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Testing model transformations poses several challenges, one of which is how to automatically generate
effective test suites. A promising approach for this is to employ equivalence partitioning, a well-known
technique for software testing. Specifically, in order to generate effective test suites, current works in
literature often focus on exploiting either the structural aspects of models or transformation contracts for
partition analysis. However, for the aim, they focus on only a single restriction source such as metamodels,
contracts of the transformation, and domain-expert knowledge. To increase the effectiveness of generated
test suites, partitioning techniques should be performed on a combination of various restriction sources.
This paper introduces a method to generate test models on such a multi-domain of restrictions. The method
also allows the tester to flexibly select and combine constraints to create a unified restriction for different
strategies and objectives in model transformation testing. We developed a support tool based on the UML-
based Specification Environment (USE) and performed experiments on several transformations to point
out the effectiveness of our method.

Povzetek: Opisana je metoda preverjanja programske kode na osnovi multi-modalnih omejitev posameznih
delov.

1 Introduction
Model transformations are the pillars of Model-Driven En-
gineering (MDE). Testing has been an effective technique
to ensure the quality of model transformations which is the
key to successfully realizing MDE in practice. This dis-
cipline consists of the following main tasks: synthesizing
models as test data that are referred to as test models, per-
forming the transformation, and verifying the output re-
sults. Until now, how to synthesize automatically and ef-
fectively test models for model transformations is still chal-
lenging.
The test model generation is the synthesis of models from

different restriction sources including syntactic and seman-
tic domains of source and target models. Such restriction
domains often have complex structures and semantics that
make it difficult to automate the generation. To the best of
our knowledge, there are typical restriction domains in the
context of MDE as follows. First, for a so-called source
metamodel coverage, as explained in [1, 2, 3, 4, 5, 6], test
models could be generated by applying the well-known
testing technique equivalence partitioning that splits the in-
put metamodel into equivalence partitions for selecting rep-
resentative test models. Second, for a so-called transforma-
tion specification coverage, as proposed in [7, 8, 11], addi-
tional restrictions on source models could be derived from
a transformation specification and taken as input contracts

to generate test models. Within the works, input contracts
of the transformation specification often are expressed as
OCL conditions. Third, following the white-box testing
approach, the works in [12, 13, 14, 15] focus on analyz-
ing a model transformation implementation to build test
suites using the notion of transformation implementation
coverage. In addition, in interactive approaches, domain
knowledge can support the test model selection. For ex-
ample, based on the test objective, domain experts could
choose representative values for the partition testing tech-
nique [1, 4, 16], or directly create examples for test models
within test-driven development approaches, as explained
in [18, 19].
Generating test models based on the analysis and synthe-

sis of each single particular restriction domain can lead to
a large duplication of test models, wasting testing time and
effort. This highlights the need to generate test models from
multiple restriction domains. However, realizing this need
presents several challenges: (1) Constraints from multiple
domains expressed in heterogeneous formalism need to be
translated into a consistent and unified formalism to enable
model synthesis. (2) The partition analysis technique is of-
ten employed to obtain representative test models since ex-
haustive testing is a non-trivial task, but defining a suitable
partition on multiple restriction domains for different test
strategies can be challenging. (3) The automatic generation
of test models often requires manually defining (as input of
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the solver) parameters for the testing environment as well
as the other configuration information. This is challenging
to automate this task.
This paper proposes a mechanism based on an integra-

tion of multiple restriction domains for a black-box testing
approach to automatic generation of test models. Specifi-
cally, multi-domain restrictions that include (1) conditions
for partitioning the metamodel and (2) transformation con-
tracts are first translated into OCL conditions; and then
taken as the input of a constraint solver for generating test
models. For each common test strategy, a mechanism of
combining OCL conditions should be established to define
combinatorial partitions using logical operators. Moreover,
a scope-value searching method needs to be incorporated to
solve constraints and so that the set of generated test models
has a reasonable size. The main contributions of this paper
are summarized as follows:

– A method to automatically generate test models with
multi-domain restrictions for effective model transfor-
mation testing.

– Amechanism to define suitable partitions for different
test strategies.

– An OCL-based support tool and experimental results
to show the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2
surveys related works. Section 3 motivates this work with
a transformation example. Section 4 outlines our approach.
Section 5 explains restriction domains as a basis for a parti-
tion analysis and automatic generation of test models. Sec-
tion 6 introduces several strategies to combine partitions in
order to generate test models for different test objectives.
Section 7 shows our tool support. Section 8 illustrates our
testing method with several transformations and points out
the effectiveness of our method. Section 9 explains threats
to the validity of this work and discusses the results. This
paper is closed with a conclusion and a discussion of future
work.

2 Related work
In this section, we provide an overview of black-box testing
approaches for model transformations and address the fol-
lowing research questions: (1) how to automatically gen-
erate test models using the partition analysis technique in
a black-box testing approach, (2) how to construct test
oracles that check test outputs to ensure quality proper-
ties; and (3) how to evaluate the quality of test suites in
terms of one or more test objectives. First, a common
basic idea of black-box testing approaches for transfor-
mations is to use metamodel and requirements specifica-
tion as test basis, i.e., they are independent of transforma-
tion implementations. Within these approaches, the well-
known testing technique equivalence partition [20] often
is used to split the input data domain into equivalence

partitions based on the test basis analysis and then to se-
lect a representative model for each partition. Fleurey et
al. [1, 24] have proposed a partitioning technique based on
the datatype of class attributes and the association end mul-
tiplicity within a UML class diagram representing the meta-
model. Several other partitioning techniques for generat-
ing test models that conform to a metamodel as introduced
in [2, 21, 4, 23, 5, 22, 6, 39, 9]. One of the main limita-
tions of the metamodel-based partitioning approach is that
the technique often generates a large number of test models,
and generated test models tend to correspond to just only a
subfragment of the source metamodel instead of the whole
metamodel. To overcome this limitation, Fleurey intro-
duces the notion of a so-called effective metamodel as the
fragment of the source metamodel that is actually manip-
ulated by the transformation. An effective metamodel can
be defined by either examining the specification of transfor-
mations as explained in [1, 3] or statically analyzing their
implementation as shown in [21].
The partitioning technique, as shown in [7, 10, 8, 9],

can also be employed to specify requirements of model
transformations. Following the research line, the works
in [9, 39, 8] propose to derive partitioning conditions from
a contract-based specification of the transformation. The
specification of transformations within these approaches
often includes preconditions and invariants as contracts
on the input data domain of the transformation (i.e., cor-
responding to restrictions on source models). Partition-
ing conditions are then translated into either OCL con-
straints [7] or other first-order logic languages like Al-
loy [4, 23] for the automatic generation of test models us-
ing the model finding technique. For different test objec-
tives, the works in [1, 6, 8, 4, 36] have proposed suitable
techniques to improve the quality of test cases. Fleurey et
al. [1] proposed the use of the Bacteriologic algorithm to op-
timize test suites. On analyzingmetamodel-based partition-
ing, Fleurey et al. [1], Janabin et al. [6], Gogolla et al. [8],
and Sen et al. [4] proposed using representative values pro-
vided by domain experts or testers. Similarly, Sen et al. [4]
proposed combining different knowledge domains and uni-
formly representing them as constraints in Alloy. Cabot et
al. [36] proposed a similar technique in which combinato-
rial partitioning conditions are represented in OCL.
Second, another major challenge for model transforma-

tion testing is how to predict desired expected outputs [1].
This research line can be divided into two groups: The first
aims to predict the whole output model, i.e., making use
of a complete oracle function, and the other aims to pre-
dict just part of desired target model, i.e., using a partial
oracle function. The first approach (with complete ora-
cle functions) would take the expected output model as a
reference model and check if the actual output model con-
forms to this referencemodel, e.g., usingmodel comparison
as regarded in [32, 15, 17, 30, 34, 35]. For this aim, Ad-
dazi et al. [35] employs EMFCompare, whereas the works
in [17, 15] design specific algorithms to compare models.
Besides, Kolovos [33] employs the Epsilon Comparison
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Table 1: Black-box approaches for test model generation (MP=>Metamodel-based Partitioning; SP => Specification-
based Partitioning;MF =>Model Finding; Al => Algorithm)

Reference Test Model Generation Restriction domains Test adequacy
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Fleurey et al. [1] MP Pattern AL * *
Wang et al. [2, 21] MP Pattern * * *
Wu et al. [5, 22] MP OCL AL * * *
Lamari [3] MP, SP Pattern * * *
Jahanbin et al. [6] MP Pattern AL * * *
Sen et al. [4, 23] MP, SP Alloy MF * * * *
Guerra et al. [7] SP Pattern, OCL MF * * *
Burgueño et al. [9, 39] MP OCL MF * *
Gogolla et al. [10, 27] SP OCL MF * * *

Language (ECL), a task-specific model management lan-
guage, in order to define language-specific algorithms for
model matching. The second approach (with partial oracle
functions) aims to ensure certain properties of a transfor-
mation using the partial oracle functions. It is no need to
manually define a whole expected target model within the
approach. The works in [8, 28, 7] employ OCL contracts
or OCL assertions as partial test oracles to express the ex-
pected properties of generated models and to automatically
verify them. Contracts and assertions can be represented in
the form of visual graph patterns as explained in [7, 31].
Testing is an informal approach for verifying the quality

properties of model transformations. Depending on a given
test objective, partial oracle functions aim to check whether
the functional behavior of a transformation system fulfills
such following properties: (1) confluence, applicability and
termination which are called general properties; (2) cor-
rectness including syntactic and semantics correctness (for
both information preservation and behavior preservation)
and the completeness which are called specific properties.
A specific property is often specific to a certain transforma-
tion specification. The analysis of general properties such
as termination, determinism, rule independence, rule appli-
cability, or reachability of system states requires to perform
on a set of given transformation rules. This task is out of
the scope of this paper.
The works in [28, 15, 7, 17, 1] propose to verify the

syntactical correctness of transformations using test oracles
captured from the target model’s contracts. To check the
source-target correspondence property [29], also known as
the information preservation property, current approaches
often employ source-target contracts represented either by
OCL conditions [8, 7] or graph patterns [36] to consistently
specify input test conditions and output test oracles. This
work focuses on analyzing the impact of constraints used
for test model generation on different transformation prop-
erties.

Test adequacy criteria measure the quality of a test suite
regarding to several objectives. Test adequacy criteria help
define testing goals to be achieved. In transformation test-
ing, test adequacy criteria can be based on how well the
test basis (e.g., the input metamodel and the transformation
specification) is covered by the test models, or how effec-
tive the oracle functions are to identify synthetic bugs (so-
called mutants) injected into the under-test transformation.
As shown in the two last columns of Table 1, coverage-
based approaches propose to measure the effectiveness of
a black-box testing approach by evaluating how the in-
put/output metamodels and/or the transformation specifica-
tion are covered by the testing technique. Fleurey et al. [1]
propose to measure the quality of a set of test models by
measuring how much they cover the input metamodel. A
measurement technique is defined in terms of class cov-
erage, attribute coverage, and association coverage. The
metamodel-coverage or effective metamodel-coverage are
also introduced in several other works [2, 21, 5, 22, 6, 9, 39].
The notion of transformation specification coverage is in-
troduced in [7, 8]. Within contract-based specifications,
transformation contracts can be analyzed to define test con-
ditions. For example, Guerra et al. [7] take preconditions
and invariants as transformation properties and define test
criteria that could cover these properties for generating test
models. Test criteria could also be defined based on the
combination of these properties within a combined testing
strategy like t-way testing.
Additionally, mutation analysis approaches aim to mea-

sure the effectiveness of test cases based on their ability
to detect bugs. Mottu et al. [50] propose exploring muta-
tion analysis for model transformations. They study po-
tential bugs that developers may bring into model trans-
formations to define a set of generic mutation operators
for model transformations. The mutation analysis tech-
nique is commonly used by current works in literature to
effectively show the test case generated by proposed meth-
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Table 2: Approaches for oracle function definition (PO=> Partial Oracle; CO => Complete Oracle; SC => Type
Correctness/Syntactic Correctness; IP => Information Preservation)

Reference Oracle type Representing
expected outputs Automated MT Properties

Guerra et al. [7] PO Pattern, OCL * SC, IP
Fleurey et al. [1] PO OCL *
Mottu el al. [31] CO Pattern SC
Wieber et al. [15] CO Model SC
Lano et al. [28] PO OCL * SC
Hilken et al. [8] PO OCL * SC
Lin et al. [17] PO Model * SC, IP
Troya et al. [30] PO Model SC
Orejas et al. [34] PO Model SC

ods [24, 7, 15].

3 Running example
This section motivates our work with the CD2RDBM
model transformation between class diagrams (CD) and re-
lational database models (RDBM). This transformation ex-
ample is introduced in [46]. This paper focuses on its sim-
plified version for common transformation situations as re-
garded in [25]. Metamodels specifying the input and out-
put modeling spaces of the CD2RDBM transformations are
shown in Fig. 1 and Fig. 2, respectively. Requirements of
the CD2RDBM transformation contain constraints as re-
strictions on input/output models and the relationship be-
tween pairs of them. At the specification level, the require-
ments are independent of implementation language and of-
ten specified in the form of transformation contracts.

Figure 1: The simplified metamodel of class diagrams.

A transformation contract allows a designer to specify
what a transformation does, under which conditions it can
be applied to a model, and what its excepted result is. Such
information is also helpful for choosing and applying the
proper transformation in the context of off-the-shelf trans-
formations. A contract-based model transformation speci-

Figure 2: The simplified metamodel of relational database
schema.

fication typically consists of three sets of constraints corre-
sponding to preconditions, postconditions, and invariants.
First, Preconditions include constraints defining a set of
models, each of which is a candidate as the source model.
Positive preconditions state the expected properties on valid
source models; Negative preconditions define source mod-
els that fulfill several forbidden properties, i.e., the source
ones are invalid. For example, the CD2RDBM transforma-
tion includes the following precondition constraints:

– A class does not inherit itself;

– The name of a class is unique;

– Attributes of a class must have distinctive names

– The child class does not redefine attributes of its parent
class;

– The name of an association does not coincide with a
class’s name.

Second, Postconditions define a set of models produced
by the transformation: Positive postconditions state the ex-
pected properties of valid target models; Negative postcon-
ditions define target models that satisfy several forbidden
properties, i.e., the target ones are invalid. For example,
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the CD2RDBM transformation includes the following post-
conditions:

– A table name is unique;

– Two columns of a table must have distinct names;

– A table cannot have more than one primary key col-
umn.

Third, Invariants specify the correspondence between
pair of source and target models, denoted by ps =⇒ pt.
A positive (negative) invariant has the expressing structure:
If the source model satisfies the property ps then the target
model (does not) satisfies the property pt. As discussed in
[26, 27, 7], the structure of each transformation rule also
can be represented by a positive invariant that must hold
between the source and target models to satisfy the trans-
formation definition. The CD2RDBM transformation spec-
ification contains the following negative invariants:

– If the CDmodel has two classes with an inheritance re-
lationship, the corresponding RDBMmodel could not
have two distinction tables mapping to these classes.

– If the CD model has two mutually inherited classes,
then the corresponding RDMB model could not only
have the mapping table to the parent class while there
is no mapping table to the child class.

– If the CDmodel has a class, the corresponding RDBM
model could not have two distinction tables mapping
to this class.

In addition, the CD2RDBM transformation has six map-
ping rules that define how a CD model is mapped to a cor-
responding RDBM model:

– A class must be mapped to a same-name table;

– The name and data type of a non-primary attribute co-
incides with the ones of a corresponding column;

– A primary attribute is mapped to a column played as
the primary key;

– A multi-valued aggregation and association between
two classes is mapped to a new associative table that
relates the two corresponding tables;

– An aggregation/association relationship between two
classes is characterized by a single-valued end and a
multi-valued end (0..*, 1..*) is mapped to a foreign key
that relates two corresponding tables;

– A child and its parent class are mapped to the same
table.

Testing is required to find out if a model transformation
is implemented and executed as expected for all possible in-
puts, or if there are bugs in the transformation leading to un-
intended output models for certain input models [29]. This

model transformation can be realized using different trans-
formation implementation languages. To test the quality of
a model transformation captured from multiple restriction
domains, a black-box testing approach is often employed.
Since exhausting testing is impossible, testing criteria are

proposed to select representative test models to achieve the
source metamodel coverage and the specification coverage.
Depending on the test objective, either the positive test-

ing strategy or the negative testing strategy will be used
to navigate the test case design and test execution process.
The analysis of information on a test basis allows testers to
determine test conditions in both negative testing and pos-
itive testing strategies.

4 Overview of the approach
Figure 3 overviews our approach to testing model transfor-
mations. The basic idea is to synthesize test models based
on an integration of multiple restriction domains.

Figure 3: An integration of multiple restriction domains for
model transformation testing.

First, the partitioning technique is employed to define
test models that cover the source metamodel. The partition-
ing criteria that are either restrictions on the source meta-
model or contracts of the transformation specification are
expressed in the form of boolean OCL expressions, referred
to as so-called classifying terms (CTs) [8]. In this way, the
underlying conditions which are used in characterizing test
models also can be flexibly combined to generate effective
test suites.
Second, test criteria could be defined for both positive

and negative testing strategies. To generate test models that
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satisfy a test criterion, input test conditions captured from
each restriction domain are expressed by classifying terms.
The classifying terms are then combined and taken as the
input of constraint solvers, including the SAT solver, in or-
der to automatically generate test models.
Finally, to check test oracles, classifying terms derived

from the target metamodel and the transformation spec-
ification are defined to ensure that (1) the output model
conforms to the target metamodel, (2) the output model
satisfies the postcondition, and (3) the output model must
also comply with invariants that describe the transforma-
tion relationship between valid or invalid pairs of source
and target models. Such test output evaluation conditions
are then combined to evaluate expected properties on the
output model using model validator tools, including OCL
tools like USE.

5 Synthesizing test models from
restriction domains

Test model selection involves finding valid and invalid in-
put models within positive and negative testing strategies,
respectively. Test models are generated by synthesizing
models from different restriction sources. This section ex-
plains combining knowledge sources to generate valid and
invalid models within the positive and negative test strate-
gies based on the proposed covered criteria.

5.1 Metamodel coverage
In MDE, a metamodel is often represented in the form
of a UML class diagram with the key meta-concepts of
MOF [37] including classes, attributes, generalization, and
associations. Therefore, test models, that conform to the
source metamodel, can be defined by an equivalence parti-
tioning on the class diagram [38] for the source metamodel
with the two following criteria [1]:

– AEM (Association End Multiplicities): For each asso-
ciation end, each representative multiplicity must be
covered. For instance, if an association end has the
multiplicity [0..*], then it should be instantiated with
the multiplicity 0, 1, and N (N is greater than 1).

– CA (Class Attribute): For each attribute, each repre-
sentative value must be covered. For instance, rep-
resentative values of a boolean attribute are true and
false that define two corresponding partitions.

These criteria AEM and CA, as illustrated in Table 3,
could be expressed in terms of representative values [1, 21,
4]. Representative multiplicity pairs can then be computed
for an association by taking the Cartesian product of the
possible multiplicities of each of its two ends. The rep-
resentative values of each attribute can be computed from
the typical data types of class attributes such as Integer,
String, and Boolean.

Table 3: Representative values for multiplicities

Multiplicity property Representative values
0..1 0, 1
1 1
0..* 0, 1, [>1]
1..* 1, 2, [>2]
N..* N, N+1, [ >(N+1)]
N..M N, N+1, M-1, M

Boolean classifying terms (CTs) [39] are used to repre-
sent equivalence partitions for test models as follows. For
each direction of an association between two classes, the
name of the first class, the role name of the second class, and
the multiplicity of the association ending at the second class
are parameterized by variables fClass, dClassRole and
sizeNumber, respectively. Note that the sizeNumber
corresponds to the representative multiplicity value (as de-
picted in Table 3) at the second class. The parameter
fClass1 is to define an arbitrary variant of instances of
the first class. Using these parameters as input of the fol-
lowing OCL template, boolean CTs are generated from the
metamodel.
fClass.allInstances -> exists( fClass1 |

fClass1.dClassRole -> size() = sizeNumber )
Figure 4 shows a set of CTs for the simplified class dia-

gram metamodel. Figure 5 demonstrates the partition anal-
ysis based on CTs captured from multiplicity values. Test
suites with test models generated by the CT set would sat-
isfy the association coverage.
This partitioning approach also includes the restriction

on the data type of class attributes. Thus, generated test
models could ensure the attribute coverage criterion [44, 2,
4, 3], i.e., each representative value of an attribute must be
covered in at least one test model. The following example
illustrates how representative values could be defined by
analyzing the data range of primitive data types.

– The representative values for Boolean attributes are
{true, false};

– The representative values for String attributes:
{null,′′ ,′ something′};

– The representative values for Integer attributes:
{0, 1, > 1}.

The following OCL template is proposed to generate CTs
for the attribute coverage criterion.

clsName.allInstances -> exists( varCls |
varCls.attrName = rprValue )

In this OCL template, the parameter attrName defines the
attribute name, the clsName defines the class name, the
rprV alue defines the chosen representative value for the
attribute data type, and the varCls is to define an arbitrary
variant of instances of the class. Figure 6 demonstrates the
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Figure 4: CTs coverage representative values of association’s multiplicities.

Figure 5: Partition analysis based on CTs captured from
multiplicity values.

partition analysis based onCTs captured from the attribute’s
data type.

Figure 6: Partition analysis based on CTs captured from
attribute’s datatype.

There are two basic approaches to select representative
values of equivalence partitions. The first, default parti-
tioning chooses representative values using the boundary
value analysis or the data random generation. The sec-
ond, knowledge-based partitioning, representative values
are provided by domain experts for various test objectives.
This technique also allows the tester to flexibly adjust the
configuration to narrow the searching space of constraint
solving for a better test model generation.
Figure 7 shows a configuration file defined by the do-

main expert for the CD2RDBM transformation. Figure 8
shows classifying terms that partition source models based
on the properties of the class Class.

5.2 Transformation specification coverage

A contract-based specification of a model transformation,
brings benefits for debugging, testing, and, more gener-
ally, quality assurance. The partition analysis technique can
be applied to contracts of a transformation specification to
generate the test models that cover the transformation spec-
ification’s requirements as regarded in [8, 36, 7]. This sec-
tion explains a partition analysis technique based on classi-
fier terms for model transformations. First, the underlying
transformation will be captured by our TC4MT specifica-
tion language [40]. The language TC4MT employs typed
graph patterns in the form of a UML class added with OCL
constraints to express transformation contracts. Transfor-
mation contracts can be either positive or negative.
Figure 9 shows a negative precondition specified in

the TC4MT language. The precondition states that the
CD2RDBM transformation rejects any input model in
which a child class redefines an attribute of the parent class.
Figure 10 shows a negative postcondition for the generated
RDBMmodels. The example postcondition states a restric-
tion on the output models that the column names of a table
must be distinct.
Invariants within a transformation contract state how cer-

tain structures of an input model should be transformed. An
invariant often consists of a source graph, a target graph,
and an optional corresponding graph to connect them. A
positive invariant that holds on a pair of source and target
models would ensure there exists a target graph for each
given source graph. With negative invariants, such a target
graph should not be found from the target model domain.
Figures 11 and 12 show a positive invariant and a negative
invariant of the CD2RDBM transformation, respectively.
Considering each input condition on the input model-

ing space as a testing property, representative values of the
property are defined for a testing partition. Then, graph
patterns of representing input conditions are translated into
boolean OCL expressions using the template as illustrated
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Figure 7: The configuration file for constructing source CTs.

in Fig. 13.

To translate graph patterns into OCL constraints, this
schema will iterate over all objects of each contract (lines
2,3). In the case of negative contracts, i.e., the attribute
status of all objects equals to −2, the negation operator
not appears at the first line of the schema. The function
conditions is to check a constraint on the underlying ob-
jects and their properties. If there exist two objects oi and
oj with the same type (typeoi = typeoj) then the condi-
tion oi <> oj will be added. The association between
two objects will be translated into a corresponding con-
dition, either oi.rolej → includes(oj) or oj.rolei →
includes(oi). The condition function omits the checking
of attributes with undefined value. Other OCL constraints
of the graph pattern will be included in the function condi-
tions. Figure 14 shows an OCL condition translated from
the precondition shown in Fig. 9: There does not exist any
redefined attribute in the child class.

A boolean OCL expression can be assigned to one of
two values {true, false} to specify a corresponding equiv-
alence partition of the input model set. Models that violate a
negative precondition will belong to an invalid equivalence
partition of the input model set, while the other models will
belong to the remaining partition of the input model set.
Figure 15 illustrates the result of the partition analysis on
preconditions.

Similarly, postcondition contracts as well as invariant
contracts could also be translated into boolean OCL expres-
sions to partition the output model set. These OCL expres-
sions will be taken as OCL assertions playing the oracle
function to verify actual output models.

6 Generating test models in
different test strategies

Model transformation testing aims to ensure a transforma-
tion fulfills its requirements (i.e., validation testing) and to
discover defects in the transformation (i.e., defect testing).
For a certain test objective, the tester would follow a suit-
able test strategy. This section explains how test models are
generated in such different test strategies.
Figure 16 depicts the workflow for test model genera-

tion. First, a test basic, including a transformation spec-
ification and a configuration of the test model domain, is
analyzed and translated into boolean OCL expressions as
classifying terms [8] to define partitioning information sets.
Second, depending on different testing strategies, partition-
ing information sets and test criteria describe how the parti-
tions are combined and selected to design test cases. Here,
composite partitions are built according to certain specifi-
cation coverage criteria. The test conditions in both test
strategies are defined by combining single partitions using
the relational operators {and, or, not}. Finally, these par-
tition combinations are then taken as the input of an SAT
solver [41] to automatically generate test models. For a par-
ticular OCL condition, the solver might not find any valid
model since the given scope is too narrow, or there is in-
consistency in the specification. In such cases, the search
scope can be extended interactively by adjusting the solver
parameters.
There are two main test strategies for model transforma-

tions: (1) A positive testing strategy aims to ensure cor-
rectness. This strategy focuses on generating valid input
models. The tester could combine restriction domains cor-
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Figure 8: Some source CTs generated from the partition analysis on the class Class.

Figure 9: A negative precondition of the CD2RDBM trans-
formation.

responding to different aspects of the correctness property
(including syntax correctness, semantic correctness, infor-
mation preservation, and behavior preservation) to select
relevant input models together with OCL assertions. (2) A
negative testing strategy is applied to ensure safety and re-
liability. The strategy focuses on generating invalid input
models so that transformation’s defects might be detected.

6.1 Negative testing
Negative testing ensures that a model transformation can
gracefully handle invalid input or unexpected execution
scenarios. An input model is invalid if it violates at least
one negative precondition. The equivalence partition tech-

Figure 10: A negative postcondition of the CD2RDBM
transformation.

nique is applied to preconditions of the transformation to
identify various invalid partitions of input models.
To illustrate the negative testing approach, testers focus

on the following typical situation. From a given nega-
tive precondition, two equivalence partitions are defined:
a set of invalid input models that violate this precondi-
tion (false) and a set of the remaining models that ful-
fill this precondition (true). A model of the second set
can be valid or invalid due to other remaining constraint
conditions. Such a negative test case aims to discover de-
fects when robustness testing. By combining many nega-
tive preconditions, a smaller partition of invalid input mod-
els would be defined.
To automate the generation of test inputs, a combina-

tion strategy is defined that describes how values (true or
false) for negative preconditions are selected such that the
underlying coverage criterion is satisfied. The t-wise cov-
erage criterion tends to be chosen for the negative testing
approach. The coverage criterion is satisfied if any value
combinations of t parameters, i.e., negative preconditions,
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Figure 11: A positive invariant of the CD2RDBM transfor-
mation.

Figure 12: A negative invariant of the CD2RDBM trans-
formation.

in this case, appear in at least one test input. As a spe-
cial case of this, the following criteria are determined: each
choice (t = 1), pair-wise (t = 2), and exhaustive (t = n).
Based on the combinatorial testing with negative test

cases for software testing as explained in [42], different lev-
els of specification coverage are defined for the negative
test case generation as follows (see Fig. 17 for an illustra-
tion).

– NP coverage: For each negative precondition (the t-
wise coverage with t = 1) at least one input model is
selected.

– 2NP coverage: For each negative precondition (t =
1) and each pair of negative preconditions (t = 2), at
least one input model is selected.

– Combinatorial NP coverage: For each combination
of t negative precondition (t >= 1), at least one test
input model is selected. For instance, with the case

Figure 13: The OCL schema for the precondition compila-
tion.

Figure 14: The OCL expression translated from the nega-
tive precondition shown in Figure 9.

Figure 15: Partition analysis based on CTs captured from
preconditions.

t = 4, test input models would be generated for each
negative precondition and each combination from 2 to
4 negative preconditions.

Figure 18 shows four test models generated by solving
source classifying terms of the CD2RDBM transformation.
These classifying terms are defined as a combination of
negative preconditions. The first test model (M1) plays
the role of a negative test case violating the negative pre-
condition NoSelfInheritance. The remaining test models
(M2,M3, and M4) are generated by the classifying term,
defined by combining the two negative preconditions No-
SelfInheritance and NoDuplicateClassName.
Linking negative test cases with test oracles. Nega-

tive testing ensures that a model transformation can grace-
fully handle invalid input data or unexpected user behav-
ior. The purpose of negative testing is to prevent the system
from crashing due to negative inputs and improve its qual-
ity and stability. The completeness property requires that
the transformation refuses invalid input data and does not
contain any incomplete execution. The syntactical correct-
ness property requires that any output model produced from
an invalid input model needs to be invalid, i.e., it violates
at least one negative postcondition. The completeness of
a transformation could be checked by performing negative
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Figure 16: A test model generation process in different test strategies.

Figure 17: Partition analysis based on CTs captured from
preconditions.

test cases and observing manually the execution process.
The expected output of the execution is either an invalid in-
put warning or a non-terminating state of the transformation
system. Similarly, the syntactical correctness of the trans-
formation also can be checked. The output model is now
checked using the oracle function as shown in Fig. 19.

6.2 Positive testing
Positive testing verifies how the application behaves for
the positive set of data. In positive transformation testing,
single partitions are combined to select valid input mod-
els, representing composite partitions of the input model
domain. Because valid input models must satisfy without
violating any negative preconditions, all classifying terms
translated from negative preconditions will be pushed into

the SAT solver when solving constraints to generate valid
input models.
A strategy to combine partition information in terms of

classifying terms is defined to avoid duplication and re-
duce the number of test models. This strategy also ensures
both the sourcemetamodel coverage and the transformation
specification coverage. The concept Range is denoted to a
set of equivalent values of a class property and aPartition
contains one and more Range. The following coverage cri-
teria are proposed for the positive testing approach.
The allRanges coverage. The representative value of each
range must be implemented in at least one test model.
The following examples are model fragments of the meta-
model(MF).
MF{Class.allInstances → exists(c|c.name=’’)}
MF{Class.allInstances → exists(c|c.name=’var’)}
MF{Class.allInstances → exists(c|c.childClass →
size()=0)}
The allPartitions coverage. The set of representative
values of each Partition must appear in at least one test
model. The following example model fragments are gen-
erated from this fragmentation criterion.
MF{Class.allInstances → exists(c|c.name=’’) ∧
Class.allInstances → exists(c|c.name=’var’)}
MF{Class.allInstances → exists(c| c.childClass
→ size()=0) ∧ Class.allInstances → exists(c|
c.childClass → size()=0) ∧ Class.allInstances →
exists(c| c.childClass → size()>1)}
A test model based on this coverage criterion can repre-

sent more constructs to be tested in the source metamodel
than the allRanges coverage criterion. If an area is divided
into three ranges, the tester can create a test model that cor-
responds to the three instances of the test model set in the
allRanges criterion. Therefore, creating a suitable allParti-
tions coverage for a test model set can reduce the test case
size while ensuring the metamodel coverage criterion.
The allClassProperties coverage. Each value association
representing the partition of each class’ attribute values
must be implemented in at least one test model. The fol-
lowing example fragment models are generated from this
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Figure 18: Four negative test cases generated from source CTs.

criterion.
MF{Class.allInstances → exists(c|c.name=’var’ ∧
c.childClass → size()=0 ∧ c.parentClass → size()=0
∧ c.ownedAtt → size()=0 ∧ c.srcAss → size()=0 ∧
c.destAss → size()=0)}

MF{Attribute.AllInstances → exists(a1| a1.name =
'attname') ∧ Attribute.AllInstances → exists (a1|
a1.datatype = 'atttype') ∧ Attribute.AllInstances →
exists(a1| a1.isPrimary = false)}

While the test coverage criteria allRanges, allPartitions,
allClassProperties allow us to achieve the source meta-
model coverage, specification-based test coverage criteria
aim at the requirement coverage. A valid input model needs
to fulfill all negative preconditions, therefore, test models
generated by the positive testing strategy ensure the precon-
dition coverage. In order to achieve the invariant coverage
and to navigate the test input model selection, the following
test coverage criterion is defined.
The invariant coverage. Each source pattern of invari-

ants (consisting of both negative and positive invariants)
needs to be implemented in at least one test model.
Positive w.r.t. negative invariants describe valid w.r.t.

invalid pairs of source and target models. Therefore, the
source graphs as part of an invariant can be used as tem-
plates, i.e., positive patterns, to generate test models in

the positive testing strategy. The invariant coverage cri-
terion requires that each source graph of invariants (includ-
ing transformation rules) appears as a restriction on at least
one test model. Considering the CD2RDBM transforma-
tion, with three negative invariants and six transformation
rules, nine test models are required to satisfy the coverage
invariant criterion.

Linking positive test cases with test oracles. The com-
pleteness property of a model transformation requires any
valid input model also to be accepted as the input data and
then transformed into an outputmodel. In case all generated
output models are valid target models satisfying all nega-
tive postconditions, the syntactical correctness property of
a model transformation is ensured.

A model transformation is correct only if both input and
output models are valid. In other words, the output model
must preserve the information as well as the behavior of
the input model through the transformation program. The
correspondence between source (input) models and target
(output) models can be captured by invariants. Therefore,
invariants should be effective knowledge sources to check
information preservation. Therefore, positive test cases
including valid input models should be used as test data
for checking the syntactical correctness and information
preservation as shown in Fig. 20 and Fig. 21.



On Integrating Multiple Restriction Domains… Informatica 47 (2023) 21–42 33

Figure 19: Oracle function for the syntactical correctness in the negative testing strategy.

Figure 20: Oracle function for the syntactical correctness
in the positive testing strategy.

7 Tool support
The USE (UML-based Specification Environment) [43] is
the execution environment of the support tool of. The
tool includes three main functional components as fol-
lows: (1) TC4MT specification tool; (2) Test generator; and
(3) Test bench.
As shown in Fig. 22, the first component allows build-

ing the TC4MT transformation specification using the USE
editor. In this component, the metamodel of a transforma-
tion specification is represented by a UML class diagram
added with OCL constraints. Patterns of a specification
are represented by object diagrams conforming to the meta-
model. For example, the class diagram in Fig. 22 shows the
metamodel of the CD2RDBM transformation specification
while preconditions, postconditions, invariants, and trans-
formation rules are represented by object diagrams created
by using the graphical window interface or the scripting lan-
guage SOIL of the USE editor.
The second component is a USE plugin that performs

the specification analysis to define test conditions. Fig-
ure 23 shows the GUI of this component. The plugin is
activated by loading a triple-type graph. The windowMeta-
modelAnalysis (red label 1) is used to automatically gen-
erate source classifying terms from the partition analysis
on the source metamodel. An optional configuration file
containing information provided by the domain expert can

Figure 21: Oracle function for the information preservation
in the positive testing strategy.

be loaded to increase the expressiveness of the source CTs.
The window SpecificationAnalysis (red label 2) is used to
load patterns of preconditions, postconditions, and invari-
ants (including transformation rules playing positive invari-
ants) and translate them into CTs using the OCL schemes
introduced in Section 5.2.
The last component, as shown in Fig. 24, is also a USE

plugin playing the test bench. Test bench-related tasks are
to use the Kodkod engine to solve OCL constraints for find-
ing model instances playing test models, invoke the system
under test (SUT) with the test models, and pass resulting
output models to the oracle function for evaluation. This
plugin is activated by loading the source metamodel. It
takes as input the specification files of metamodels, trans-
formation definition, source CTs, target CTs, and theModel
Validator configuration, all of which are plain text files.
The transformation definition including a set of TGG-

based rules is written in the RTL language [45] that can run
on theUSE tool. The configuration file (including value op-
tions for links, attributes, and size of elements) is required
to restrict object models. The source CTs file is used to gen-
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Figure 22: A transformation specification in the language TC4MT.

erate input models of test cases, the target CTs file is used
to validate output models. The mapping file contains a list
of patterns in the format of ”sourceCTs –> targetCTs”, in
which each side specifies a list of expected Boolean values
of CTs corresponding to passed test cases. The list of source
CTs that are combined to represent the input test specifica-
tion based on the selected test coverage criteria while corre-
sponding target CTs are combined to represent the expected
output property that defines the partial oracle function. The
test report obtained from the test bench is shown in Fig. 25.

Finally, as shown in Fig. 25, when executing the test
suite, each solution generated by SAT solver will be taken
as input for the model transformation. The tool then reports
whether the output model satisfies predefined OCL asser-
tions. The partition information of each solution is pre-
sented in the panel Source Classifying Terms, as shown in
Fig. 25. The validation result of the corresponding output
model against OCL assertions is shown in the panel Tar-
get Classifying Terms. The oracle function that is prede-
fined in the mapping file will check whether the test case
is passed. The test result will be depicted in the panel Vali-
dation result. The transformation execution script is shown
in the panel Executed transformations. The debugging of
transformation execution scenarios is performed by invok-
ing each rule application, step by step. The current state
of the transformation system after each transformation step
could be checked.

8 Experimental results
In this section, several experiments are performed to evalu-
ate the effectiveness of generated input models for detecting
transformation failures. The objective of the experiment is
to evaluate the error detection ability of the designed test
cases in both positive and negative testing strategies.

8.1 Tested setup

For the evaluation, the paper focuses on four model trans-
formations written in the RTL implementation language,
the Restricted graph Transformations Language, as pro-
posed in [45]. The purpose of the transformation examples
is as follows.

C2R. The CD2RDBM transformation [46] is implemented
for the running example which includes six rules, five
negative preconditions, three negative invariants, and
three negative postconditions;

B2D. The BibTeX2DocBook transformation [47] trans-
forms the BibTeX model into the XML-based format
for document composition DocBook. However, in this
paper, we are only interested in converting the infor-
mation about proceedings of conferences presented in
BibTeX models into corresponding information pre-
sented in DocBook models. The version of the trans-
formation BibTeX2DocBook includes six rules, four
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Figure 23: The GUI for the function to analyze transformation specifications.

negative preconditions, two negative invariants, and
three negative postconditions;

F2P. The Families2Persons transformation [48] is part of
the ATL transformation zoo and was created as part
of the “Usine Logicielle” project. This transformation
includes four rules, two negative preconditions, two
negative postconditions, and no negative invariant;

B2P. The BPMN2PetriNet transformation [49] transforms
BPMN models at the Computational Independent
Model (CIM) level to PetriNet models at the Platform
Independent Model (PIM) level. This model transfor-
mation includes twelve rules, five negative precondi-
tions, two negative postconditions, and no negative in-
variant.

It is important to note here that the specification language
TC4MT is independent of transformation implementation
platforms. The transformation implementations need to
conform to the transformation specification but are not de-
rived from the TC4MT specifications automatically. Gen-
erated test suites can be used for verification and validation
model transformation implementations using the black-box
testing approach.
Table 4 gathers the number of contracts of each transfor-

mation example, as well as the size of its input metamodel.
In our specification-based testing approach, we focus on
negative preconditions, negative postconditions as well as
negative invariants. Besides, transformation rules specify
expected corresponding mappings between source models
and target models so they can be considered as positive in-
variants of the source-target contracts.
The BPMN2PetriNet transformation is themost complex

in terms of the size of specification as well as the input
metamodel. The Families2Persons transformation is a sim-
ple transformation with few invariants, rules and classes.

8.2 Test suite generation
From the TC4MT specification, a test suite is derived based
on each selected coverage criterion. The test suites were au-
tomatically generated by using the tool presented in Sect. 7.
The numbers in side cell of Table 5 show the number of gen-
erated test models corresponding to a particular coverage
criterion. In general, the larger the size of the specification
is specified, the larger the test size is generated.

8.3 Efficacy of generated test suites
To measure the effectiveness of a test suite and help im-
prove it, the common techniquemutation testing [50] is em-
ployed. In mutation testing, faults are injected into a pro-
gram to produce erroneous versions of it, which are called
mutants. Then each mutant is tested with the test suite.
Once the test suite could detect the error, the mutant is
killed. Otherwise, the mutant remains alive. The mutant
score, which is the number of killed mutants divided by the
total number of mutants, gives a measure of the quality of
the test suite.
The mutation testing technique is performed as follows.

First, mutants of each transformation implementation are
created manually by injecting faults by using systematic
classification of mutation operators of model transforma-
tion regarded in [50].

Navigation. The model has navigated thanks to the rela-
tions defined on its metamodel and a set of elements is
obtained. Therefore, navigation mutations replace the
navigation towards a class with the navigation towards
another, remove the last step of a chain of navigation,
or add the last step of navigation in a navigation chain.

Filtering. A rule application is usually performed on a lim-
ited set of input and output model elements described
by the filter conditions. Filtering mutations introduce
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Figure 24: The GUI for the functions: test implementation, execution, and reporting.

Table 4: Test setup

Examples Specification Source Metamodel
Precond Postcond Inv+Rule Class Assoc Inheritance

CD2RDBM 5 3 9 3 4 0
BibTeX2DocBook 4 3 8 5 3 2
Families2Persons 2 2 4 2 4 0
BPMN2PetriNet 5 2 12 15 2 14

disturbances in the filters of a collection, either by
modifying the attributes used in the filter or by select-
ing only some instance types when the collection is
defined with a generic class.

Creation. Output model elements are created by the exe-
cution of transformation rules. The creation mutations
replace the creation of an object with another compat-
ible type, delete the creation of a relation between two
objects, or add a useless relation between two objects
in the transformation rules of a transformation imple-
mentation.

Figure 26 shows an example of mutants. Here, the rule is
specified in the RTL transformation language. The injected
fault is highlighted in a colored square. In particular, the
class Column is related to the class Table by two associ-
ations corresponding to the role names ownPkey and own-
Col. This mutant aims to replace c.ownPkey of the column

c with the c.ownCol so that the cardinality is modified.

Table 6 shows the mutation operators used to create
the mutants in the experiment, which altogether belong to
all possible mutation types (navigation, filtering, and cre-
ation). Each mutant was created by applying a mutation
operator to the original transformation one time. Thus, each
cell in the table corresponds to the number of mutants cre-
ated using a particular mutation operator. The last column
in the table summarizes the number of mutants created for
each transformation.

Table 7 shows the number of mutants created from each
transformation as well as the mutation score of the gener-
ated test suites using the negative testing strategy.

Table 8 shows the number of mutants created from each
transformation using the positive testing approach.
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Figure 25: Test report with some partition information.

Table 5: The number of test models in test suites for coverage criteria

Negative testing Positive testing
Examples 1NP 2NP 3NP Ranges Partitions ClassProperties Invariants
CD2RDBM 5 35 63 34 14 3 9

BibTeX2DocBook 4 22 50 24 12 5 8
Families2Persons 2 5 - 10 2 2 4
BPMN2PetriNet 5 35 63 53 30 15 12

Table 6: Number of mutants on the transformations
CD2RDBM (C2R), BibTeX2DocBook (B2D), Fami-
lies2Persons (F2P), and BPMN2PetriNet (B2P)

Navigation Filtering Creation Total
C2R 9 28 21 58
B2D 6 12 7 25
F2P 12 16 4 32
B2P 13 36 20 69

9 Threats to Validity
Although we performed the experiments with utmost care,
some underlying parameters potentially threaten the valid-
ity of the obtained results:

Table 7: Mutation scores of the generated test suites in the
negative testing strategy

Mutants 1NP 2NP 3NP
C2R 58 0.90 0.90 0.90
B2D 25 0.84 0.84 0.88
F2P 32 0.81 0.81 -
B2P 69 0.62 0.62 0.81

i) We experimented with common transformation ex-
amples that are available in related works. How-
ever, we only specify and implement these transfor-
mation examples with simplified requirements and
particular fragments of input/output metamodels in-
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Table 8: Mutation scores of the generated test suites in the positive testing strategy

Mutants allRanges allPartitions allClassProperties allInvariants
CD2RDBM 58 0.90 0.90 0.90 0.90

BibTeX2DocBook 25 0.72 0.80 0.80 0.72
Families2Persons 32 0.75 0.75 0.75 0.75
BPMN2PetriNet 69 0.65 0.70 0.70 0.65

Figure 26: An example for the mutation operator naviga-
tion.

stead of whole metamodels. For example, in the Bib-
TeX2DocBook transformation, we only work on Bib-
TeX files representing the conference proceedings.
Mutation scores of generated test suites generally are
dependent on specific factors such as the way to cre-
ate mutants, the size of test suites, and the quality of
the under-test transformation implementation. There-
fore, the obtained experimental results only point out
the error-detection efficiency of generated test suites
for typical semantic faults of transformations. Our
mutation-based evaluation method is inapplicable for
the other specific faults.

ii) We empirically evaluate transformation examples re-
alized by the RTL bidirectional transformation lan-
guage designed based on the integration of TGG and
OCL [45]. Because of the flexibility of the OCL lan-
guage, there can be different implementations for the
transformation from a specification. Therefore, the
number of created mutants for each different imple-
mentation does not coincide with each other. Note
that the RTL implementation currently is not de-
rived automatically from the TC4MT specification al-
though it also has the TGG-based semantics. Even in
the case of the automatically generated implementa-
tion, testing such an implementation would affect the
evaluation results. This makes RTL implementations

more objective assessment.

iii) In the workflow of our proposed approach, several
steps are still performed manually and interactively,
such as the step to create configuration files contain-
ing representative values of partitions, the one to cre-
ate mutant sets, and the one to select the solver con-
figuration. Therefore, the quality of the tester’s work
and their decisions should have more or less an impact
on the experimental results.

Discussion. As surveyed in Sect. 2, current black-box test-
ing approaches often employ meta-model coverage crite-
ria to ensure that the set of generated input models con-
tains at least one instance of any class or association of the
meta-model. They also refer to extreme values for the at-
tributes. However, a limitation of the approaches is that
a very large number of test models, including unrelated or
duplicated test models, are generated, and the completely
generated test model is often not related to the test output
evaluation. Several testing approaches focus on contract-
based model transformation specification analysis to gen-
erate smaller test model sets using the specification-based
coverage criteria. An advantage of these approaches is that
the test models remain intentional: They are generated for
testing a particular combination of transformation require-
ments so that they can be checked by the oracle function
more efficiently.
In this paper, a testing approach is proposed that com-

bines different knowledge sources to generate smaller,
more efficient test model suites with different test objec-
tives. This combination reduces test model duplication
while still ensuring efficient metamodel coverage and spec-
ification coverage. In our approach, the use of environment
configuration parameters provided by domain knowledge
makes generated test suites more efficient. Test models are
designed by using both negative testing and positive testing
strategies. The approach allows us to verify further qual-
ity properties of a model transformation. Some test oracle
functions also are defined for verifying quality properties
against appropriate test suites generated by different testing
strategies. To show the effectiveness of the generated test
cases in detecting common semantic errors, some experi-
ments are performed on different transformation examples
as regarded in Sect. 8.



On Integrating Multiple Restriction Domains… Informatica 47 (2023) 21–42 39

10 Conclusion and future work
This paper proposes a specification-driven testing approach
for test data selection. The basic idea is to leverage different
sources of knowledge that can be produced during the trans-
formation specification development and to utilize them for
automatic generation of test suites. Different sources of
knowledge as restriction domains are translated into OCL
conditions to facilitate the partitioning testing. The exper-
iments show that boolean OCL expressions could be com-
bined to synthesize test models. Based on the character-
istics of knowledge sources and selected testing strategies,
input model conditions would be linked with output model
assertions to check different quality properties.
The proposal testing framework, named TC4MT, em-

ploys SAT solver for finding test models automatically. The
TC4MT framework is installed to support automated test-
ing of RTL transformation implementation on USE envi-
ronments. Several experiments are conducted in which test
suites are automatically generated from several transforma-
tion specifications. We then measured the efficacy of the
generated tests using the mutation analysis. The quality of
the generated test set highly relies on how complete a spec-
ification is. If a specification only covers part of the trans-
formation requirements, then the generated models may not
enable the testing of the underspecified parts.
The performance and scope of test model searching re-

main a challenge for the proposed approach, we plan to con-
duct further experiments to improve performance and test
coverage.
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