
https://doi.org/10.31449/inf.v47i4.4384 Informatica 47 (2023) 577–592 577

Acne Vulgaris Detection and Classification: A Dual Integrated Deep CNN
Model

Md Baharul Islam1,2,∗, Masum Shah Junayed2,3, Arezoo Sadeghzadeh2, Nipa Anjum4, Afsana Ahsan Jeny2,3, A. F. M.
Shahen Shah5
1Department of CSE, Florida Gulf Coast University, Fort Myers, FL, USA
2Department of Computer Engineering, Bahcesehir University, Istanbul, Turkey
3Department of CSE, University of Connecticut, Storrs, CT, USA
4Department of CSE, Khulna University of Engineering & Technology, Khulna, Bangladesh
5Department of Electronics and Communication Engineering, Yildiz Technical University, Turkey
E-mail: bislam.eng@gmail.com
∗Corresponding Author

Keywords: acne classification, pattern recognition, deep CNN model, skin disease, medical image analysis

Received: June 24, 2022

Recognizing acne disease and evaluating its type is vital for the efficacy of the medical treatment. This re-
port collects a dataset of 420 images and then labels them into seven different classes by a well-experienced
dermatologist. After a pre-processing step, including local and global contrast enhancement and noise re-
moval by a smoothing filter, the dataset size is enhanced using augmentation. The images of the dataset and
the augmented ones are all fed into a novel integrated dual deep convolutional neural network (CNN) model
to recognize acne disease and its type by classifying it into seven groups. First, two CNN-based units are
designed to extract deep feature maps, later combined in a feature aggregation module. The aggregated
features provide rich input information and classify the acne by a softmax. The proposed architecture’s
optimizer, loss function, and activation functions are all tuned so that both CNN units are trained with min-
imum kernel size and fewer training parameters. Thus, the computational cost is minimized. Compared
with three machine learning-based classifiers and five pre-trained models, our model achieves competitive
state-of-the-art performance with an accuracy of 97.53% on the developed dataset.

Povzetek: Razviti sistem uporablja CNN model za prepoznavanje in klasifikacijo aken (acne vulgaris) z
natančnostjo 97.53% na naboru 420 slik.

1 Introduction

Acne is an unwanted skin disease occurring in the piloseba-
ceous unit. It is most commonly seen on the face, forehead,
chest, upper back, and shoulders. Acne is usually related to
hormonal fluctuations during adolescence, although some
adults continue to experience acne into their 40-50s, too
(caused by oil and dead skin cells) [1]. According to the
surveys conducted in [2, 3], around 80% of adolescents and
young adults are affected by acne, and approximately 40-50
million Americans have acne problems. Acne causes pain,
redness, bleeding, and many other physical problems. Its
psychological and emotional effects on patients can be far
worse than physical issues. The changes in the beauty of
the skin’s appearance result in several psychological prob-
lems such as anger, depression, anxiety, fear, shame, em-
barrassment, low self-esteem, poor self-image, etc. Acne
also has negative impacts on the social life of the patients,
e.g., lack of confidence, limited employment chances, so-
cial withdrawal, and suicidal tendencies at worst [7].
Dermatologists diagnose acne by a simple visual inspec-

tion based on comedones, pustules, nodules, cysts, etc. It is

a subjective diagnosis depending on the experts’ experience
and ability. There is no particular test for acne, and in only
special and critical cases, the X-ray, CT scan, or MRI tests
are suggested by dermatologists [40]. Some professionals
occasionally employ dermoscopic images for clinical diag-
nosis [9]. However, these images are acquired by a non-
invasive method which is time-consuming. Additionally,
there are several skin analysis systems, e.g., VISIA from
Canfield and ANTERA 3D from Miravex, which are also
expensive and cannot always detect acne accurately. These
types of equipment also require to be operated and analyzed
by well-experienced experts. Due to the lack of dermatol-
ogists, especially in under-developing countries, people do
not receive timely treatments for acne. Even in developed
countries, it is estimated that for an appointment with a der-
matologist, patients are asked to wait for an average of 32
days1, which delays the treatment procedure. On the other
hand, if some types of acne, such as cysts (caused by severe
infection), are not cured on time, they are likely to turn into
permanent scars, or they need to be surgically removed by

1https://www.firstderm.com/appointment-wait-time-
see-dermatologist/
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dermatologists.
Hence, it is vital to provide an automated system to rec-

ognize acne and identify its type. In this case, patients can
receive timely treatment without expensive equipment or
expert help at the initial stage. Generally, providing such a
system is challenging due to several main reasons: (a) high
diversity of acne lesions and human skin tones, (b) signifi-
cant variations in the size, shape, and position of acne, and
(c) dependency on the age, gender, and skin types.
Skin disease detection, especially acne detection based

on deep neural networks and machine learning techniques,
has attracted much attention among researchers. Several
approaches have been reported in the literature in the last
decade [12, 16, 14, 34, 29]. Even some of them are for acne
severity grading [27, 35, 39, 10]. However, limited research
has been carried out in the acne classification [5, 32, 21]
while it is a vital issue in getting appropriate treatment in
the early stages. The main challenge of acne recognition
systems is their inability to classify different types of acne
vulgaris. On the other hand, acne classification approaches
are also required to improve their performance.
Another main challenge in acne classification is the lack

of an appropriate and publicly available dataset. One of
the earliest datasets was used in [5] with 35 images in
5 different types (i.e., nail, comedones, papules, pustule,
and nodule). However, these small numbers of images
are not enough, especially for deep learning-based systems.
Later, another dataset was developed in [32] with 3000 skin
images in 7 classes (including normal skin, papule, cyst,
blackhead, pustule, whitehead, and nodule).
Although this dataset is rich in the number of images

and classes and sufficient for deep learning models, it
is not publicly available. We have even tried to con-
tact the corresponding author through email to access their
dataset, but they are not reachable. Additionally, the dataset
does not include two more acne types, i.e., excoriated and
keloidalis acne. Another dataset was proposed in [21] (col-
lected from http://dermnet.com) with 300 images in 5
classes (i.e. closed comedo (whitehead), cystic, keloidalis,
open comedo (blackhead), pustular). Although it includes
keloidalis acne and has a reasonable number of images, it
still suffers from a lack of excoriated acne and has limited
classes.
In [29], another dataset was utilized with total 871 im-

ages (in 4 classes). This dataset also has a limited number
of classes and is not publicly available. Recently, a pub-
licly available dataset has been developed in [35] called
”ACNE04,” which is suitable only for grading acne in 4
classes (i.e., mild, moderate, severe, and very severe), not
for acne type classification.
A new acne dataset with seven classes has been devel-

oped to address the abovementioned challenges. Then,
an acne recognition and classification system are proposed
based on an integrated dual deep CNN model. Overall, the
main contributions of this work can be summarized as fol-
lows:

– Due to the unavailability of the public acne classifica-

tion dataset, an acne dataset is created, including 420
acne images in 7 classes. Contrary to the datasets pro-
posed in [32] and [21], our developed dataset contains
two different types of acne, i.e., Keloids and Excori-
ated. So, suppose the dataset of [32] is publicly avail-
able. In that case, its combination with ours results in
a dataset with nine classes which can be significantly
valuable for further research and analysis on acne clas-
sification problems.

– Providing an acne disease-free skin (DF) class (includ-
ing normal skin and the skin with other diseases such
as Eczema, Skin Cancer, Fungal Infection, etc.) en-
ables our method not only to classify acne into six dif-
ferent types but also to distinguish it from the other
skin diseases.

– The images of the dataset are captured using a smart-
phone camera. As smartphones are extensively avail-
able and used by almost everyone, the proposed
method can be considered a remote screening sys-
tem that ordinary people can efficiently utilize without
needing expensive equipment and expert help.

– An integrated dual CNN-based automatic acne recog-
nition and classification system is proposed. In this
model, the extracted feature maps from two CNN
models (without fully connected layers) are concate-
nated and aggregated, resulting in comprehensive rich
information from input images and so high acne clas-
sification accuracy. The kernel size, the training pa-
rameters, and the number of layers is minimized by
adjusting the optimizer, loss function, and activation
functions, which reduces computational cost while the
accuracy is still high.

– The performance of the proposed method is com-
pared with the results of three machine learning-based
classifiers, i.e., KNN, SVM, and MLP, and five pre-
trained deep learning-based models, i.e., GoogleNet,
MobileNet, VGG-19, ResNet-50, and AlexNet. Our
model receives competitive performance in the recog-
nition and classification of acne.

The rest of the paper is organized as follows: Section
2 reviews the related works reported in the literature for
acne detection, classification, and grading. The developed
dataset, its setup, pre-processing, and augmentation steps
are all explained in Section 3. Our proposed model is pre-
sented in detail in Section 4. Experimental results and the
related discussions and comparisons are demonstrated in
Section 5. Finally, conclusions are drawn in Section 6 as
well as the future directions.

2 Related works
Many approaches have been reported in the literature
for acne detection, classification, and grading in the last
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decade. Generally, these approaches can be categorized
into two main groups: conventional computer vision- and
machine learning-based and deep learning-based methods.
This section summarizes some of the primary studies in
these two groups.

2.1 Conventional approaches

Conventional automatic acne detection/recognition meth-
ods are primarily based on feature extraction for classifi-
cation. Malik et al. [27] proposed an acne grading sys-
tem based on feature extraction and support vector machine
(SVM). They classified the acne severity into four classes,
i.e., mild, moderate, severe, and very severe. Khongsuwan
et al. [24] proposed a method for counting the number of
points for acne vulgaris. Their system achieved a prediction
accuracy of 83.75% on the cropped part of the skin. The
Ultra-Violet (UV) fluorescence light was applied to capture
images before converting them to Gray-Scale and RGB. In
this method, the quality of the images was improved using
adaptive histogram equalization, and the number of points
(acne) was counted based on the extended maxima trans-
form. This image processing technique can quickly analyze
acne images, but it would become tricky when the number
of images is high.
Later, Alamdari et al [5] developed a mobile application

for acne detection, classification and segmentation. They
collected 35 images in five classes from various dermatol-
ogy resources. They used Fuzzy C-Min (FCM) to classify
images with no acne (normal skin) from the skin images
with acne disease (with an accuracy of 100%). Moreover,
they performed another classification task based on SVM
(with the linear kernel) and fuzzy c-means techniques to
distinguish acne scarring from inflammatory acne. This
classification task achieved an average accuracy of 80%
and 66.6% for FCM and linear SVMmethods, respectively.
As the images of their dataset were captured by a cell-
phone, they suffered from difficulty visualizing the small
lesion and ascertaining the depth of involvement. Addition-
ally, they used a limited number of images for segmentation
and classification, i.e., 35 images, while more images from
more subjects are required to provide an accurate evalua-
tion.
Kittigul et al. [25] detected acne based on robust ap-

plied features and then classified it using five designed fea-
tures. They achieved an average accuracy of 68%, which
is insufficient for clinical purposes. Hameed et al. [13]
presented a hybrid technique using Naive Bayes Classifier
(NBC) and image processing to detect and classify acne into
three different types. Using 40 images in each of the three
classes, they achieved an accuracy of 93.42%. Acne pat-
terns were segmented using adaptively regularized fuzzy c-
means (ARFCM) clustering technique and Morphological
opening, creating the mask for all training images. Four-
teen Haralick features were extracted from all patterns of
the masks, which were later fed into NBC to perform the
classification.

Although numerous approaches have been proposed
based on traditional image processing techniques, they still
suffer from noise and low accuracy due to the variations in
characteristics of acne vulgaris, such as color variations and
color complexity.

2.2 Deep learning-based methods

Deep neural networks (DNNs) such as CNNs have been ex-
tensively used for image classification. According to their
high recognition and classification ability, sometimes they
can perform even better than human beings in specific tasks,
such as traffic sign recognition, face recognition, and hand-
writing digit recognition [30, 15]. Contrary to conventional
computer vision methods, CNN-based models extract more
and deeper features which enhance the classification ac-
curacy and enable the system to deal with more classifi-
cation types [11]. Hence, they are the focus of interest
among the researchers not only for acne detection and clas-
sification but also in every field of medical image analysis
[23, 8, 26, 22, 38, 28, 17, 33, 18, 19, 20].
Shen et al. [32] proposed a new automatic CNN-based

diagnosis method for facial acne vulgaris to classify dif-
ferent types of acne vulgaris. This method extracted image
features based on CNNs, classified by a classifier. The skin
area was detected by applying a binary classifier for skin
and non-skin classes. Then, the type of acne was deter-
mined using a seven-class classifier. Zhao et al. [39] pro-
posed a grading system to assess the severity of facial acne
vulgaris using 4,700 selfie images in 5 groups from ”clear”
to ”severe.” Based on the transfer learning approach, the
features of the images were extracted using a pre-trained
model (ResNet 152). Then, the target severity level was
learned from the labeled images by adding and training a
fully connected layer. The irrelevant background was mini-
mized using OpenCVmodels to find facial landmarks. Key
skin patches were extracted from the selfie images based
on these landmarks. They trained their model after rolling
each skin patch to improve testing results. The Root Mean
Squared Error (RMSE) was 0.482 when applying the skin
patch rolling data augmentation.
Junayed et al. [21] utilized Deep Residual Neural Net-

work to build amodel called ”AcneNet” in which 1800 acne
images (original images plus the augmented ones) in five
classes were used. Training, validation, and testing accu-
racy were 86.28%, 86.11%, and 95.89%, respectively. Two
pre-trainedmodels, Inception-V3 andMobileNet, were also
implemented on the same dataset and compared with their
proposed method. Although this method was slightly un-
derfitting, its performance was competitive.
Alom et al. [6] worked on skin cancer segmentation

and classification using dermoscopic images. They pro-
posed NABLA-N Net based on the R2U-Net model, which
was composed of three different architectures: NABLA-
N Net (A), NABLA-N Net (B), and NABLA-N Net (AB).
An Inception Recurrent Residual Convolution Network
(RRCNN) was used for recognizing skin cancer from der-
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moscopic images. They used the transfer learning tech-
nique with NABLA-2 Net (AB) and got a testing accuracy
of 96.36%without applying any augmentations. This accu-
racy was increased to 96.03% by employing augmentation
along with transfer learning. They classified images into
seven classes and got a testing accuracy of 81.12% without
using data augmentation. This accuracy was also increased
to 87.09% after applying data augmentation. Although this
model was not proposed to detect acne, it performed well
in skin cancer segmentation and classification.
Another automatic diagnosis system for skin disease was

proposed by Shanthi et al. in [31] based on AlexNet ar-
chitecture. They used the DermNet dataset in which 105
images were used for training (its 10% was taken as val-
idation) and 69 images for testing. The dataset had four
classes: Acne, Urticaria, Eczema Herpeticum, and Kerato-
sis. They obtained 96.32% training accuracy and 62.1%
validation accuracy. Testing accuracy for each type of
Acne, Keratosis, Eczema Herpeticum, and Urticaria was
achieved as 85.7%, 92.3%, 93.3%, and 92.8%, respec-
tively.
Rashataprucksa et al. [29] tried to overcome the weak

performance of traditional image processing techniques in
acne detection and classification. They compared the per-
formance of the Faster Region-based Convolution Neural
Network (Faster R-CNN) and Region-based Fully Convo-
lutional Network (R-FCN) on a dataset with 871 images
(four classes of acne). Achieving a mean average preci-
sion of 28.3% for R-FCN, they proved that R-FCN per-
formed comparatively better than Faster R-CNN. Although
this method was more accurate and faster than traditional
image-processing methods, its accuracy was still low for
real-life clinical applications.

3 Dataset development

Identifying the type of acne is a crucial factor for having a
successful treatment. One of the main challenges in auto-
matic acne classification is providing a proper dataset. It
is essential to have a dataset with a sufficient number of
images and classes, especially for deep learning-based sys-
tems. A dataset of 420 pictures in 7 different types is pro-
posed to overcome this challenge. These seven classes in-
clude Acne of Closed Comedo (ACCwith 68 photos), Acne
of Cystic (AC with 50 images), Acne of Excoriated (AE
with 56 images), Acne of Keloidalis (AK with 71 images),
Acne of Open Comedo (AOCwith 53 photos), Acne of Pus-
tular (AP with 62 images), and acne disease-free skin (DF
with 60 images) (including the images of normal skin and
the skin images with other diseases rather than acne).
The authors have captured seventy-seven images of this

dataset from the subjects who visited the Department of
Dermatology at Bangabandhu Sheikh Mujib Medical Uni-
versity (BSMMU) andDhakaMedical College (DMC). The
informed consent was obtained from all subjects before
capturing the acne images by the 13-MP smartphone cam-

era. Some samples of these 77 images are illustrated in Fig.
2. An example for each of these acne types with the re-
lated descriptions is illustrated in Fig. 1. The rest of the
images have been collected from public platforms of Bau-
mann Cosmetic Dermatology (http://www.derm.net/)
and New Zealand Dermatologists (https://dermnetnz.
org/). All of the images in our dataset have been labeled
by a well-experienced dermatologist in 7 classes. Due to
different image sizes, all images are resized to 224 × 224
images.

4 Proposed CNN model
The main flowchart of the proposed method is illustrated in
Fig. 3. This figure shows that the input images are fed into
two CNN-based models after passing the pre-processing
step and augmented. The extracted features from these dual
CNN models are concatenated, aggregated using fully con-
nected layers, and passed to the softmax classifier for clas-
sification. The details related to each step are presented in
the following subsections.

4.1 Preprocessing and augmentation
Contrast is essential in medical imaging to better represent
the images, especially for acne recognition and classifica-
tion. Unlike the reported approaches in the literature in
which only one contrast enhancement technique, i.e., lo-
cal contrast or global contrast, was applied, a novel prepro-
cessing technique is proposed in this paper through which
local and global contrasts are incorporated. The primary
goal of combining the local and global contrasts is to create
an informational image that clearly shows the acne’s loca-
tion while simultaneously improving the image quality. A
novel statistical function is generated to enhance the local
contrast of the acne images in the region ofQ(m,n) by us-
ing the local mean of (E) and local standard deviation of
(σ). The following equations (1 and 2) calculate the E and
σ, respectively:

E(Q(m,n)) =
1

(2u+ 1)2

h∑
m=0

w∑
n=0

(Q(m,n)) (1)

σ =

√√√√ 1

(2u+ 1)2

h∑
m=0

w∑
n=0

[Q(m,n)− E(Q(m,n))] (2)

where (2u + 1)2 and E(Q(m,n)) represent the local con-
trast and the mean of the original input image, respectively.
Here, Q(m,n) denotes a region with the height of m and
the width of n in 3 channels of RGB, i.e. (m × n × 3), in
which (m,n) ∈ R. A statistical function that utilizes these
parameters is described as:

QL(m,n) = E(Q(m,n)) + ϕ[Q(m,n)− E(Q(m,n))]
(3)
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Figure 1: Six different types of acne, including Acne of Closed Comedo (ACC), Acne of Cystic (AC), Acne of Excoriated
(AE), Acne of Keloidalis (AK), Acne of Open Comedo (AOC), and Acne of Pustular (AP), and their characteristics.

Figure 2: A sample of collected acne dataset

Here, the local contrast-enhanced image and the contrast
gains (range greater than 1) are represented by QL(m,n)
and ϕ, respectively. Afterward, a top-hat maximization
technique is used to enhance the global contrast. The top-
hat filter operation is accomplished and stated as follows:

Qtop(m,n) = Q(m,n)−Q(m,n)◦se (4)

In this step, ◦ and se denote the opening operation and the
structural element, respectively. The opening operation is
employed here to boost the global contrast, and the proce-
dure is simple enough to be completed in a minimal amount
of time. The output ofQtop(m,n) is fed into the maximiz-
ing function, which creates the improved picture. The fi-
nal enhanced image is created by combining the outputs of
Qg(m,n) andQcon(m,n) calculated by equations 5 and 6,
respectively:

Qg(m,n) = max
z∈∆(m)

(
max

α∈((m,n))
(Qtop(m,n))

)
(5)

Qcon(m,n) =
∑

(Qg(m,n), QL(m,n))−Q(m,n) (6)

It is worth mentioning that, in addition to the contrast
enhancement, all images pass a smoothing filter through
which their probable noises are removed.

Providing a considerable amount of training data is crit-
ical in Deep Learning (DL)-based models. If the dataset
number is enormous, the overall model has a very flexible
function with many tunable parameters for training. Ad-
ditionally, increasing the number of training data in CNN
reduces the probability of overfitting, generalizes the model
to different input patterns, and so makes it robust [37].
Thus, to take advantage of the essential training data, seven
other augmentation techniques, i.e., scaling, flipping hor-
izontally, rotating 30◦ randomly to the right or left, shad-
ing, padding, affine transformation, and translation, are em-
ployed. These augmentations enhance the number of im-
ages in the dataset by producing additional images equal to
seven times the original set.
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Figure 3: An overview of the proposed deep CNN-based acne classification system for identifying and categorizing acne
vulgaris. In this system, the input images are fed into an integrated dual-CNN model after applying pre-processing and
augmentation.

4.2 Dual CNN-based feature extractor

With the emergence of high GPUs and the considerable
number of data, deep CNN-based models have been the
focus of interest and extensively applied for detecting and
classifying disease images in the last decade[36]. Deep
neural networks with many layers obtain high accuracy for
feature extraction and classification. However, increasing
the number of layers raises the requirement for many train-
ing images, parameters, and high computational time. An
integrated deep CNN-based feature extractor is proposed
for acne recognition and classification to solve these limi-
tations and get highly informative feature maps with fewer
layers. In our proposed method, two separated CNN mod-
els (with no fully connected and classification layers), i.e.,
first and second units in Fig. 3, are designed and trained
parallel for feature extraction.
The architecture details of these two CNN models, in-

cluding the number of layers and the filter, kernel, and
output sizes, are all summarized in Table 1. This table
shows that both CNN units take the input images of size
224 × 224 × 3 (RGB images with three channels). The

first unit comprises five convolution blocks, containing a
convolutional layer, a Max Pooling (MP) layer (for reduc-
ing the space size for data representation), and two regular-
ization layers, i.e., a batch normalization layer (BN) and
a dropout layer. Regularization is a strategy to improve
the model by changing the learning algorithm. It also im-
proves the model’s performance on invisible information,
reduces overfitting, and enhances generalization with im-
proved convergence. In this unit, the filters in 5 blocks are
16, 32, 64, 96, and 128, respectively. The kernel size (KS)
in all convolutional and MP layers are 3 × 3 and 2 × 2,
respectively. The padding for the first three convolutional
layers is applied as ”same” and for the rest two convolu-
tional layers as ”valid.” ReLu activation function is used in
all of the convolutional layers as follows:

RELU(x) = MAX(0, X) (7)

The negative values of the matrix are considered 0, and the
positive values are kept unchanged. Five dropout layers
in 5 blocks are set as 0.25, 0.25, 0.4, 0.4, and 0.25, which
means 25%, 25%, 40%, 40%, 40%, and 25% of neurons in
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Table 1: The summary of the proposed two CNN feature extractors, including layers, their configurations, and output
shape.

First Unit Second Unit
Layers Filter Configuration Stride Output Shape Layers Filter Configuration Stride Output Shape
Conv2D 16 KS: 3× 3; padding: same; ReLU 2 224× 224× 16 Conv2D 32 KS: 7× 7; padding: same; ReLU 1 224× 224× 32
BN - - - 224× 224× 16 BN - - - 224× 224× 32
MP - KS: 2× 2 2 112× 112× 16 MP - KS: 2× 2 2 112× 112× 32

Dropout - 0.25 - 112× 112× 16 Conv2D 32 KS: 5× 5; padding: same; ReLU 1 112× 112× 32
Conv2D 32 KS: 3× 3; padding: same; ReLU 2 112× 112× 32 BN - - - 112× 112× 32
BN - - - 112× 112× 32 MP - KS: 2× 2 2 56× 56× 32
MP - KS: 2× 2 2 56× 56× 32 Conv2D 48 KS: 3× 3; padding: same; ReLU 1 56× 56× 48

Dropout - 0.25 - 56× 56× 32 BN - - - 56× 56× 48
Conv2D 64 KS: 3× 3; padding: same; ReLU 1 56× 56× 64 MP - KS: 2× 2 2 28× 28× 48
BN - - - 56× 56× 64 Conv2D 64 KS: 3× 3; padding: same; ReLU 2 28× 28× 64
MP - KS: 2× 2 2 28× 28× 64 BN - - - 28× 28× 64

Dropout - 0.4 - 28× 28× 64 MP - KS: 2× 2 2 14× 14× 64
Conv2D 96 KS: 3× 3; padding: valid; AF: ReLU 1 28× 28× 96 Conv2D 128 KS: 3× 3; padding: same; ReLU 2 14× 14× 128
BN - - - 28× 28× 96 MP - KS: 2× 2 2 7× 7× 128
MP - KS: 2× 2 2 14× 14× 96

Dropout - 0.4 - 14× 14× 96
Conv2D 128 KS: 3× 3; padding: valid; ReLU 1 14× 14× 128
MP - - - 7× 7× 128

Dropout - 0.25 - 7× 7× 128

hidden layers. These are set to 0 at each training phase up-
date to prevent the model from overfitting while improving
the accuracy. The output of the first CNN unit is a set of
feature maps produced from the last dropout layer and has
a high level of detail on acne disorders useful for acne type
classification.
Similarly, the second unit contains five convolution

blocks, each composed of a convolutional layer, a BN layer,
and an MP layer, but no dropout layers. Another difference
with the first unit is its filters 32, 32, 48, 64, and 128 in
five blocks, respectively. The kernel sizes in the first and
second convolutional layers are 7 × 7 and 5 × 5, respec-
tively. In the rest three convolutional layers, the kernel size
is 3 × 3. Padding in all convolutional layers is applied as
”same.” Other characteristics of the second unit, such as the
kernel size in the MP layer and the activation function, are
the same as the first unit. The second unit provides different
feature maps from the first one.

4.3 Feature aggregation and classification
The acquired sets of featuremaps from twoCNN-based fea-
ture extractors have specific information about the input im-
ages. Consequently, their combination forms a comprehen-
sive feature map, resulting in rich, robust, deep information
from the inputs and high classification accuracy. As illus-
trated in Fig. 3, these two sets of feature maps are first
assembled in the concatenation layer to obtain powerful
feature aggregation and high-dimension feature representa-
tion with fewer semantic correlations. More discriminative
shape information is provided by aggregating all features
using a flattened layer, two fully connected layers (FC_1
and FC_2), and a dense layer. The number of neurons em-
ployed in FC_1, dense, and FC_2 layers are 1048, 128,
and 512, respectively. The final aggregated features are fed
into a softmax classifier to recognize and classify the acne
disease.
To better predict and classify, categorical cross-entropy

is employed as the loss function, and the model is trained
using the ADAM optimizer. The multi-class cross-entropy

loss function is defined as follows:

Loss = −
N∑
i=1

yilog(ŷi) (8)

where yi =

{
1, if the element is in class i
0, otherwise and ŷi is

the probability that the element is in class i. The minus
sign shows that the loss value gets smaller as the distri-
butions become closer. Adam Optimizer helps the CNN
model minimize errors, making it more reliable and effi-
cient. In our proposedmodel, we use the automatic learning
rate reduction technique. The initial learning rate is 0.0003.

5 Experimental results and
discussion

In this section, the experimental setup and results are pre-
sented. Additionally, the performance of our proposed
method is comparedwith three conventional machine learn-
ing classifiers and five pre-trained models, i.e., GoogleNet,
MobileNet, VGG-19, ResNet-50, and AlexNet, on our de-
veloped dataset.

5.1 Experimental setup
All experiments presented in this paper are carried out us-
ing an intel core i9 PC with a 3.60 GHz CPU, 64 GB RAM,
and Nvidia Geforce Rtx 2080 super GPU with 8 GB video
RAM. All training and testing are conducted in an Ana-
conda python environment with a visual code editor using
Keras and TensorFlow frameworks. The number of epochs
is defined as 60 with a batch size of 32.

Evaluation metrics
The performance of the proposed method is evalu-
ated in terms of accuracy ( (TP+TN)

(TP+TN+FP+FN) ), Pre-
cision ( (TP )

(TP+FP ) ), Recall/Sensitivity ( (TP )
(FN+TP ) ), F1-
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score ( 2∗(Precision∗Recall)
(Precision∗Recall) ), Specificity ( (TN)

(FP+TN) ),
and Matthews Correlation Coefficient (MCC=

(TP∗TN)(FP∗FN)√
((TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN))

) Score.

In these evaluation metrics, TP, TN, FP, and FN stand for
True Positive, True Negative, False Positive, and False
Negative, respectively. True Positive refers to the correct
prediction done by the classifier when the actual class of the
data and the predicted class are both 1 (True). On the other
hand, when the actual class is 0 (False) and the predicted
class is also 0 (False), it is considered True Negative. In
False Positive, the actual class of the data is 0 (False),
while the classifier predicts it as 1 (True). It is named False
because the model mispredicted the class and Positive due
to the predicted class being 1 (True). Conversely, a False
Negative happens when the actual class is 1 (True) and
the predicted one is 0 (False). Similarly, False shows the
misclassification, and Negative refers to the predicted class
as 0 (False).
Accuracy, as the classification rate, is defined as the num-

ber of correct predictions divided by the total number of
predictions. Recall (Sensitivity) is the true positive rate that
observes the actual positive values correctly identified. The
precision determines the number of positive class predic-
tions which belong to the positive class, while the F1-score
is the consonant mean of Precision and Recall, which mea-
sures testing accuracy. MCC measures the accuracy of the
classifier by comparing observed and expected results.

Table 2: Performance comparison of our method with and
without applying data augmentation in terms of sensitivity,
specificity, and accuracy.

Dataset Sensitivity (%) Specificity (%) Accuracy (%)
Without Augmentation 70.11 82.76 82.18
With Augmentation 91.42 98.56 97.53

Figure 4: Performance comparison of our method with and
without applying data augmentation in training and test
loss.

5.2 Performance assessment
The performance of the proposed method for the automatic
acne classification is evaluated on the developed dataset in

terms of sensitivity, specificity, and accuracy. The gener-
ated dataset’s images are resized to 224 × 224 RGB im-
ages as input. Then, a 10-fold cross-validation strategy is
employed for two dataset scenarios: without and with data
augmentation. Hence, the whole dataset without augmen-
tation (420 images) is randomly divided into ten equal-size
subsamples. Among them, a single subsample is selected as
a testing set (i.e., 10% of the whole dataset, which is 42 im-
ages), and the remaining nine subsamples (i.e., 90% of the
dataset) are used as the training set. This process is repeated
ten times, while each of the ten subsamples is used exactly
once as the testing set during the whole validation process.
Similarly, a 10-fold cross-validation strategy is also applied
for the dataset with augmentation. Still, this time the num-
ber of images is increased to 3360 (i.e., 420 original images
plus 2940 augmented images based on seven augmentation
techniques).

Figure 5: Performance of the proposed system on our de-
veloped dataset (with augmentation) in terms of (a) training
and validation (test) accuracy, and (b) training and valida-
tion (test) loss.

The average results of 10-fold cross-validation for both
scenarios are summarized in Table 2. As presented in the
table, sensitivity, specificity, and accuracy are increased by
21.31% (from 70.11 to 91.42%), 15.8% (from 82.76% to
98.56%), and 15.35% (from 82.18% to 97.53%), respec-
tively, for augmented images. Additionally, the impact
of the augmentation on the performance of the proposed
method is investigated in terms of training and test loss in
Fig. 4. As illustrated in this figure, after augmentation, the
training loss and test loss are decreased by 0.1 (from 0.7 to
0.6) and 0.2 (from 0.52 to 0.32), respectively. These results
conclude that the augmentation prevents the model from
overfitting and improves the system’s performance. Hence,
in all experiments, the system’s performance is evaluated
on the augmented dataset.
Moreover, the effects of the convolution block numbers

in both CNN units are further investigated to select the
optimum number. Twenty-five different combinations of
convolution blocks are implemented with two optimizers
(i.e., stochastic gradient descent (SGD) and ADAM) as pre-
sented in Table 3. According to the feature maps of each
block (which are not shown here for brevity), the first con-
volution blocks usually detect and extract the edges of the
images. As the number of blocks increases and the network
becomesmore profound, the featuremaps lookmore like an
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Table 3: The number of convolution blocks and the type of optimizers applied on the model.

No of Conv. Blocks
in the First Unit Filters of the First Unit NO of Conv. Blocks

in the Second Unit Filters of the Second Unit Optimizer Accuracy

3 32, 64, 96

3 32, 48, 64 SGD 82.31
ADAM 83.63

4 32, 32, 48, 64 SGD 79.78
ADAM 76.92

5 32, 32, 48, 64, 128 SGD 81.66
ADAM 82.01

6 16, 32, 32, 48, 64, 128 SGD 83.33
ADAM 83.98

7 16, 32, 32, 48, 64, 128, 256 SGD 81.50
ADAM 82.23

4 16, 32, 64, 128

3 32, 48, 64 SGD 78.81
ADAM 83.19

4 32, 32, 48, 64 SGD 82.47
ADAM 81.62

5 32, 32, 48, 64, 128 SGD 87.02
ADAM 85.28

6 16, 32, 32, 48, 64, 128 SGD 83.26
ADAM 84.55

7 16, 32, 32, 48, 64, 128, 256 SGD 87.29
ADAM 89.61

5 16, 32, 64, 96, 128

3 32, 48, 64 SGD 91.56
ADAM 93.83

4 32, 32, 48, 64 SGD 94.34
ADAM 95.17

5 32, 32, 48, 64, 128 SGD 96.71
ADAM 97.53

6 16, 32, 32, 48, 64, 128 SGD 95.09
ADAM 94.18

7 16, 32, 32, 48, 64, 128, 256 SGD 93.41
ADAM 95.62

6 16, 32, 64, 64, 96, 128

3 32, 48, 64 SGD 95.01
ADAM 94.98

4 32, 32, 48, 64 SGD 95.27
ADAM 95.71

5 32, 32, 48, 64, 128 SGD 95.55
ADAM 96.48

6 16, 32, 32, 48, 64, 128 SGD 94.98
ADAM 95.24

7 16, 32, 32, 48, 64, 128, 256 SGD 95.38
ADAM 95.77

7 16, 32, 64, 64, 96, 128, 256

3 32, 48, 64 SGD 95.35
ADAM 96.50

4 32, 32, 48, 64 SGD 95.11
ADAM 94.96

5 32, 32, 48, 64, 128 SGD 95.75
ADAM 96.10

6 16, 32, 32, 48, 64, 128 SGD 95.83
ADAM 95.75

7 16, 32, 32, 48, 64, 128, 256 SGD 96.00
ADAM 95.89

abstract representation than the original image. The sim-
ple patterns, such as edges and shapes, are detected based
on lower-level feature maps, while the high-level concepts
are encoded using deeper feature maps. In our integrated
dual-CNN feature extractor, the required features of acne
and its types are extracted with five convolution blocks for
both CNN units. As summarized in Table 3, using less
than five convolution blocks provides fewer features in-
sufficient for getting high accuracy. Although more fea-
tures are extracted by increasing the number of convolu-
tion blocks, it does not necessarily always increase the ac-
curacy. And instead, it leads to overfitting and false pos-
itives. Going deeper results in sparser feature maps (the
filters detect fewer features). Consequently, the deeper fea-
ture maps provide more information about the class of the
image than the image itself, which is helpful but less visu-
ally interpretable. In the first convolution blocks, simple
shapes (available in every image) are detected, while the
deeper networks seek more complex features that don’t ap-
pear in every image. This phenomenon happens in our sys-
tem when the number of convolution blocks in both CNN
units is more than 5. Hence, the highest accuracy (96.71%

with SGD and 97.53% with ADAM) is achieved using five
convolution blocks in both CNN-based feature extractors.
Comparing the performance of our model based on two op-
timizers of SGD and ADAM, it is observed that ADAM
achieves better results as it is an extension of SGD.
Hence, the performance of the final proposed system is

presented in Figs. 5 (a) and (b) in terms of accuracy and
loss, respectively, on the augmented dataset. The dotted
line is related to the training set in both graphs, and the
solid line is related to validation/test data. The X and Y
axes in this figure demonstrate the number of epochs and
accuracy/loss, respectively. It is observed that the model’s
performance is almost stable after 30 epochs and the train-
ing and test accuracy reach 94.81% (with a loss of 0.38) and
97.53% (with a loss of 0.29), respectively, after 60 epochs.
Overall, the test set is well performed than the training set.

5.3 Comparison with classifiers
In this study, acne classification is carried out with con-
ventional machine learning classifiers to demonstrate the
capability of our proposed dual CNN-based acne classifi-
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Table 4: Comparison of the proposed model performance
with different machine learning-based classifiers.

Classifiers Precision F1-Score Sensitivity Specificity Accuracy
KNN 72.35% 74.41% 75.89% 90.25% 90.10%
MLP 75.79% 76.52% 76.92% 93.45% 92.86%
SVM 78.14% 82.48% 80.82% 94.45% 94.06%

Proposed Softmax 91.37% 91.36% 91.42% 98.56% 97.53%

cation system. The softmax classifier is replaced with ma-
chine learning-based classifiers. The extracted integrated
feature maps from the dual-CNN feature extractor are fed
into three classifiers: SVM, MLP, and KNN. Their tuned
hyperparameters, i.e., initial learning rate, minimum batch
size, learning algorithm, maximum epochs, and learning
factor of fc, are 0.0003, 32, ADAM, 60, and 10, respec-
tively.
The performance of these classifiers is evaluated in terms

of precision, F1-score, sensitivity, specificity, and accu-
racy and compared with our proposed model based on the
softmax classifier in Table 4. As presented in this table,
the accuracy of KNN, MLP, and SVM classifiers and our
model is 90.10%, 92.86%, 94.06%, and 97.53%, respec-
tively. Comparing the results, our proposed CNN model
based on a softmax classifier achieves at least 3.5% more
accuracy than the other classifiers. Additionally, its pro-
cessing time is less than the different conventional classi-
fiers.

5.4 Comparison with pre-trained models
Our proposed method can determine the type of acne and
distinguish between acne and other skin diseases such as
eczema and cancer. To further highlight our proposed
acne classification capability, it is compared with five pre-
trained models: GoogleNet, MobileNet, VGG-19, ResNet-
50, and AlexNet. Table 5 displays the performance of
these models as well as ours in terms of accuracy, preci-
sion, F1-score, sensitivity, specificity, and MCC for each
of the acne types (i.e., ACC, AC, AE, AK, AOC, AP,
DF) and their average results. As presented in this table,
the average accuracy of GoogleNet, MobileNet, VGG19,
ResNet50, AlexNet, and our proposed model is 94.13%,
94.90%, 95.58%, 96.24%, 95.89%, and 97.53%, respec-
tively, among which ours is the highest. Not only in terms
of accuracy but also in terms of other evaluation met-
rics, i.e., precision (91.37%), F1-score (91.36%), sensitiv-
ity (91.42%), specificity (98.56%), andMCC (89.94%), our
proposed method outperforms the others. Additionally, the
accuracy of each class in our proposed method is higher
than that of other methods. The highest accuracy belongs
to the DF class, which refers to the acne-free skin images.
As our developed dataset has the benefit of having a type
containing normal skin and other skin disease images (ex-
cept acne), our proposed method has successfully trained
for recognizing acne disease. If the probe image does not
contain acne, it is classified as DF with high accuracy of
99.40%.

Fig. 6 presents the confusion matrices of our proposed
model and the other five pre-trained deep learning-based
models. As demonstrated in this figure, the number of
true positives in all seven classes is higher in our pro-
posed model, which proves its competitive performance
compared to GoogleNet, MobileNet, VGG-19, ResNet-50,
and AlexNet.
As another evaluation tool, our proposed method’s Re-

ceiver Operating Characteristic (ROC) Curve and five pre-
trained models are illustrated in Fig. 7. It presents the per-
formance of the models at different thresholds, in which
the x-axis is the false positive rate and the y-axis is the
true positive rate. In this probability curve, the Area Un-
der the ROC Curve (AUC) indicates the classification ca-
pability of the corresponding model. As illustrated in this
figure, the AUC scores of GoogleNet, MobileNet, VGG-
19, ResNet-50, AlexNet, and our proposed CNN are 91.32,
92.91, 91.76, 91.88, 93.24, and 94.67, respectively. These
models are all implemented with the ADAM optimizer. As
the higher AUC shows a better performance, our proposed
method obtains the best performance having the highest
AUC of 94.67.

5.5 Comparison with the state-of-the-arts
To have a fair comparison between our proposed method
and the state-of-the-art approaches, we must implement
them on the proposed dataset. No available source codes
are found for the related works to implement them. Con-
sequently, our model is only compared with one state-of-
the-art acne classification approach proposed in [21] by im-
plementing it on the same dataset accessible in http://
dermnet.com. The results are presented in Table 6. As it is
noted in this table, our proposed dual CNN-based acne clas-
sification system achieves higher performance (96.74%)
than the state-of-the-art approach of [21] (with a reported
accuracy of 95.89%) on the same dataset of 1800 acne im-
ages in 5 different classes.
Additionally, as the proposed model has competitive per-

formance in acne classification, it also inspired us to evalu-
ate it for acne grading. Hence, it is implemented on an acne
grading dataset called ”ACNE04” [35], which is publicly
available. The grading system is implemented on the same
dataset of 1457 acne images in 4 classes, i.e., mild, mod-
erate, severe, and very severe. The results are also sum-
marized in the same table (Table 6). Comparing the results,
our proposed acne classification system can be successfully
performed for acne grading by achieving higher accuracy of
86.36% which is 2.25% higher than that of the state-of-the-
art approach in [35].

5.6 Failure cases
Although our proposed acne classification system can suc-
cessfully recognize and classify acne into six different
types, there are a few misclassification cases, as shown in
Fig. 8 with its actual class and the predicted label. How-
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Table 5: Comparison between the performance of the proposed model and the other five pre-trained models.

Methods Disease types Accuracy (%) Precision (%) F1-Score (%) Sensitivity (%) Specificity (%) MCC (%)

GoogleNet

ACC 93.45 75.00 76.60 78.26 95.86 72.81
AC 94.05 77.08 78.72 80.43 96.21 75.29
AE 94.94 81.25 82.11 82.98 96.89 79.17
AK 93.75 77.08 77.89 78.72 96.19 74.26
AOC 94.35 79.17 80.00 80.85 96.54 76.71
AP 90.48 72.92 68.63 64.81 95.39 63.19
DF 97.92 93.75 92.78 91.84 98.95 91.57

Total Average 94.13 79.46 79.53 79.70 96.57 76.14

MobileNet

ACC 94.64 81.25 81.25 81.25 96.88 78.13
AC 95.54 79.17 83.52 88.37 96.59 81.11
AE 93.75 81.25 78.79 76.47 96.84 75.17
AK 94.94 83.33 82.47 81.63 97.21 79.52
AOC 94.94 79.17 81.72 84.44 96.56 78.84
AP 92.26 77.08 74.00 71.15 96.13 69.54
DF 98.21 93.75 93.75 93.75 98.96 92.71

Total Average 94.90 82.14 82.21 82.44 97.02 79.29

VGG-19

ACC 95.24 83.33 83.33 83.33 97.22 80.56
AC 95.54 85.42 84.54 83.67 97.56 81.93
AE 94.94 83.33 82.47 81.63 97.21 79.52
AK 96.43 87.50 87.50 87.50 97.92 85.42
AOC 94.35 77.08 79.57 82.22 96.22 76.35
AP 93.75 79.17 78.35 77.55 96.52 74.70
DF 98.81 95.83 95.83 95.83 99.31 95.14

Total Average 95.58 84.52 84.51 84.53 97.42 81.95

ResNet-50

ACC 96.43 87.50 87.50 87.50 97.92 85.42
AC 94.64 79.17 80.85 82.61 96.55 77.76
AE 95.24 85.42 83.67 82.00 97.55 80.91
AK 96.54 81.25 83.87 86.67 96.91 81.34
AOC 94.94 79.17 81.72 84.44 96.56 78.84
AP 93.75 83.33 79.21 75.47 97.17 75.67
DF 99.11 97.92 96.91 95.92 99.65 96.39

Total Average 96.24 84.81 84.82 84.94 97.47 82.33

AlexNet

ACC 95.54 81.25 83.67 86.67 96.91 81.34
AC 95.24 83.33 83.33 83.33 97.22 80.56
AE 96.73 89.58 88.66 87.76 98.26 86.75
AK 97.02 93.75 90.00 86.54 98.94 88.35
AOC 96.43 85.42 87.23 89.13 97.59 85.19
AP 93.75 77.08 77.89 78.72 96.19 74.26
DF 96.54 81.36 88.89 97.96 96.31 87.39

Total Average 95.89 84.54 85.67 87.16 97.35 80.41

Proposed model

ACC 97.92 89.58 92.47 95.56 98.28 91.33
AC 96.13 87.50 86.60 85.71 97.91 84.34
AE 96.73 89.58 88.66 87.76 98.26 86.75
AK 97.92 93.75 92.78 91.84 98.95 91.57
AOC 98.21 95.83 93.88 92.00 99.30 92.86
AP 96.43 85.42 87.23 89.13 97.59 85.19
DF 99.40 97.92 97.92 97.92 99.65 97.57

Total Average 97.53 91.37 91.36 91.42 98.56 89.94

Table 6: The performance comparison of the AcneNet and
ACNE04 datasets in the model.

Datasets No. of classes Dataset Sizes Accuracy

AcneNet [21] (Classification) 5 1800 95.89 [21]
96.74 (Our)

ACNE04 [35] (Grading) 4 1457 84.11 [35]
86.36 (Our)

ever, among these eight instances, two misclassifications
(Figs. 8 (a) and (b) has the low confidence score close to
0.5. Deeply analyzing the acne images of these misclas-
sification cases, we draw the inferences that the proposed
model mostly has difficulties classifying the tiny acne, as
illustrated in Figs. 8 (d) and (h). Misclassifications with
high confidence scores have occurred in Figs. 8 (c), (e),
(f), and (g). Several reasons can be included, such as low
image quality, a unique acne case, etc.

6 Conclusions and future works
This paper introduced a deep learning-based lightweight
system to recognize and classify different acne vulgaris us-
ing a novel acne dataset. Firstly, an acne dataset with 420

images in 7 classes was developed. Then, these images
were modified by applying a pre-processing system. The
number of shots was increased to 3360 by using seven dif-
ferent augmentation methods. An integrated dual CNN-
based model was proposed to recognize acne and classify
it into seven groups. The whole feature extractor was com-
posed of two CNN models with different conv2d, BN, and
max-pooling layers. The extracted feature maps from these
twomodels were first concatenated and then aggregated us-
ing fully connected layers. The final comprehensive feature
maps were fed into a softmax layer for classification. The
performancewas investigated for convolution blocks in two
feature extractor units and two different SGD and ADAM
optimizers.

In addition, its performance was evaluated for both orig-
inal images without augmentation and the extended dataset
with augmented images to analyze the influence of aug-
mentation. It was compared with three conventional ma-
chine learning-based classifiers and five pre-trained deep
learning-based models and received competitive perfor-
mance. The proposed method’s feasibility has been con-
firmed by conducting experiments and achieving a state-
of-the-art accuracy of 97.53% in acne classification. It was
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Figure 6: Confusion matrix for acne classification. Here, (a), (b), (c), (d), (e), and (f) represent the confusion matrix of
the proposed model, AlexNet, ResNet-50, VGG-19, MobileNet and GoogleNet

Figure 7: Comparison between the AUC of the ROC curves
belonging to our proposed deep dual-CNN model and five
pre-trained models.

also implemented on an acne grading dataset and achieved
good performance with an accuracy of 86.36%. In the fu-
ture, we want to expand our study with an updated and ex-
tended form of our proposed acne dataset with additional
images and acne classes. As our proposed model is highly
accurate for acne classification and computationally effi-
cient, it will also be adjusted and applied to other simi-
lar dermatological disease classification and identification

tasks in our future research direction.
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Figure 8: Misclassification cases of the proposed model.
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