compared both LSTM and dynamic CNN models to the
classical techniques, such as NB and SVM, and MaxEnt,
using bag-of-words. They found that LSTM and dynamic
CNN outperformed NB and SVM but not MaxEnt. In [62],
the paper described the experimental results of four kinds
of CNNs, in which each CNN was implemented on top
of word2vec for sentence-level sentiment classification on
seven datasets. In [63], the authors designed and experi-
mented with CNNs, which had consecutive convolutional
layers for classifying long and complex texts, with three
datasets. They showed that using consecutive convolutional
layers provided better performance for longer texts. In [64],
the authors proposed a classifier based on 2-layer CNN for
classifying Italian Twitter messages. They trained CNN in
the form of multi-tasking. In [65], a CNN model was trained
on the top of a word embedding model, fastText, to perform
SA. Three movies reviews datasets were applied in the ex-
periments. The results of the CNN model with fastText were
compared with ML techniques and the other CNN model
with word2vec. In [66], the authors designed a classifier for
SA using multiple CNNs with different configurations of
hyper-parameters. The hyper-parameters included types of
word embedding, activation functions, filter sizes that were
used in convolution, the number of feature maps, and the
pooling methods that were used for data reduction. They
analyzed the performance of the classifier based on these
different configurations. In [67], the authors proposed a hy-
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brid approach, called NOD-CC, that combined CNN with
CBR for discovering and classifying object types in images.
The hybrid approach outperformed CNN when the training
dataset had insufficient data and CNN had low confidence
in its prediction. Hence, the level of confidence was mea-
sured by comparing it with a threshold. The final image
classification from CNN or CBR was determined by an
algorithm (called controller) according to their hypotheses
when CNN incorrectly classified object type and the queried
image did not appear in the training dataset at run time. In
[68], to address the impact of higher-level abstraction avoid-
ance on sentiment feature learning in texts and sentiment
classification performance, the authors developed a model
called AEC-LSTM that built an LSTM network combining
with emotional intelligence (EI) and attention mechanisms.
An emotion-enhanced LSTM, called ELSTM, was devel-
oped using EI to enhance the ability of LSTM networks in
features learning. In [69], the author developed a SAKG-
BERT model combining sentiment analysis knowledge with
the Bidirectional Encoder Representations from Transform-
ers (BERT) language representation model to provide the
interpretability to the deep learning algorithm. In [70], the
paper focused on the combination of rule-based reasoning
and CBR to be used for sentiment analysis.

Meanwhile, argumentation provided successful results
in improving the performance of classification tasks using
ML techniques [71, 72, 73]. In [72], the paper surveyed the
existing seven approaches that improved the performance
of ML techniques using argumentation. These approaches
differed in the use of argumentation with its semantics and
ML techniques. The paper provided a comparative anal-
ysis of these approaches. In [73], the authors proposed a
methodology for mining bipolar argumentation frameworks
(BAFs) from natural language texts, which were treated as
arguments by defining attack and support relations between
them. They applied ML classifiers to determine relations
between arguments and illustrated their methodology on
a dataset of hotel reviews. In [74], the paper presented
an argument mining framework that automatically detected
argumentative sentences and argument components using
CNN. The framework was applied to both a specific domain
(e.g. essays, web comments) and cross-domain data. The
performance of the framework outperformed traditional ML
techniques such as NB and SVM. However, the framework
did not solve the conflicts between the sentences through
argumentation.

In recent years, argumentation has become popular in
sentiment analysis [75, 76, 77, 78, 79] to improve the perfor-
mance of SA in classification problems. In [76], the authors
developed a classification methodology, called classifica-
tion enhanced with Arguments (CleAr) that combined ar-
gumentation and supervised learning. CleAr applied cross-
domain sentiment polarity (positive/negative) classification
and relation-based argumentation mining to improve the
performance of sentiment classification. In classification,
classifiers were trained from one corpus (Tweets) and pre-
dicted another corpus (movie reviews). They argued that

class labels, which are resulted from the trained classifiers,
were able to correct misclassifications through argumenta-
tion. In argumentation, sentences were taken as arguments
to determine whether they attacked or supported an argu-
ment or neither attacked nor supported it. In [77], the author
presented a framework to mine opinions from Twitter-based
given queries. Twitter-based arguments for the queries were
generated from the tweets, which were collected relating to
the query. Using SA tools, a sentiment was defined for
each argument. Given a query, they built an opinion tree
with sentiments (positive, negative, and neutral), whose
root node was the query. For defining attack relations be-
tween arguments, conflict trees were generated if conflict
elements with different sentiments were contained in the
opinion tree. In [79], the authors proposed a deep learn-
ing method based on the LSTM model to construct bipolar
argumentation frameworks and detect deceptive reviews.
The LSTM model was used to determine reviews as argu-
mentative relations (i.e. attack, support, and neither attack
nor support) between reviews. This method outperformed
standard supervised classifiers on small datasets by inte-
grating deep learning with argumentative reasoning. The
method also improved performance varying from 1 percent
to 3 percent compared with the results without argumen-
tative features. In [80], the authors presented an archi-
tecture (so-called ANNA) that combined ANNs and the
abstract argumentation (AA) framework for effective pre-
diction with explanation, dialectically and logically. Au-
toencoder and ANN-based feature selection methods were
used to select the highest-ranked features from the training
examples where these features were coherent1. Then, a case
base was created using the coherent features together with
their outcomes, and the case base was structured by an AA
driven and case-based reasoning (AA-CBR) inspired model
using the AA framework. With the help of AA’s semantics,
AA-CBR predicted new cases through argumentation.

Moreover, several approaches have been investigated to
provide solutions to AI challenges to allow XAI to become
interpretable [23, 81, 82, 83, 84, 85]. In [81], the paper sur-
veyed multiple ANN-CBR twin-systems that integrate ANN
and CBR to analyze a solution to the (XAI) problem while
maintaining ANN accuracy and CBR interpretability, using
post-hoc explanation-by-examples. The paper defined a fu-
ture direction for the XAI solution (especially from CBR).
In [23], the paper surveyed several argumentation-based
XAI approaches, including intrinsic and post-hoc expla-
nations using different argumentation frameworks. It also
discussed the future directions of the XAI problems. In
[82], the authors developed a deep neural network architec-
ture that includes an autoencoder and a special prototype
layer to explain its predictions. They merged the network
with CBR to ensure that the network was accurate and in-
terpretable. In [83], the authors described an interpretable
framework for machine learning-based mammography that
includes a CBR-based interpretable neural network algo-
rithm. Although only a small dataset of images is used,

1There is no same cases having different outcomes.
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Table 1: Summary of related works on argumentative XAI and hybrid models in SA
Reference # Proposed Result

[73] The paper proposed a methodology for producing
BAFs by establishing attack and support relations
between arguments (i.e. texts) regarding a specific
topic.

The root note in the BAFs graph was a widely
accepted argument, and as applied to a dataset of
hotel reviews, the methodology determined that
the hotel rooms were either nice or bad.

[76] The paper proposed the CleAr methodology for
classifying tweets that combined argumentation
with supervised classifiers such as SVM and NB.

The baselines’ F1 measure is improved by a max-
imum of 0.07 points using CleArs with 84.3% ac-
curacy for the Discontinuity-Free Quantitative Ar-
gumentation Debate.

[77] A twitter-based argumentation framework for SA
using incrementally generated queries from a set
of tweets was proposed in the paper, constructing
opinion trees and conflict trees.

To demonstrate how the framework might be ap-
plied in practice, the paper included a user case.

[79] The paper proposed a method for extracting BAFs
from tweets and detecting whether news articles
supported tweets using BiLSTMs.

When combined with traditional supervised classi-
fiers, the argumentative feature outperformed these
classifiers on small data sets, such as the hotel data
set, with increases ranging from 1% to 3% and
76.38% accuracy.

[80] The paper proposed an architecture that combined
ANNs for feature selection and an instance of AA
and CBR for justifying the predictions in order to
produce accurate and explainable predictions.

Having 96.2% accuracy, the architecture outper-
formed the two ANN techniques with improve-
ments of 10% in F1 when utilizing a size 30 hidden
layer.

[82] In order for a deep neural network to explain its
own reasoning for each prediction based on similar
cases, the paper proposed a network architecture
using an autoencoder and a decoder.

On the standard MNIST test set, which included
grayscale images of handwritten digits, it achieved
99.22% accuracy.

[83] The paper proposed a framework that used CBR
in order to understand and explain mammogram
predictions made by the deep learning network
ProtoNet.

1136 digital screening mammograms were used in
the experiment, and the overall accuracy was 83%.

data with whole image labeling is combined with data with
pixel-wise annotations, resulting in improved accuracy and
interpretability. In [84], giving end-to-end solutions to DL
challenges, the paper presented two perspectives on con-
cerns to be addressed to improve deep learning and AI by
solving DL challenges via integration and applying CBR
with deep network components.

Having higher accuracy, DL models perform well in clas-
sification and prediction, becoming state-of-the-art models.
However, they are viewed as black-boxes without any clues
on how predictions are made so. In this study, CNN is used
to obtain high accuracy for SA. However, it does not provide
interpretability. To address this problem, we use post-hoc
explanation-by-examples to justify CNN outputs.

Table 1 summarizes related approaches2. These ap-
proaches focused on argumentative XAI, which combined
ML/DL techniques with argumentation, and hybrid models
in SA, which combined black-box models with interpretable
models. Among these approaches, the method in [80] is
the most similar to our study, providing not only classi-
fication but also explanation. In contrast to [80], ANNs
behaved feature selection but not classification, while the

2More related SA approaches are summarized in Table 14 (Appendix
C).

AA-CBR model performed classification based on a case
base. In our work, we study the combination of CNN and
CBR through an assumption-based argumentation (ABA)
framework. Both the CNN and the CBR models predict
the outcomes of new inputs (i.e. sentences) in their own
classification ways. However, CNN and CBR models may
produce conflicting outcomes for the same input. We solve
this conflict via a system of strict rules and argumentation
by considering not only the probability distribution on the
set of all outcomes from the CNN model but also different
similar sentences from the CBR model (using cosine simi-
larity). Thus, our approach efficiently and quickly interprets
CNN outputs in sentence sentiment classification.

3 Theoretical backgrounds

This section briefly explains the main theoretical back-
grounds on which our proposal is based: convolutional neu-
ral network (CNN), case-based reasoning (CBR), abstract
argumentation (AA) and assumption-based argumentation
(ABA).
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3.1 Convolutional neural network
Convolutional neural network (CNN), a kind of neural

network, has been very successful in image recognition and
classification problems. Following Kim [62], many authors
have explored CNN in text classification achieving great
results. In the following we briefly recall CNN operations,
then we discuss “some customization or specific points”
that are specific to our proposal.

The main operations of CNN are convolution, non-
linearity (i.e. activation), pooling, and classification. In the
text classification, input to CNN is an 𝑛 × 𝑑 matrix where
𝑛 is the length of the sentence, 𝑑 is the dimension and each
row of the matrix is a word vector (1 × 𝑑) produced by a
word embedding model (such as word2vec). In the convo-
lutional layer, the input matrix is modified by filters3 with
stride4. Convolution extracts local features and produces
convolved features matrix (i.e. output feature map) by using
an activation function. In general, the convolution creates
(𝑛−𝑖(ℎ−1))× (𝑛−𝑖(ℎ−1)) matrix as an output feature map
from the input matrix by applying ℎ × ℎ filter and 𝑖 stride.
In the pooling5 layer, the max pooling selects the maximum
value from features of the convolved feature map. When
multiple filters with different region sizes are applied, the
max pooling features from different filters are concatenated.
In the fully connected layer, each feature from the previous
layer fully connects to all features of the current layer. Fi-
nally, CNN classifies these features using either softmax
function for multiple classes or sigmoid function for binary
classes. Moreover, CNN applies dropout (between 0 and 1)
to reduce overfitting for regularization. Readers can refer
to [15] for details.

3.2 Case-based reasoning
Case-based reasoning (CBR) is a methodology for solv-

ing problems based on past cases about similar problems
[86]. CBR has been applied to solve different kinds of
decision-making problems, such as classification, diagno-
sis, prediction, planning, and configuration. The general
architecture of CBR is depicted in Figure 2 which is adapted
from [87].

When a new problem is to be solved, CBR retrieves sim-
ilar cases from the case base based on similarity measures.
In the simplest scenario, the solution of the most similar
case is reused for the current case. Popular similarity mea-
sures include cosine similarity, Euclidean distance and etc.
The solution is evaluated with the problem, and if necessary,
then it is revised. After solving the problem, CBR updates
the case base by retaining the new case and its solution for
future problems to be solved.

3.3 Abstract argumentation
The study of argumentation in AI is inspired by humans’

ability to reach conclusion via exchange of arguments. Re-

3Filter is a matrix as known as kernel.
4Stride is the amount for shifting the filter across the matrix.
5Pooling methods are max, min, average, and sum.
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Figure 2: Typical CBR cycle adapted from [87]

cent developments in the field are greatly influenced by
Dung’s AA framework [88].

Definition 1. Abstract argumentation (AA) [88] framework
is a pair, AF = (𝐴𝑟, 𝐴𝑡𝑡) where 𝐴𝑟 is a set of arguments
and 𝐴𝑡𝑡 ⊆ 𝐴𝑟 × 𝐴𝑟 is a set of attacks.

An AA framework can be visualized as a directed graph,
as demonstrated by the following example.

a b c
Figure 3: An abstract argumentation framework

Example 1. In the AAAF depicted in Figure 3, it contains
a set of arguments 𝐴𝑟 = {𝑎, 𝑏, 𝑐} and a set of attacks 𝐴𝑡𝑡 =

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑏)}.

AA has several semantics specifying when an argument
is acceptable. Given an AA framework AF = (𝐴𝑟, 𝐴𝑡𝑡), a
set of arguments 𝑆 ⊆ 𝐴𝑟 is conflict-free if each argument
of 𝑆 does not attack itself and other arguments of 𝑆. Ar-
gument 𝐴 is acceptable with respect to 𝑆 if 𝑆 attacks any
arguments attacking 𝐴. 𝑆 is admissible if it is conflict-free
and each argument of 𝑆 is acceptable with respect to 𝑆. 𝑆 is
a complete extension if it is admissible inAF and contains
every argument acceptable with respect to 𝑆. 𝑆 is a pre-
ferred extension of AF if it is a maximal (with respect to
set inclusion) complete extension. Let 𝑓 (𝑆) = {𝐴 ∈ 𝐴𝑟 |𝐴
is acceptable with respect to 𝑆} be a characteristic func-
tion. 𝑆 is a grounded extension if it is the least fix-point
of the characteristic function 𝑓 (𝑆). Argument 𝐴 is cred-
ulously (resp. groundedly) accepted with respect to AF
(i.e. AF ⊢𝑥∈{𝑐𝑟 ,𝑔𝑟 } 𝐴) if it is contained in a preferred
(resp. grounded) extension.

Example 2. (Continue Example 1.) ∅, {𝑎}, {𝑏}, {𝑐}, and
{𝑎, 𝑐} are conflict-free. ∅, {𝑎}, {𝑐} and {𝑎, 𝑐} are admissi-
ble. {𝑎}, {𝑐} and {𝑎, 𝑐} are complete extensions. {𝑎, 𝑐} is
a preferred and grounded extension.
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Figure 4: CNN architecture of the proposed approach

3.4 Assumption-based argumentation
Assumption-based argumentation [24] is an instance of

AA that constructs arguments from inference rules sup-
ported by assumptions.

Definition 2. An ABA framework is a triple F =

(A,R, ) where A is a set of assumptions, R is a set
of inference rules of the form 𝛼0 ← 𝛼1, . . . , 𝛼𝑛 (𝑛 ≥ 0) and

6 is a total mapping from each assumption to its contrary.

We shall refer to an inference rule with some assumptions
in its body as a defeasible rule; and a strict rule otherwise.
A strict rule of the form 𝛼← is called a fact. An argument
for a proposition 𝜋 supported by a set of assumptions 𝑄,
denoted (𝑄, 𝜋) is basically a proof tree with 𝜋 labeling the
root, 𝑄 is the set of labels of leave nodes, and for each
internal node labeled by 𝛼, there is such an inference rule
𝛼← 𝛼1, . . . , 𝛼𝑛 that the children of the nodes are labeled by
𝛼1, . . . , 𝛼𝑛. An argument (𝑄, 𝜋) attacks another argument
(𝑄′, 𝜋′) if 𝜋 is the contrary of some assumption in 𝑄′. The
semantics of ABA F is defined by the semantics of theAF
consisting of the above defined arguments and attacks. A
proposition 𝜋 credulously/groundedly accepted in ABA F ,
denoted F ⊢𝑥 𝜋 (𝑥 ∈ {𝑐𝑟, 𝑔𝑟}), if there is an argument for
𝜋 that is credulously/groundedly in the correspondingAF .

4 Proposed approach
In this section, we present our two-step hybrid approach

that combines a CNN model and a CB model using argu-
mentation as shown in Figure 1. The datasetD = {(𝑠𝑖 , 𝑙𝑖)}𝑛1

6𝑥 is the contrary of the assumption 𝑥.

consists of a set of sentences S = {𝑠1, . . . , 𝑠𝑛} (n=25104 in
our case) where each sentence 𝑠𝑖 is associated with a sen-
timent label 𝑙𝑖 ∈ L = {+1,−1, +0,−0}. The interpretation
of these labels is as follows: +1 =“positive”, −1 =“nega-
tive”, +0 =“neutral”, and −0 =“unrelated”. We divide D
into three disjoint subsets D1,D2,D3 with sizes of 15413,
4510, and 5181, respectively. D1 is used to train the CNN
model; D2 is used to build the CBR model, andD3 is used
to test how well-built models perform. Now let us describe
each model in detail.

4.1 The CNN model (M1)
As we mentioned in Section 3.1, we use some specific

architecture of CNN for our M1 model. This section de-
scribes 1) our process for producing the model and 2) the
performance of the model on the test dataset D3. Our
CNN model is built on top of a word embedding model (i.e.
word2vec7) as shown in Figure 4.

The model contains an input layer, an embedding layer,
three convolution layers, three maximum pooling layers, a
concatenate layer, two dense layers, a dropout layer, and a
classification layer. The maximum length of all input sen-
tences is 464 words and the dimension of the word vector
is 2008. Then a 464× 200 matrix for each input sentence is

7Word2vec represents each word as a row vector, having similar vector
representations for words with similar meanings, whereas doc2vec is an
extension of word2vec for evaluating document relationships (not only
words). Instead of word2vec, doc2vec might be used. However, because
we focus on sentence sentiment classification, we train the CNN model on
word2vec.

8Based on the dataset we used, we set the vector space of word2vec to



80 Informatica 46 (2022) 73–96 S.H.P Oo et al.

taken as an input into the CNN model. We apply (2, 3, 4)
different region sizes in three convolutional layers respec-
tively, using the 𝑅𝑒𝐿𝑈 activation function to generate con-
volved features maps from all filters. 100 filters are used
for each region size so there are a total of 300 filters. Ev-
ery convolved features map is globally maximized in each
pooling layer, which produces a 100×1 vector. The vectors
from all pooling layers are connected in the concatenation
layer. The two dense layers and dropout layer work as fully
connected layers. Then 0.2 is assigned as the rate of dropout
for reducing network overfitting. The second dense layer
works as regularization from outputs of the dropout layer.
Finally, the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function is applied in the classifica-
tion layer to classify the input sentences into their respective
sentiments.

For accuracy assessment, Table 2 shows the confusion
matrix ofM1. The CNN model achieves 87.59% accuracy
and it misclassifies 643 out of 5,181 sentences. As M1
shall be used as a black-box component of the hybrid model
developed later on, we need to establish some notations
regarding the usage of M1. By 𝑃M1 (𝑙 |𝑛), we mean the
probabilistic value that M1 produces for a given input 𝑛.
ByM1 (𝑛) = 𝑙, we mean 𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∈L𝑃M1 (𝑙 |𝑛).
Table 2: Confusion matrix ofM1 (sentiments are denoted
as follows: POS stands for positive; NEG for negative; NEU
for neutral; URE for unrelated)

M1

D3 POS NEG NEU URE Total

POS 311 18 41 6 376
NEG 73 1,970 128 36 2,207
NEU 17 70 646 45 778
URE 10 46 153 1611 1,820
Total 411 2,104 968 1,698 5,181

4.2 The CBR model (M2)
As we mentioned in Section 3.2, the modelM2 is based

on CBR. This section describes 1) our process to produce
the model and 2) the performance of the model on the test
dataset D3. The model computes the similarity between
new and existing sentences using cosine similarity. The
model then predicts a possible sentiment for the new sen-
tence regarding sentiments of similar sentences.

Example 3. Customer reviews written in Myanmar lan-
guage are collected from a telecommunication company’s
Facebook page and annotated with their respective senti-
ments. These annotated sentences are then kept in the
dataset D. From the dataset, three sentences are extracted
and translated into the following English sentences: 𝑠1 and
𝑠2 as existing sentences, and 𝑛1 as a new sentence.
𝑠1 : I recommend a monthly unlimited internet package

with a reasonable price and basic speed.

200-dimensions for a maximum of 2 million Myanmar words because 300-
dimensions is a standard vector space for Google News having 3 million
words.

𝑠2 : The speed of low-price monthly unlimited internet
package is too slow.

𝑛1 : The price of monthly unlimited internet package is
reasonable but the speed is weak for HD streams.

Table 3 shows similar sentences with their respective
similarity values.

Table 3: Similarities between sentences

New sentence Sentence in case base Similarity
𝑛1 𝑠1 0.97
𝑛1 𝑠2 0.96

Example 4. (Continue Ex.3.) For the sentence 𝑛1, 𝑠1 and
𝑠2 are the first two most similar sentences and annotated
as positive sentiment (+1) and negative sentiment (−1) re-
spectively. On the basis of the closest similarity between
sentences, the model predicts 𝑛1 as positive sentiment (+1).

For accuracy assessment, Table 4 shows the confusion
matrix ofM2. The CBR model achieves 71.57% accuracy
and it misclassifies 1,473 out of 5,181 sentences. AsM2
shall be used as a component of the hybrid model developed
later on, we need to establish some notations regarding the
usage of M2. 𝑠𝑖𝑚(𝑠, 𝑛) denotes the probabilistic value
(between 0 and 1) thatM2 produces for given input 𝑛 and
𝑠, where 𝑛 stands for new sentence and 𝑠 stands for the
existing sentence in the case database that matches the most
with the sentence 𝑛. The fact thatM2 (𝑛) = D2 (𝑠) where
𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚∈D2 (𝑠𝑖𝑚(𝑚, 𝑛)) meansM2 labels sentiment
of 𝑛 as the same sentiment of 𝑠.

Table 4: Confusion matrix ofM2

M2

D3 POS NEG NEU URE Total

POS 365 88 63 177 693
NEG 24 1780 228 301 2,333
NEU 14 207 595 252 1,068
URE 8 29 82 968 1,087
Total 411 2,104 968 1,698 5,181

4.3 The rule-based hybrid model (M3)

To justify sentiment classification of the CNN modelM1
via the CBR model M2, we develop a series of different
hybrid models combining M1 and M2 in different ways.
This section presents the first model in the series, called the
rule-based hybrid modelM3. We describe the construction
ofM3 and then present a logic program implementingM3.
Finally, we report the performance of M3 using the test
dataset D3.

For a new sentence 𝑛, M3 assigns a label M𝛼,𝛽

3 (𝑛) to
𝑛 according to the following system of equations taking
𝛼, 𝛽 ∈ [0, 1] as parameters.
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M𝛼,𝛽

3 (𝑛) =



M1 (𝑛) ifM1 (𝑛) =M2 (𝑛) (𝑖)

M2 (𝑛)

if condition C (defined in 2) and
either condition below holds:
• 𝑠𝑖𝑚(𝑠, 𝑛) ≥ 𝛽, or (𝑖𝑖.1)
• 𝛼 < 𝑠𝑖𝑚(𝑠, 𝑛) < 𝛽 and
∗ M1 (𝑛) = −1 and
M2 (𝑛) = +1, or (𝑖𝑖.2)
∗ M1 (𝑛) ≠ −1 and
M2 (𝑛) = +0 (𝑖𝑖.3)

M1 (𝑛) otherwise (𝑖𝑖𝑖)
(1)

Let us recall the notations: 𝑛 refers to a new sentence
to be labeled; 𝑠 refers to the most similar sentence of 𝑛 in
the dataset D2, that is 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚∈D2 𝑠𝑖𝑚(𝑚, 𝑛) where
𝑠𝑖𝑚(𝑚, 𝑛) measures the similarity between 𝑚 and 𝑛 (we
use the cosine similarity); M1 (𝑛) refers to the sentiment
that M1 assigns to 𝑛; M2 (𝑛) refers to the sentiment that
M2 assigns to 𝑛 (i.e. M2 (𝑛) = D2 (𝑠)); 𝑃M1 ( | ) refers
to the probability distribution on the set of labels thatM1
produces condition to the input sentence. Different values
of numeric parameters 𝛼, 𝛽 give rise to different versions of
M3, where attention needs not to be paid to these parame-
ters, we may writeM𝛼,𝛽

3 (𝑛) for simplicity.
Now let us elaborate on different cases of the above sys-

tem in Equation (1)9.

– Case i: M1 andM2 assign the same sentiment to 𝑛 and
henceM𝛼,𝛽

3 should do the same thing (i.e. M𝛼,𝛽

3 (𝑛) =
M1 (𝑛) =M2 (𝑛)).

– Case ii: BasicallyM1 andM2 give conflicting labels
and M𝛼,𝛽

3 follows M2. There are three sub-cases
ii.1, ii.2, ii.3 detailed in the following which share a
common condition C defined as follows.

C =

M1 (𝑛) ≠M2 (𝑛) and
M1 (𝑠) =M2 (𝑛) and
𝑃M1 (𝑙 |𝑛) < 𝑃M1 (𝑙′ |𝑠)
where 𝑙 =M1 (𝑛), 𝑙′ =M1 (𝑠)

(2)

The first part M1 (𝑠) = M2 (𝑛) of C says that M1
would agree withM2 ifM1 is given 𝑠 as input. The
second part 𝑃M1 (𝑙 |𝑛) < 𝑃M1 (𝑙′ |𝑠) says that M1 is
more assertive in its label assignment for 𝑠 than for 𝑛.
Besides C, case ii.1-3 each requires a specific condi-
tion:

∗ Case ii.1: 𝑠𝑖𝑚(𝑠, 𝑛) ≥ 𝛽 says that 𝑠 and 𝑛 are
similar enough and hence M2 should be confi-
dent in transferring the observed label of 𝑠 to
𝑛.

∗ Case ii.2 and Case ii.3: 𝛼 < 𝑠𝑖𝑚(𝑠, 𝑛) < 𝛽 says
that 𝑛 and 𝑠 are similar but probably not close
enough and henceM2 should not be too conclu-
sive in its decisionM2 (𝑛) = D2 (𝑠).Hence to call
M𝛼,𝛽

3 to followM2, we should introduce an extra

9The algorithmic form ofM0.8,0.96
3 can be found in Appendix B.

condition: M1 (𝑛) = −1 andM2 (𝑛) = +1 (con-
dition ii.2); or M1 (𝑛) ≠ −1 and M2 (𝑛) = +0
(condition ii.3). Here condition ii.2 says thatM1
assigns negative sentiment to 𝑛 andM2 assigns
positive sentiment to 𝑛 while condition ii.3 says
that the labelM1 assigns to 𝑛 is not negative sen-
timent and the label M2 assigns to 𝑛 is neutral
sentiment.

– Case iii: Otherwise,M𝛼,𝛽

3 assigns the same sentiment
thatM1 assigns to 𝑛 (i.e. M𝛼,𝛽

3 (𝑛) =M1 (𝑛)).
It is worth noting that 𝛼 < 𝛽, which should be close to

1. By changing the values of 𝛼 and 𝛽, we can control the
range of case ii and case iii. In particular, if 𝛼 ∼ 𝛽 ∼ 1,
case ii will never fire and henceM3 will degenerate to the
CNN model M1. On the other hand, if 𝛼 = 0, case iii
will never fire, and henceM3 will depart fromM1 to the
greatest extent. We report the performance ofM0.8,0.96

3 (i.e.
𝛼 = 0.8, 𝛽 = 0.96).

Now let us switch our attention to the implementation
ofM3 by structured argumentation. No conditions of the
above three cases contain an exception, and hence the whole
system of equations (1) can be implemented by a set of
strict inference rules R1 which can be wrapped by an ABA
framework F1 = (A1,R1, ) withA1 = ∅. The rules inR1
deploy several self-describing predicates: 𝑚1 (𝑁, 𝐿) means
that the model M1 assigns label 𝐿 to input sentence 𝑁;
𝑚2 (𝑁, 𝑆, 𝐿, 𝑅) says thatM2 finds a sentence 𝑆 with label
𝐿 to be 𝑅𝑡ℎ-most similar sentence to the input sentence 𝑁 10

(for convenience, let 𝑚2 (𝑁, 𝑆, 𝐿) stand for 𝑚2 (𝑁, 𝑆, 𝐿, 1));
for simplicity let 𝑝(𝑁, 𝐿, 𝑋) stand for 𝑃M1 (𝐿 |𝑁) = 𝑋;
𝑠𝑖𝑚(𝑁, 𝑆, 𝑍) says that 𝑍 is the similarity value between
sentences 𝑁 and 𝑆. Appendix A presents all rules of R1 =

{𝑟1, 𝑟2, .., 𝑟7}, for example
𝑟1 : 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿) ← 𝑚1 (𝑁, 𝐿) , 𝑚2 (𝑁, 𝑆, 𝐿) .
𝑟7 : 𝑚3 (𝑁, 𝐿) ← 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒
M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒 (𝑖𝑖𝑖, 𝑁 , 𝐿) .
Note that predicate 𝑐𝑎𝑠𝑒( , 𝑁, 𝐿) says that M3 assigns

label 𝐿 to 𝑁 according to the specific cases mentioned in the
above. For case ii, we add subscriptM𝛼,𝛽

3 to differentiate
it with 𝑐𝑎𝑠𝑒M𝛼,𝛽

4
(𝑖𝑖, 𝑁, 𝐿) of model M4 developed in the

next section. Note that in case i and iii, M𝛼,𝛽

3 and M4
behave exactly the same.

Given an input sentence 𝑁 described by a set of facts
R𝑁 , the label thatM3 assigns to 𝑁 is computed by ABA
framework (A1,R1∪R𝑁 , ) obtained from the above ABA
framework F1 by adding R𝑁 into the set of inference rules.

Example 5. Consider a sample input sentence 𝑛1 where
R𝑛1 = {𝑟8, ..., 𝑟13} consists of:

𝑟8 : 𝑚1 (𝑛1 , +0) ← 𝑟9 : 𝑚2 (𝑛1 , 𝑠1 , +1) ←
𝑟10 : 𝑚1 (𝑠1 , +1) ← 𝑟11 : 𝑝 (𝑛1 , +0, 0.55) ←
𝑟12 : 𝑝 (𝑠1 , +1, 0.9) ← 𝑟13 : 𝑠𝑖𝑚(𝑛1 , 𝑠1 , 0.97) ←

10𝑚2 (𝑁, 𝑆, 𝐿, 𝑅) can be defined by a rule below
𝑚2 (𝑁, 𝑆, 𝐿, 𝑅) ← 𝑆 = 𝑎𝑟𝑔 𝑟𝑎𝑛𝑘𝑆1∈D2 (𝑅, 𝑠𝑖𝑚(𝑆1, 𝑁 ) ) ,

𝐿 = D2 (𝑆) .
where 𝑎𝑟𝑔 𝑟𝑎𝑛𝑘𝑆1∈D2 (𝑅, 𝑠𝑖𝑚(𝑆1, 𝑁 ) ) means that 𝑆 is the 𝑅𝑡ℎ-most
similar sentence to 𝑁 .
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R𝑛1 says that 𝑠1 is the most similar sentence. Facts 𝑟8 and
𝑟9 say thatM1 andM2 assign conflict labels to 𝑛1. Hence
rules 𝑟2 and 𝑟5 fire (refer to Appendix A), resulting in the
grounded acceptance of 𝑚3 (𝑛1, +1) in the ABA (A1,R1 ∪
R𝑛1 , ).

Table 5: Confusion matrix ofM0.8,0.96
3

M3

D3 POS NEG NEU URE Total

POS 357 33 39 6 435
NEG 30 1,958 123 35 2,146
NEU 14 69 656 52 791
URE 10 44 150 1,605 1,809
Total 411 2,104 968 1,698 5,181

For the accuracy assessment, Table 5 shows the confusion
matrix ofM0.8,0.96

3 (i.e. 𝛼 = 0.8, 𝛽 = 0.96). With respect
to the test dataset D3,M0.8,0.96

3 achieves 88.32% accuracy
and it misclassifies 605 out of 5,181 sentences. The table
says thatM0.8,0.96

3 performs a bit better than the CNN model
M1 (0.73%) and the CBR model M2 (16.75%). Table 6
shows the number of sentences labeled by M0.8,0.96

3 per
case. We observe that 3624/5181 of tested sentences fall
into case i, suggesting that around 70% of the outputs of
M3 are explained by the sentiments of similar sentences.
Table 7 shows each case’s accuracy. Here we observe that
93.87% of case i is the most accurate, meaning that in this
caseM3 is not only interpretable but also highly accurate.

Table 6: Numbers of sentences ofM0.8,0.96
3 per case

Sentiments Cases
case i case ii case iii

POS 315 73 47
NEG 1,769 13 364
NEU 515 21 255
URE 1,025 0 784
Total 3,624 107 1,450

Table 7: Accuracy ofM0.8,0.96
3 per case

Cases
case i case ii case iii

No. of correctly 3,402 67 1,103labeled sentences
No. of sentences 3,624 107 1,450
Accuracy 93.87% 62.61% 76.07%

4.4 The argumentation-based hybrid model
(M4)

In this section, we reviseM3 to obtain an argumentation-
based model called M4. Basically, M4 refines case ii of
M3 by considering not only the most similar sentence but
also the second most similar sentence, the third most sim-
ilar sentence, and so on. The idea here is quite obvious:
more information can help us to refine the decision rules.
For simplicity of presentation, we consider only the sec-
ond most similar sentence though. M4 shares the same

case i and iii withM3. If case ii ofM3 occurs then case
ii of M4 occurs and vice versa but two models may as-
sign different labels to the input sentence. Concretely,
suppose that 𝑐𝑎𝑠𝑒M𝛼,𝛽

3
(𝑖𝑖, 𝑁, 𝐿1) holds. Note that here

𝐿1 is the label of the most similar sentence to the input
sentence 𝑁 , i.e. 𝑚2 (𝑁, 𝑆1, 𝐿1, 1) holds. In the follow-
ing, 𝐿𝑖 refers to the label of the 𝑖𝑡ℎ most similar sentence
to 𝑁 , i.e. 𝑚2 (𝑁, 𝑆2, 𝐿2, 2), 𝑚2 (𝑁, 𝑆3, 𝐿3, 3), and so on.
As will be seen, M4 may assign a different label to 𝑁 ,
i.e. 𝑐𝑎𝑠𝑒M𝛼,𝛽

4
(𝑖𝑖, 𝑁, 𝐿) holds for some 𝐿 probably different

from 𝐿1. The rules that determine whether 𝐿 is the same
as 𝐿1 (the label thatM3 assigns to the given input sentence
N) or a different label (e.g. 𝐿2, 𝐿3) are as follows;

a. M4 assigns 𝐿 = 𝐿2 if 𝑚1 (𝑆2, 𝐿2) ∧ 𝑚2 (𝑁, 𝑆2, 𝐿2, 2)
and either of the conditions holds:

• 𝐿1 = +0 (i.e. neutral sentiment) or 𝐿1 = −0 (i.e.
unrelated sentiment), or

• 𝐿1 = +1 (i.e. positive sentiment) and
𝑃M1 (𝐿2 |𝑆2) 11 ≥ 0.98.

b. Otherwise,M4 followsM3 to assign 𝐿1 to 𝑁 .

M4 is implemented by an ABA framework (A2,R2, )
obtained from the ABA framework (A1,R1, ) by the re-
placing R1 with R2 = R1 \ {𝑟7} ∪ {𝑟 ′7} ∪ {𝑟14, ..., 𝑟16}.
Concretely:

– The inference rules 𝑟 ′7 replaces the inference rule 𝑟7
where
𝑟 ′7 : 𝑚4 (𝑁, 𝐿) ← 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖, 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒 (𝑖𝑖𝑖, 𝑁 , 𝐿) .
– R2 also contains the following additional inference

rules 𝑟14.1, 𝑟14.2, 𝑟15 and 𝑟16 where
𝑟14.1 : 𝑐𝑎𝑠𝑒

M𝛼,𝛽

4
(𝑖𝑖𝑎 , 𝑁 , 𝐿) ← 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿1 ) ,

𝑚2 (𝑁, 𝑆1 , 𝐿1 , 1) ,
𝑚1 (𝑆2 , 𝐿2 ) ,
𝑚2 (𝑁, 𝑆2 , 𝐿2 , 2) ,
(𝐿1 = +0; 𝐿1 = −0;
(𝐿1 = +1,
𝑝 (𝑆2 , 𝐿2 , 𝑋) ,
𝑋 >= 0.98) ) , 𝐿 = 𝐿2.

implementing the condition 𝑎 described in the above
rules that determine label assignment ofM4.

𝑟14.2 : 𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖𝑎 , 𝑁 , 𝐿) ← 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿1 ) ,

𝑚2 (𝑁, 𝑆1 , 𝐿1 , 1) ,
𝑚1 (𝑆2 , 𝐿2 ) ,
𝑚2 (𝑁, 𝑆2 , 𝐿2 , 2) ,
(𝐿1 = −1; (𝐿1 = +1,
𝑝 (𝑆2 , 𝐿2 , 𝑋) ,
𝑋 < 0.98) ) , 𝐿 = 𝐿1.

stating thatM4 assigns label 𝐿1 to the input sentence
𝑁 if these conditions hold: either 𝐿1 = −1 or 𝐿1 = +1
and 𝑃M1 (𝐿2 |𝑆2) < 0.98.

𝑟15 : 𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖𝑏 , 𝑁 , 𝐿) ← 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿) ,

∼ 𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖𝑎 , 𝑁 , ) .

stating thatM4 followsM3 as default condition.

11Recall that 𝑃M1 (𝐿𝑖 |𝑆𝑖 ) means the conditional probability for label
𝐿𝑖 according toM1 given 𝑆𝑖 .
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𝑟16 : 𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖, 𝑁 , 𝐿) ← 𝑐𝑎𝑠𝑒

M𝛼,𝛽

4
(𝑖𝑖𝑎 , 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖𝑏 , 𝑁 , 𝐿) .

stating that one of two conditions occurs assigning
label 𝐿 to input sentence 𝑁 , thenM4 should follow.

– A2 contains a set of assumptions {∼ 𝑐𝑎𝑠𝑒(𝑖, 𝑁, 𝐿),
∼ 𝑐𝑎𝑠𝑒M𝛼,𝛽

3
(𝑖𝑖, 𝑁, 𝐿),∼ 𝑐𝑎𝑠𝑒M𝛼,𝛽

4
(𝑖𝑖𝑎, 𝑁, 𝐿)}. The

contraries are as follows.
∼ 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿) = 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿)
∼ 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿) = 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿)

∼ 𝑐𝑎𝑠𝑒
M𝛼,𝛽

4
(𝑖𝑖𝑎 , 𝑁 , 𝐿) = 𝑐𝑎𝑠𝑒

M𝛼,𝛽

4
(𝑖𝑖𝑎 , 𝑁 , 𝐿)

Given facts ofR𝑁 for input sentence 𝑁 , the label thatM4
assigns to 𝑁 is computed by ABA framework (A2,R2 ∪
R𝑁 , ) obtained from the above ABA framework F2 by
adding R𝑁 into the set of inference rules.

Example 6. (Continue Ex. 5.) Now the set of facts R𝑛1

about the input sentence 𝑛1 adds the following facts.
𝑟17 : 𝑚1 (𝑠2 , −1) ← 𝑟18 : 𝑚2 (𝑛1 , 𝑠2 , −1, 2) ←
𝑟19 : 𝑝 (𝑠2 , −1, 0.98) ← 𝑟20 : 𝑠𝑖𝑚(𝑛1 , 𝑠2 , 0.96) ←

According to facts (from 𝑟8 to 𝑟13) of Ex.5, rule
𝑟5 fires which concludes 𝑐𝑎𝑠𝑒M𝛼,𝛽

3
(𝑖𝑖, 𝑛1, +1). By the

facts (from 𝑟17 to 𝑟20), rule 𝑟14.1 fires which concludes
𝑐𝑎𝑠𝑒M𝛼,𝛽

4
(𝑖𝑖, 𝑛1,−1). When rule 𝑟 ′7 fires, this ABA ground-

edly accepts 𝑚4 (𝑛1,−1) soM4 assigns negative sentiment
to 𝑛1.

Table 8: Confusion matrix ofM0.8,0.96
4

M4

D3 POS NEG NEU URE Total

POS 362 43 41 8 454
NEG 24 1,949 121 37 2,131
NEU 15 68 658 48 789
URE 10 44 148 1,605 1,807
Total 411 2,104 968 1,698 5,181

For accuracy assessment, Table 8 shows the confusion
matrix of M0.8,0.96

4 (i.e. 𝛼 = 0.8, 𝛽 = 0.96). Using the
test dataset D3,M0.8,0.96

4 achieves 88.28% accuracy and it
misclassifies 607 out of 5181 sentences. The table says that
M0.8,0.96

4 performs a bit better than the CNN model M1
(0.69%) and the CBR modelM2 (16.71%).

Table 9: Numbers of sentiments ofM0.8,0.96
4 per case

Sentiments Cases
case i case ii case iii

POS 342 90 22
NEG 1,967 16 148
NEU 528 19 242
URE 1,025 0 782
Total 3,862 125 1,194

Table 9 shows the number of sentences labeled by
M0.8,0.96

4 per case. We observe that 3862/5181 of tested
sentences fall into case i, suggesting that around 74% of the
outputs of M4 are explained by the sentiments of similar
sentences. Table 10 shows each case’s accuracy. Here it
concludes that 92.52% of case i is the most accurate.

Table 10: Accuracy ofM0.8,0.96
4 per case

Cases
case i case ii case iii

No. of correctly 3,573 75 922labeled sentences
No. of sentences 3,862 125 1,194
Accuracy 92.52% 60.00% 77.22%

5 Some Technical Details and
Comparisons

In the following, we describe some technical details that
are intentionally left out in the previous section. Initially,
the whole dataset contains 25,104 sentences (in the Myan-
mar language) that are customer reviews about products and
services of a telecommunication company from Facebook.
All the sentences are labeled with one of the following senti-
ments: positive (+1), negative (−1), neutral (+0), and unre-
lated (−0). The sentences are identified as unrelated if they
are not concerned with the company’s products/services,
whereas positive, negative, and neutral sentences are con-
cerned with the company’s products/services. In the pre-
processing stage, the font of these sentences is converted
into the Myanmar Unicode for implementation in Python.
These sentences are segmented using “—” between single
words since spaces are occasionally used in the Myanmar
language. Then a word2vec model is built for all the unique
words in the dataset for implementing CNN model.

Let us specify how sentences in the dataset are labeled in
detail. The labeling process is done in three steps. Firstly,
we create three dictionaries: one for positive words, one for
negative words, and one for product words. Based on these
dictionaries, four conditions apply to the labeling scheme:
if a sentence contains product words and negative words,
we annotate it with a negative sentiment; if the sentence
contains product words and positive words but no negative
words, we annotate it with a positive sentiment; if the sen-
tence contains product words but no negative words and no
positive words, we annotate it with a neutral sentiment; and
otherwise, we annotate the sentence with an unrelated sen-
timent. Meanwhile, we build a lexicon-based rule-based
system (RBS) according to these hypotheses. The sys-
tem automatically assigns sentiments to all sentences in the
dataset. Finally, although the manual labeling process is
done by a person, we modify the dataset by verifying the
manually labeled sentences with the automatically labeled
sentences to obtain the ground truth dataset.

In this paper, we partitioned the entire dataset into
79.36% for training the CNN and CBR models and 20.64%
for testing the models. In the CNN model, the larger the
training dataset, the higher the model performance for pre-
dicting unknown data. A CNN trained from a larger dataset
usually obtains a better learning hyper-parameters and then
higher performance. A CBR model, on the other hand,
handles a new case by reusing successful solutions from
previously solved similar problems. Every labeled sen-
tence of a case base has the potential to be utilized as an
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example for explaining outputs. Hence, the dataset used to
implement the CBR model should be clean and coherent
(e.g. duplicate sentences must be removed). We should
allow the CBR model to be implemented with relatively
small datasets, due to the high cost of constructing com-
pletely clean datasets. Thus, we use three-quarters of the
training dataset to train the CNN model and one-quarter of
the training dataset to implement the CBR model, rather
than dividing the training dataset equally for both models.

The purpose of this study is to use argumentation in
the combination of CNN and CBR models. We integrate
CNN and CBR to produce hybrid models that are both
interpretable and more accurate. Thus, argumentation is
required during the combination process to interpret the
combination result. For demonstration purposes, we gen-
erated one CNN and one CBR using separate datasets. We
may build them using the same dataset because it is trivial
how input models are created depending on dataset in this
paper. In the testing process, however, we use the same
dataset to evaluate CNN and CBR. Table 11 shows the data
partition for implementing our approach.

Table 11: Data partition

Sentiments
Number of sentences
Training Testing

CNN CBR
POS 421 789 411
NEG 6,894 1,114 2,104
NEU 2,567 1,499 968
URE 5,531 1,108 1,698
Total 15,413 4,510 5,181

The CNN model is built using TensorFlow with some
python packages: numpy, keras, pandas, sklearn, tqdm,
genism and utils. In our previous work [89], the CNN model
was trained using 1,152 annotated sentences and tested us-
ing 495 unlabeled sentences. In the current work, the CNN
model is implemented with the similar architecture of our
previous work. In this paper, the CNN model is trained
using 15,413 annotated sentences and tested using 5,181
unlabeled sentences. The CNN model results in 97.61%
accuracy in the training process, and 87.59% accuracy in
the testing process. Meanwhile, we build the CBR model
based on cosine similarity using 4,510 sentences. Using
the test dataset, the CBR model achieves 71.57% accuracy.
Moreover, the CBR model can explain label assignment
to input sentence in form of argument from analogy. Al-
though the CNN model provides better accuracy than the
CBR model, it is uninterpretable.

The rule-based hybrid (RBH) model,M3, combines both
CNN and CBR models using the system of equations to de-
termine whether to follow one of them. In the system of
equations, there are two variables 𝛼 and 𝛽 that can change
the range of case ii and case iii. In the implementation of the
RBH model, we assign 0.8 to 𝛼 and 0.96 to 𝛽 and structure
the model by a structured argumentation (using strict rules).
Using the test dataset, the model achieves 88.32% accuracy

that is a bit more accurate than the CNN model but it can in-
terpret around 70% of their outputs while CNN cannot give
any explanation. Then, the argumentation-based hybrid
(ABH) model,M4, revises the RBH model by considering
different similarities between input and existing sentences.
We structure the ABH model using an ABA framework by
adding assumptions to some strict rules of the RBH model.
Using the test dataset, the ABH model results in 88.28%
accuracy that is also a bit better performance than the CNN
model and it can explain around 74% of their outputs (i.e.
the ABH model provides more explainable outputs than the
RBH model). Therefore, our hybrid models do not sacrifice
accuracy to achieve interpretability.

Additionally, let us describe another potential solution
capable of providing explanations for CNN model outputs
based on a rule-based system (RBS). We may also include a
lexicon-based RBS (i.e. named asB1 and constructed using
positive and negative lexicons) in our second hybrid model
to explain the outputs. Let 𝑏(𝑁, 𝐿) be a lexicon-based pred-
icate stating that the RBS assigns label 𝐿 to a given input
sentence 𝑁 . Assume thatM′4 is another ABH model im-
plemented using an ABA framework F ′2 = (A′2,R

′
2, ) 12

derived from the ABA framework (A1,R1, ) by the re-
placingR1 withR′2 = R1\{𝑟7}∪{𝑟 ′7}∪{𝑟

′
14.1, 𝑟

′
14.2, 𝑟15, 𝑟16}

and having the same assumptions and their contraries asA2.
𝑟 ′14.1 and 𝑟 ′14.2 are inference rules that replace 𝑟14.1, and 𝑟14.2,
respectively, where

𝑟 ′14.1 : 𝑐𝑎𝑠𝑒
M
′𝛼,𝛽
4
(𝑖𝑖𝑎 , 𝑁 , 𝐿) ← 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿1 ) ,

𝑚2 (𝑁, 𝑆1 , 𝐿1 , 1) ,
𝑚1 (𝑆2 , 𝐿2 ) ,
𝑚2 (𝑁, 𝑆2 , 𝐿2 , 2) ,
𝑏 (𝑁, 𝐿2 ) , 𝐿 = 𝐿2.

means that M′4 assigns label 𝐿2 to the input sentence 𝑁

if M2 assigns 𝐿1 and 𝐿2 into 𝑁 according to 𝑆1 and 𝑆2,
respectively, and B1 assigns 𝐿2 into 𝑁 .

𝑟 ′14.2 : 𝑐𝑎𝑠𝑒
M
′𝛼,𝛽
4
(𝑖𝑖𝑎 , 𝑁 , 𝐿) ← 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿1 ) ,

𝑚2 (𝑁, 𝑆1 , 𝐿1 , 1) ,
𝑚1 (𝑆2 , 𝐿2 ) ,
𝑚2 (𝑁, 𝑆2 , 𝐿2 , 2) ,
𝑏 (𝑁, 𝐿1 ) , 𝐿 = 𝐿1.

means that M′4 assigns label 𝐿1 to the input sentence 𝑁

if M2 assigns 𝐿1 and 𝐿2 into 𝑁 according to 𝑆1 and 𝑆2,
respectively, and B1 assigns 𝐿1 into 𝑁 .
Example 7. (Continue Ex. 6.) After adding the fact 𝑟21 :
𝑏(𝑛1,−1) ← into the set of factsR𝑛1 , andR𝑛1 into the set of
inference rules of ABA F ′2 , this ABA groundedly accepts
𝑚′4 (𝑛1,−1). Consequently,M′4 assigns negative sentiment
to 𝑛1.

As a result, our second hybrid model, which employs
the RBS, may produce the same explainable outputs in a
more comprehensive manner. Table 12 shows the confusion
matrix ofM

′0.8,0.96
4 .

Finally, we compare our hybrid models to the CNN
model, the CBR model, and various baseline models such
as the lexicon-based RBS, LSTM, BERT, LR and SVM

12Assume that ABA F′2 uses same predicates as F2 for simplicity, with
the exception that 𝑚′4 ( , ) and 𝑐𝑎𝑠𝑒

M
′𝛼,𝛽
4
( , , ) are used instead of

𝑚4 ( , ) and 𝑐𝑎𝑠𝑒M𝛼,𝛽

4
( , , ) respectively.
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Table 12: Confusion matrix ofM
′0.8,0.96
4

M′4
D3 POS NEG NEU URE Total

POS 362 44 41 8 455
NEG 24 1,948 120 36 2,128
NEU 15 68 659 49 791
URE 10 44 148 1,605 1,807
Total 411 2,104 968 1,698 5,181

that are denoted as B1, B2, B3, B4 and B5 respectively.
Table 13 shows the comparison of all models in terms of
recall, precision, f-measure, accuracy, average f-measure
and explainability rate (ER), where ER is computed by the
following equation.

ER =

the number of sentences having the same
sentiments predicted by an explainable model

the total number of predicted sentences
(3)

In Table 13,M3 uses Equation 1 to combineM1 andM2
based on the most similar sentence,M4 takes into account
the second most similar sentence to improveM3 using the
ABA framework, andM′4 is an alternative toM4 using the
lexicon-based RBS for enhancingM3.

Example 8. (Continue Ex. 7.) According to previous
examples, given the input sentence 𝑛1, the CNN model
classifies 𝑛1 as neutral sentiment while the CBR model la-
bels positive sentiment to 𝑛1. However, both CNN and
CBR models assign conflict sentiments to 𝑛1 (for accuracy
assessment, 𝑛1 is annotated as negative sentiment). Accord-
ing to Ex. 5, the RBH model still assigns positive sentiment
to 𝑛1 using case ii of the system of equations. Basically,
if case ii of the RBH model occurs, then the case ii of the
ABH model occurs and vice versa. According to Ex. 6 the
ABAF2 that structures the ABH model, groundedly accepts
𝑚4 (𝑛1,−1), meaning that the ABH model assigns negative
sentiment to 𝑛1, by inference rule 𝑟14.1 fires. Finally, the
ABH model produces the final label to the input sentence.

6 Discussion
This study describes two hybrid models, RBH and ABH,

which combine CNN and CBR through argumentation to
justify CNN outputs in terms of CBR’s analogous sen-
tences. Thus, this study examines post-hoc explanation-by-
examples for explaining CNN outputs at the instance level.
Now, let us compare our approach to the related approaches
(listed in Tables 1 and 14). In [82, 83], they also investigate
hybrid systems that combine DL with CBR for interpret-
ing DL outputs using post-hoc explanation-by-examples in
XAI. However, they do not consider that DL and CBR
may produce different outputs. In contrast, our approach
addresses the conflicts between CNN and CBR using the
ABA framework when they produce different sentiments
for the same input sentence.

Concerning argumentative XAI, in [73, 79], they focus
on merging DL with argumentation and constructing attacks

and supports between arguments from contradictory texts.
Through argumentation, [76] determines whether an input
text is labeled with a sentiment produced by supervised
classifiers or a different sentiment, and then it corrects the
classifiers’ misclassifications. In [77], it detects sentiment
of an input query (i.e. word), with attacks and supports de-
fined between queries generated from texts. All of these ap-
proaches, including ours, can provide explanations through
argumentation. Our work, however, constructs arguments
from inference rules supported by assumptions, with attacks
arising from the contraries of assumptions. In [80], ANN
was combined with CBR using the AA framework, in which
the ANN selects features, and the AA-CBR takes these fea-
tures as inputs for predicting new cases. However, in our
approach, CNN and CBR label their respective sentiments
for an input sentence. If they agree with the sentiment,
our hybrid models will follow. Otherwise, our hybrid mod-
els use argumentation to determine which one to follow.
Then, we compare to the other existing SA approaches and
summarize it in Table 14 (Appendix C).

An ideal explanation for CNN should truly describe how
CNN reaches a classification decision for a given input.
However, to the best of our knowledge, no explanation sys-
tems so far are able to truly go after this ideal definition
without extra assumptions about the internal working of
the CNN. Indeed several researchers including [90] argued
forcefully that at least for high-stake decisions, the aim
should not be to explain black-box machine learning mod-
els like CNN but to design interpretable models instead.
This is because if there is such an ideal explanation sys-
tem, it would be less accurate than the (CNN) model to be
explained (since otherwise, the explanation system would
make the explained model redundant). But if the explana-
tion system is not accurate, it might distract the user from
following correct predictions of the black-box, and hence
it raises a lot of doubt about the value of the explanation
system. Hence, several recent studies on explainable AI
(XAI) do not go after the ideal definition of black-box AI
models. Instead, these studies try to justify the outcomes
of CNN by another interpretable model without claiming
any relationships between the produced justifications and
the internal inference process of the CNN. For example,
in [22] the authors propose to use the training dataset of
the CNN to construct an argumentation framework which
is then used to justify the outcomes of CNN. Indeed, one
can also say that none of the existing local model-agnostic
methods such as LIME [21] and LORE [91] truly explain the
internal inference process of CNN, because they view CNN
as a black-box. Sharing the same view, this paper does not
aim to truly explain CNN’s internal inference process. In-
stead, we propose to justify CNN outcomes by CBR model
and combine two models by ABA frameworks. Though
falling in the same line of work as Prakken and Ratsma’s
work [22], we do not assume that CBR has a known set
of influential features as they do because we compute sim-
ilarity measures between sentences using cosine similarity.
Finally, we enhance our results by a lexicon-based model
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Table 13: Comparison of Models’ Performance: Recall, precision, f-measure, accuracy and average f-measure, and
explainability rate.

Models Sentiments Recall Precision

Accuracy
&

f-measure average F
(F) &

ER
POS 75.67% 82.71% 79.03%

CNN (M1) NEG 93.63% 89.26% 91.39% 87.59%
NEU 66.74% 83.03% 74.00% 84.00%
URE 94.88% 88.52% 91.59% N/A
POS 88.81% 52.67% 66.12%

CBR (M2) NEG 84.60% 76.30% 80.23% 71.57%
NEU 61.47% 55.71% 58.45% 68.58%
URE 57.01% 89.05% 69.52% 100%
POS 86.86% 82.07% 84.40%

RBH (M3) NEG 93.06% 91.24% 92.14% 88.32%
(M1 +M2 + 𝐸𝑞 (1) ) NEU 67.77% 82.93% 74.59% 85.66%

URE 94.52% 88.72% 91.53% 69.95%
POS 88.08% 79.74% 83.70%

ABH (M4) NEG 92.63% 91.46% 92.04% 88.28%
(M3 + 𝐴𝐵𝐴) NEU 67.98% 83.40% 74.90% 85.56%

URE 94.52% 88.82% 91.58% 74.53%
POS 88.08% 79.56% 83.60%

ABH+ (M′4) NEG 92.59% 91.54% 92.06% 88.28%
(M3 + 𝐴𝐵𝐴 + B1 ) NEU 68.08% 83.31% 74.93% 85.54%

URE 94.52% 88.82% 91.58% 74.53%
POS 15.33% 37.72% 21.80%

RBS (B1) NEG 86.93% 84.21% 85.55% 80.78%
NEU 75.93% 68.12% 71.81% 67.30%
URE 91.76% 88.37% 90.03% 100%
POS 77.13% 91.62% 83.75%

LSTM (B2) NEG 90.64% 89.83% 90.23% 86.82%
NEU 69.11% 78.15% 73.36% 84.41%
URE 94.52% 86.48% 90.32% N/A
POS 46.47% 71.80% 56.43%

BERT (B3) NEG 78.61% 78.24% 78.43% 72.71%
NEU 45.76% 51.57% 48.49% 66.15%
URE 87.10% 76.16% 81.26% N/A
POS 46.47% 82.33% 59.41%

LR (B4) NEG 68.25% 71.98% 70.07% 68.48%
NEU 39.88% 59.38% 47.71% 63.47%
URE 90.40% 66.62% 76.71% N/A
POS 2.19% 81.82% 4.27%

SVM (B5) NEG 71.58% 63.60% 67.35% 62.57%
NEU 16.12% 66.95% 25.98% 42.81%
URE 92.50% 61.15% 73.63% N/A

which detects influential features (sentimental words).
In this paper, we cannot compare the accuracy of our

approach with that of the above approaches because the
accuracy is achieved using a different dataset. Instead,
as shown in Table 13, we use the same testing dataset to
compare the accuracies of our hybrid models to those of
state-of-the-art models such as CNN, LSTM, and BERT.

Our hybrid models outperform them slightly better. None
of these state-of-the-art models explain their outputs. How-
ever, our hybrid models justify 69.95% and 74.53% of the
outputs, based on the sentiments of similar sentences, re-
spectively. Thus, our hybrid models provide interpretability
without sacrificing accuracy.

In summary, assuming that CNN is a black-box, we justify
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its outcomes by an interpretable model. Providing justifica-
tions is not as good as providing genuine explanations but
many studies [22, 67, 81, 82, 83, 84, 90, 92, 93] including
Prakken and Ratsma’s work have proved that the former is
beneficial. As we do not assume any knowledge about the
internals of CNN, our approach can be readily applied to
other ML formalisms. Note that providing justifications by
past cases as what we do is not uncommon in daily life. For
example, in the legal domain, judges often use precedents
to justify their decisions in the current case (the doctrine of
stare decisis). Hence we believe that our approach is not
unnatural for human users.

7 Conclusion
CNN lends itself to one of the most accurate methods

for sentiment analysis (SA) [18, 19] but suffers from the
interpretability problem due to its black-box nature. In the
so-called XAI research, to tackle this problem one often uses
a trained CNN to generate data for training an interpretable
model such as DT, which is then used to explain how the
original CNN works [94, 95].

In this paper, we take another route: combining CNN
with CBR, which is constructed using a different dataset.
In particular, we develop several hybrid models which in
the ideal case take the output of CNN for a given unlabeled
sentence and use the similar sentence from CBR to explain
this output - a kind of explanation by analogy. Since we
focus on the post-hoc explanation of XAI, our hybrid mod-
els take each input-output pair of the CNN model as a case.
Similar to our work, other studies in the literature have com-
bined CNN and CBR to produce twin systems, and LIME
and LORE also provide post-hoc explanations for ML mod-
els. Because of the trade-off between interpretability and
accuracy in XAI, the more interpretable a model is, the less
accurate it is. In demonstration, our hybrid models balance
this trade-off issue by interpreting CNN outputs without
sacrificing CNN accuracy for achieving interpretability.

Let us close with some technical details on the models’
development. We train the CNN model built on the top
of word2vec using 15,413 sentences while we build the
CBR model by cosine similarity using 4,510 sentences.
Both models produce labels for an input sentence but their
label assignments may either agree or disagree. In the
case of agreement, our first hybrid model assigns the same
label produced by both CNN and CBR models to the input
sentence. In the case of disagreement, the first hybrid model
combines them via the system of equations to determine
which model should be followed. Using the test dataset,
the first hybrid model can interpret 69.95% of the outputs
according to the sentiments of similar sentences. Since
the first model produces outputs based on the most similar
sentence to the input sentence, our second hybrid model
modifies it by considering labels of the second (third, etc.)
similar sentences. Using the test dataset, the second hybrid
model can interpret 74.53% of the outputs according to the
sentiments of similar sentences. In overall accuracy, our
hybrid models achieve 88.32% and 88.28% respectively

while the CNN model and the CBR model get 87.59% and
71.57% respectively.

In general, the accuracy of a hybrid model mostly de-
pends on the accuracy of its input models. This phe-
nomenon has been reported quantitatively in, for example
[20, 96]. Hence, the most reliable way to improve the ac-
curacies of our hybrid models is to train the input CNN
with more data. Note that our hybrid models have achieved
the accuracy of the input CNN, and one might ask whether
we can still increase their accuracies without improving the
input CNN. Clearly, a positive answer here means that we
can provide explanation models that are more accurate than
the CNN models that call for explanation. And as argued
by [90] (see the previous section), such explanation models
would make CNN models redundant. The main objective of
our work is to provide justifications for CNN outputs via hy-
brid interpretable models that retain the accuracy of CNN.
We do not focus on significantly increasing CNN accuracy.
In the future, we shall experiment with different CNN mod-
els such as BERT. As argued, more accurate input CNNs
lead to more accurate hybrid models but the replacement
of input CNN does not change the basics of our approach
since we assume CNNs as black-boxes.

As limitations, cases ii.2 and ii.3 of the system of equa-
tions are domain specific conditions for our approach, which
has been developed in the dataset with an unbalanced num-
ber of positive and negative sentences. In the future, we will
solve the limitation using a data sampling method to balance
the number of sentences in the dataset and figure out other
combination ways of different models rather than CNN and
CBR. Using multiple datasets, we will advance our contri-
bution by interpreting multiple state-of-the-art models such
as LSTM and BERT rather than CNN. Furthermore, by
excluding one of the datasets from D1, D2, and D3, we
will evaluate the performance of our hybrid models based
on ablation studies. Then, probabilistic argumentation, or
DST, would be used in order to determine the probability
of the explanations produced by our hybrid models.
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Appendix A
The modelM𝛼,𝛽

3 can be represented by the ABA frame-
work F1 = (A1,R1, ) where A1 is empty and R1 =

{𝑟1, ..., 𝑟7} is a set of inference rules containing the follow-
ing rules.

– Each inference rule (from 𝑟1 to 𝑟6) represents each case
of the system of equations 1 on page 8.
𝑟1 : 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿) ← 𝑚1 (𝑁, 𝐿) , 𝑚2 (𝑁, 𝑆, 𝐿) .
𝑟2 : 𝑐𝑎𝑠𝑒 (𝑖𝑖1 , 𝑁 , 𝐿2 ) ← 𝑚1 (𝑁, 𝐿1 ) , 𝑚1 (𝑆, 𝐿2 ) ,

𝑚2 (𝑁, 𝑆, 𝐿2 ) , 𝐿1 ≠ 𝐿2 ,
𝑝 (𝑁, 𝐿1 , 𝑋) , 𝑝 (𝑆, 𝐿2 , 𝑌 ) ,
𝑌 > 𝑋, 𝑠𝑖𝑚(𝑁, 𝑆, 𝑍 ) ,
𝑍 ≥ 𝛽.

𝑟3 : 𝑐𝑎𝑠𝑒 (𝑖𝑖2 , 𝑁 , 𝐿2 ) ← 𝑚1 (𝑁, 𝐿1 ) , 𝑚1 (𝑆, 𝐿2 ) ,
𝑚2 (𝑁, 𝑆, 𝐿2 ) , 𝐿1 ≠ 𝐿2 ,
𝐿1 = −1, 𝐿2 = +1,
𝑝 (𝑁, 𝐿1 , 𝑋) , 𝑝 (𝑆, 𝐿2 , 𝑌 ) ,
𝑌 > 𝑋, 𝑠𝑖𝑚(𝑁, 𝑆, 𝑍 ) ,
𝛼 < 𝑍 < 𝛽.

𝑟4 : 𝑐𝑎𝑠𝑒 (𝑖𝑖3 , 𝑁 , 𝐿2 ) ← 𝑚1 (𝑁, 𝐿1 ) , 𝑚1 (𝑆, 𝐿2 ) ,
𝑚2 (𝑁, 𝑆, 𝐿2 ) , 𝐿1 ≠ 𝐿2 ,
𝐿1 ≠ −1, 𝐿2 = +0,
𝑝 (𝑁, 𝐿1 , 𝑋) , 𝑝 (𝑆, 𝐿2 , 𝑌 ) ,
𝑌 > 𝑋, 𝑠𝑖𝑚(𝑁, 𝑆, 𝑍 ) ,
𝛼 < 𝑍 < 𝛽.

𝑟5 : 𝑐𝑎𝑠𝑒
M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿) ←∼ 𝑐𝑎𝑒 (𝑖, 𝑁 , ) ,

𝑐𝑎𝑠𝑒 (𝑖𝑖1 , 𝑁 , 𝐿);
𝑐𝑎𝑠𝑒 (𝑖𝑖2 , 𝑁 , 𝐿);
𝑐𝑎𝑠𝑒 (𝑖𝑖3 , 𝑁 , 𝐿) .

𝑟6 : 𝑐𝑎𝑠𝑒 (𝑖𝑖𝑖, 𝑁 , 𝐿) ← 𝑚1 (𝑁, 𝐿) ,
∼ 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , ) ,
∼ 𝑐𝑎𝑠𝑒

M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , ) .

– The following rule 𝑟7 represents the outcome of the
modelM3 to assign a label to a input sentence.
𝑟7 : 𝑚3 (𝑁, 𝐿) ← 𝑐𝑎𝑠𝑒 (𝑖, 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒
M𝛼,𝛽

3
(𝑖𝑖, 𝑁 , 𝐿);

𝑐𝑎𝑠𝑒 (𝑖𝑖𝑖, 𝑁 , 𝐿) .

Given an input sentence 𝑁 described by a set of facts
R𝑁 , the label thatM3 assigns to 𝑁 is computed by ABA
framework (A1,R1∪R𝑁 , ) obtained from the above ABA
framework F1 by adding R𝑁 into the set of inference rules
(see Ex. 5).
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Appendix B
The algorithmic form of M0.8,0.96

3 is expressed as the
following procedure.

procedure 𝑚3 𝑙𝑎𝑏𝑒𝑙 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝑛 : new sentence)
𝑠 := a similar sentence
L := {+1,−1, +0,−0}//i.e. set of labels
𝑙1 := label that is assigned byM1 to 𝑛

𝑙2 := label that is assigned byM2 to 𝑛

𝑙3 := label that is assigned byM1 to 𝑠

𝑝𝑙1 := conditional probability of 𝑙1 given 𝑛

𝑝𝑙3 := conditional probability of 𝑙3 given 𝑠

𝑠𝑖𝑚 := similarity measure between 𝑠 and 𝑛

𝛼 := 0.8
𝛽 := 0.96
if 𝑙1 = 𝑙2 then

assign 𝑙1 into 𝑛

else
if 𝑙3 = 𝑙2 and 𝑝𝑙1 < 𝑝𝑙3 then

if 𝑠𝑖𝑚 >= 𝛽 then
assign 𝑙2 into 𝑛

if 𝛼 < 𝑠𝑖𝑚 < 𝛽 then
if (𝑙1 = −1 and 𝑙2 = +1) or
(𝑙1 ≠ −1 and 𝑙2 = +0) then
assign 𝑙2 into 𝑛

else assign 𝑙1 into 𝑛

else assign 𝑙1 into 𝑛

else assign 𝑙1 into 𝑛
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Appendix C
The following tables summarize existing approaches to SA.

Table 14: Summary of existing approaches to SA
Reference # Proposed Result Comparison to our work

[23] Argumentative-based explana-
tions for intrinsic and post-hoc
explanations in XAI approaches
were surveyed.

The paper highlighted some gaps
in the state-of-the-art models for
argumentation-based XAI and
suggested future research direc-
tions.

Our approach also uses argu-
mentation in XAI where the
combined process of CNN and
CBR is argumentative and hence
self-explainable.

[59] A three-step process was pro-
posed to train the CNN model
using the SemEval-2015 corpus
after initializing the parameter
weights from a CNN with a pre-
trained word2vec model.

The constructed CNN model
performed the phrase-level and
message-level subtasks using the
official test sets provided by
the SemEval-2015 campaign,
achieving 84.79% accuracy and
64.59% accuracy, respectively.

They remain limitation of
black-box models to provide
interpretability that cannot be
directly derived from the mod-
els and provided for their out-
puts. Our approach over-
comes this limitation via post-
hoc explanation-by examples,
classifying sentiments for sen-
tences by CNN while justify-
ing the CNN outputs by simi-
lar sentences from CBR.

[60] The paper proposed a deep CNN
to classify the sentiments of
short texts using character- to
sentence-level information.

The deep CNN achieved 86.4%
accuracy for the Stanford twit-
ter sentiment corpus and 85.7%
accuracy for the Stanford senti-
ment treebank corpus.

[61] The study proposed to classify
the sentiment of Thai twitter
data using two DL techniques:
LSTM and dynamic CNN, while
considering the impact of word
order in tweets.

With the exception of Max-
Ent, the results showed that
LSTM and dynamic CNN out-
performed NB and SVM with an
accuracy of 75.30% and 75.35%,
respectively.

[62] A series of architectural modifi-
cations to CNN were proposed to
train for sentence-level classifi-
cation tasks on top of pre-trained
word vectors, enhancing the use
of both task-specific and static
vectors.

In a series of experiments, these
CNNs with fine-tuned hyper-
parameters outperformed other
state-of-the-art models on four
out of seven tasks, where CNN-
static obtained 89.6% accuracy
on a dataset about opinion polar-
ity detection.
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Reference # Proposed Result Comparison to our work
[63] On three datasets, the paper of-

fered several fine-tuned CNN
models for sentence sentiment
classification experiments.

The experimental results showed
that CNN with consecutive
convolutional layers performed
well with long texts, achiev-
ing a weighted-F1 score of 81%
for binary classification and a
weighted-F1 score of 68% for
ternary classification, respec-
tively.

They also remain same limi-
tation of black-box models to
provide interpretability.

[64] A 2-layer CNN classifier em-
ploying multi-task training was
proposed, using a huge amount
of weakly labeled data to predict
the sentiment of Italian tweets.

In an experiment using test sets
from the EvalItalia-2016 com-
petition, it obtained 65.2% ac-
curacy and 66% accuracy us-
ing a single-task training ap-
proach and a multi-task train-
ing approach after using cross-
validation, respectively.

[65] The paper proposed a CNN with
fastText word embeddings in or-
der to perform sentence sen-
timent classification on three
datasets.

The performance of CNN with
fastText outperformed tradi-
tional ML techniques such as
NB, SVM, and LR, achieving
85.2% accuracy on the Movie
review dataset, which was com-
parable to the 85% accuracy of
CNN with word2vec.

[66] The paper proposed CNN classi-
fiers for SA that highlighted how
the hyper-parameters affected
the classifier’s performance.

When CNNs with different con-
figurations are compared, the
setting of key parameters yields
the best classification accuracy,
with 86.6%, tested on the Stan-
ford sentiment treebank dataset.

[68] By combining emotional intel-
ligence and attention mecha-
nisms, the author proposed an
LSTM model, known as AEC-
LSTM, to improve LSTM’s ca-
pacity to identify emotion mod-
ulation (i.e. abstraction level) for
textual data.

The model was tested on four
datasets, including the IMDB
dataset, where it outperformed
other conventional ML algo-
rithms with an accuracy of
96.3%.
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Reference # Proposed Result Comparison to our work
[67] The paper proposed an approach

that switched classification be-
tween CNN and CBR in order to
detect distinct types of objects in
images from the PASCAL-Part
dataset.

Always-CNN’s classification ac-
curacy was 61.27%, always-
CBR’s was 68.93%. When
there were data-poor situa-
tions, CNN’s classification was
switched to CBR, which got
64.12% accuracy.

They did not solve conflicts
that occurs in the combina-
tion process. Our approach
solves such conflict and build
CNN and CBR using distinct
datasets: CNN for accuracy
and CBR for interpretability.

[69] The SAKG-BERT model was
proposed, which combined the
language representation model
BERT and SA knowledge to in-
crease the DL algorithm’s inter-
pretability.

With 95% accuracy on the
Car review dataset and 95.3%
accuracy on the Chnsenticorp
dataset, SAKG-BERT surpassed
the two BERT baselines in com-
parison.

[70] The paper proposed a technique
for performing SA that com-
bined rule-based system (RBS)
and CBR, with their strengths
and limitations.

The decision-making process
can be insightful because it is
based on rules or cases.

[81] This paper proposed a theoreti-
cal survey of twin systems that
combined ANNs with CBRs in
order to solve the XAI problem
via post-hoc explanation.

In the paper, further direc-
tions for this XAI solution
were outlined, including feature-
weighting techniques.

[84] This paper proposed integrating
CBR with those DL methods in
order to address DL challenges,
such as learning from a few sam-
ples.

The paper concentrated on how
the CBR can assist in addressing
the DL challenges.

[74] Using three different corpora,
the paper proposed a frame-
work that takes the effective-
ness of character-level and word-
based CNNs for argument min-
ing based on in-domain and
cross-domain cases.

In the cross-domain case-on-
essays of the Test-on-Essays
corpora, word-based CNN sur-
passes char-based CNN, SVM,
and NB with an accuracy of
98%.

Unlike to our approach, although
arguments and the components
that make up arguments are de-
tected, the resolution of conflicts
between arguments was not ad-
dressed.
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