
https://doi.org/10.31449/inf.v48i3.4515 Informatica 48 (2024) 329–344 329

Integrated Software Effort Estimation: a Hybrid Approach

Prerna Singal1*, Prabha Sharma1, A Charan Kumari2

1The NorthCap University Gurugram, India
2Dayalbagh Educational Institute, Dayalbagh, Agra, India

E-mail: prernasingal@yahoo.com, prabhasharma@ncuindia.edu, charankumari@yahoo.co.in

*Corresponding author

Keywords: Software effort estimation, Risk exposure, Risk management, Evolutionary algorithms, ABC, PSO,

GLBPSO

Received: November 14, 2022

Risks associated with delivery of a software project and the effort spent on managing these risks are well

researched topics. Very few have included this extra effort termed as risk exposure of a project, in the

software effort estimate of a project. This research proposes to improve the accuracy of software effort

estimates by integrating the risk exposure with the initial effort estimate of the project. A function to

calculate integrated effort estimates has been defined and evolutionary algorithms ABC, PSO and

GLBPSO have been used to optimize the MMRE. The approach has been tested on two datasets collected

from industry, one for waterfall projects, and another for agile projects. For both the datasets, integrated

effort estimates were more accurate on account of MMRE, standardized accuracy, effect size and R2, than

the initial effort estimates. Evolutionary algorithms also gave the optimum weight values at which the

MMRE was optimal for both the datasets. These weight values determine the contribution of risk

associated with each project cost factor in the risk exposure of the project. Integrated effort estimates

have been found to be more accurate, reliable, and comprehensive than the initial effort estimates.

Application of evolutionary algorithms help in reducing any bias in the integrated effort estimates.

Povzetek: Raziskava predlaga integrirano oceno dela pri razvoju programske opreme z upoštevanjem

izpostavljenosti tveganjem in z uporabo evolucijskih algoritmov, kar izboljša tončnost ocen.

1 Introduction
Software Effort estimation is the basis of software project

management. But it is also one of the most challenging

aspects of software project management. For a long time

now, project management experts have been looking for

estimation techniques which provide comprehensive

effort estimates with high accuracy, which is required for

delivering a project within schedule and within a budget.

Despite the ongoing advancements and research in the

field of software effort estimation, Standish group [1] and

the International society of parametric analysis [2] report

that two-thirds of the projects face budget overruns and

schedule delays. The challenge lies in the accurate

projection of project cost factors during the initial stages

of the project delivery, and managing the uncertainties

encountered during the development of the final product

[3]. Uncertainties in the project cost factors lead to various

risks in the software development process, which need to

be identified, managed, and controlled for a successful

software project delivery.

The risks associated with a software project are due to

factors like volatility in project requirements, availability

of experienced personnel, ever-changing technology and

many other project cost factors [4]. These project cost

factors play a significant role in the effort estimation

process as well as in project risk identification and

management process [5]. Most often, risk planning and its

management are treated as a separate activity from the

software effort estimation task [6]. Risks are identified,

analyzed, mitigated, and controlled but their impact on the

effort estimate of a project is not considered. This might

result in over-optimism and over-confidence in the

software effort estimates of projects [7]. Thus, there is a

need to integrate the risk management process in the effort

estimation process for a more accurate, comprehensive,

and fair effort estimate.

Managing risks at the project level would require

effort towards identification, analysis, mitigation, and

control of the risks associated with the project. Projects

with a pessimistic effort estimate can see a reduction in the

overall effort required for the project if risk management

is done along with effort estimation. Projects where the

effort estimation has been done in an over optimistic

manner will need extra effort to manage the risks [7]. This

effort which is required for the risk management process

is referred as the risk exposure of the project [6]. This

research proposes to include the risk exposure of the

project in the effort estimate of the project. The effort

estimate would now include the effort required for

development of the project along with the effort required

in the risk management process [8].

In the proposed approach, the cost of risk exposure is

calculated according to the procedure defined by

Kitchenham and Linkman [9] in 1997. They suggested

that the uncertainties in the software development process

cause inaccuracies in the software effort estimate

irrespective of the effort estimation technique being used.

The effort estimation is done in the beginning of the

project when not many details are available regarding the

mailto:prernasingal@yahoo.com
mailto:prabhasharma@ncuindia.edu

330 Informatica 48 (2024) 329–344 P. Singal et al.

various project cost factors impacting the effort estimate

of the project. They have categorized the sources of

estimate uncertainties into three types: measurement error,

model error and assumption error. Assumption errors

occur in the evaluations of the input parameters due to the

inherent uncertainties associated with these parameters.

This assumption error is the risk which creeps into the

project when project cost factor values do not meet the

assumed level. Kitchenham and Linkman [9], have linked

the risk exposure of the project to the error in assumption

of the project cost factor values. They have suggested to

collect alternative cost values of the project cost factors

along with the probabilities of not meeting the initial cost

factor values. For each cost factor, two values are

determined, the initial assumed value, and the alternative

value that the project cost factor might attain during the

execution of the project. Kitchenham and Linkman

compute the effort/ cost of managing risk as follows: For

each factor difference in the initial and alternate cost is

multiplied by the corresponding probability of not meeting

the initial cost of that factor. This is the cost of managing

risk related to that factor. Sum of all these costs define the

total effort/ cost for managing the risk of the whole project

or the risk exposure of the project.

The authors in an earlier paper [8] have added the cost

of risk exposure to the initial effort estimate of the project

to obtain an integrated effort estimate(𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙). Equation

(5) gives the formula to calculate(𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙).

The probabilities and project cost factor values in the

formula, proposed by Kitchenham and Linkman, are based

on expert judgment, which may result in a biased effort

estimate. In the proposed approach, these probabilities are

treated as variables and these variables/ weights are then

optimized using evolutionary algorithms like

Artificial Bee Colony (ABC), Particle Swarm

Optimization (PSO), and a hybrid global local binary

particle swarm optimization algorithm (GLBPSO), to

obtain more accurate and fair effort estimates. This

reduces the dependency of the model on expert judgment

and removes any bias in the integrated effort estimates due

to the probabilities. This research determines the optimal

value of the estimated effort and the weights which

determine the impact of risks due to each cost factor on

the estimated effort. The proposed approach has been

tested for waterfall model delivery projects as well as

projects using agile delivery.

The main contributions of this research are as follows:

• Risk exposure of a project is added to the effort

estimate of the project which gives an integrated

effort estimate for the project.

• A weighted function for calculating the integrated

effort estimate has been defined.

• Two questionnaires have been prepared: one based on

CoCoMo II project cost factors for waterfall delivery

projects, and another based on project cost factors by

Ziauddin for agile delivery projects. Based on the

responses received for these questionnaires, two

datasets have been collected: ‘Waterfall model

dataset’ and ‘Agile model dataset’.

• Integrated effort estimate has been optimized using

evolutionary algorithms ABC, PSO and GLBPSO.

2 Related work
The need for risk assessment and risk control in software

development projects was highlighted by Boehm in 1989

[10]. His work proposed a framework for identification of

software validation and verification activities and the

effort which would go into the risk management process.

They attributed 40%-50% of the software project costs to

rework costs, and 80 % of that rework costs to the highest

risk factor associated with the project. Fairley in 1994,

used regression cost modelling of the effort estimates of

the past projects in the organization to determine the risks

associated with a software project [11]. Residual error due

to the difference between the estimated effort and actual

effort was used to determine the project cost factors which

impacted the software effort estimates. He suggested

controlling and mitigating these project cost factors to

manage the project risk.

In 1997, Madachy proposed a heuristic to calculate

the cost of risk exposure of the project using the project

cost factors [12]. He identified risk rules based on the

CoCoMo cost factors to assign levels to the risks identified

in the project. The cost of risk exposure of the project was

calculated based on the risk level and the contributing

project cost factor values. Briand et al. introduced a hybrid

model for project effort estimation, risk assessment and

benchmarking without relying on the historical data for

project effort estimate [13]. The proposed model based its

effort estimate on productivity of the project and

calculated the project cost overheads based on a

questionnaire, which would be filled by the experts

associated with the project.

In 2006, Jantzen estimated the impact of project risks

on project effort estimate, project duration and project

quality. His work emphasized on re-estimating and re-

planning the software project during its execution, based

on the various risks, their level and risk status at various

stages of the project [14]. Huang et al. in 2006, proposed

an effort estimation technique based on the fuzzy and

uncertain nature of the project cost factors. The effort was

estimated using fuzzy decision tree where along with the

effort estimate of the project, the estimation error was used

for risk analysis and management [15]. Manalif in 2013,

proposed a fuzzy expert – CoCoMo model which added a

contingency to the estimated effort based on the project

cost factors of the CoCoMo model [16]. The contingency

effort was kept separate from the total effort estimate of

the project.

In 2017, Aslam et al. considered the risks associated

with rich mobile application development projects

developed using agile methodology [17]. Along with risk

factors, they also included the quality aspect of the project

in the effort estimate of the project which enabled the

development effort estimation at multiple quality levels.

Their work was limited to project on rich mobile

application development.

In 2018, Koutbi & Idri proposed inclusion of the cost

of risk management in the effort estimation process at the

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 331

organization level instead of handling it at a specific

project level [18]. They argued that risk is better handled

and mitigated over a portfolio of projects which improves

the effort estimation process of the organization. On the

other hand, organizations can have projects of varied

nature, for which the project cost factors contributing to

risks may vary.

In 2019, Ramakrishnan et al. built a multilayer

perceptron model to estimate the software development

effort. The model included project risk score in the effort

estimation process [19]. They used an enhanced gradient

boosting technique which decreased the standard

deviation of the residuals indicating better effort

estimation results.

In 2020, Michael Kataev et al. [20], reiterated the

importance of including the cost of risk management in

the software development process for on time and in

budget software project deliveries. They included the

internal and external risks which impacted the overall

financial health of the organization.

It is clear that researchers have focused on integrating

risk management process with the software effort

estimation process, but none have included the effort spent

on risk management in the effort estimate of the project

itself. Thus, this research tries to bridge this gap and

analyses the impact of risk exposure on the effort estimate

of the project. Also, the probability of risk occurrence is

optimized using evolutionary algorithms ABC, PSO,

GLB-PSO.

Rest of the paper is organized as follows: Section 3

details the proposed approach of integrating the impact of

risk on the software effort estimate and optimizing it using

evolutionary algorithms. It outlines the algorithms used in

the proposed approach. Section 4 gives the details of the

datasets collected for this research. Section 5 contains the

details of calculating integrated effort estimates for

waterfall and agile projects. Section 6 gives the details of

experimental setup and algorithms for ABC, PSO and

GLBPSO. It contains the details of the fitness function

used in the algorithms and explains the evaluation criteria

used for comparing the proposed approach with the

baseline effort estimation techniques. Section 7 presents

and compares the experimental results obtained for both

the waterfall and agile delivery projects. Section 8 points

out some threats to validity of the proposed approach.

Section 9 draws the conclusion, and Section 10 describes

the scope for future work.

3 Theoretical background
This section explains the risk exposure of a project,

research questions which motivated the research and

presents the proposed model for calculating integrated

effort estimates.

3.1 Risk exposure

The risk exposure of the project is the total effort required

to identify, mitigate, and control the risks in the project

which occur due to various project cost factors. Risk

exposure due to each cost factor of the project is calculated

separately and then added together to give the total risk

exposure of the project. These risks arise due to the

uncertainties associated with the software projects. The

initial effort estimate of the project is determined based on

certain assumptions made regarding the project cost

factors like reliable requirements, team communication,

availability of hardware and software resources, and

expertise & experience level of the team. Since very little

information is available when these assumptions are made

at the beginning of the project, quite often these

assumptions are not met giving rise to risks which may

increase or decrease the effort required to develop the

project.

According to Kitchenham and Linkman [9], for a

project with 𝑛 cost factors, initial effort estimate

(𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) required to develop a project is calculated using

the assumed project cost factor values at the beginning of

the project. To calculate the risk exposure of the project,

risk exposure due to each project cost factor is added. Risk

exposure of the 𝑖𝑡ℎ project cost factor is calculated by

multiplying the probability of not meeting the initial level

(𝑝𝑖,𝑎𝑙𝑡𝑒𝑟) of the 𝑖𝑡ℎproject cost factor with difference

between the effort estimated (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟) at the alternative

level of the 𝑖𝑡ℎproject cost factor and the initial estimated

effort(𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙). The risk exposure (𝐸𝑟𝑖𝑠𝑘) of a project can

be calculated using the equation given below:

𝐸𝑟𝑖𝑠𝑘 = ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) × 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟

𝑛
𝑖=1 (1)

This risk exposure is the extra effort that would be

needed for risk management and planning of the project.

3.2 Proposed approach

In the proposed approach, the risk exposure of a project

has been added to the initial effort estimated required to

develop the project. Thus, according to the proposal in this

research, the total effort estimate of a project must reflect

the effort involved in managing the various risks

encountered during the completion of the project. If

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 denotes the initial effort estimate of a project, 𝐸𝑟𝑖𝑠𝑘

is the risk exposure calculated using equation (1), then the

integrated effort estimate (𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of the project can be

determined using the equation given below:

𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐸𝑟𝑖𝑠𝑘 (2)

Substituting the value of 𝐸𝑟𝑖𝑠𝑘 in equation (2) from

equation (1) will give us the initial integrated software

development effort estimate for a project.

𝐼𝐸𝑖𝑛𝑖𝑡𝑎𝑙 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) × 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟

𝑛
𝑖=1 (3)

This estimate will now include the effort that would

be required for development as well as risk management,

and planning of the project. Values of the probabilities

𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 of not attaining the assumed initial level of project

cost factors in equation (3) can be ascertained from the

program manager or the expert responsible for effort

332 Informatica 48 (2024) 329–344 P. Singal et al.

estimation of the project. It is possible that the values of

the probabilities {𝑝𝑖}𝑖=1
𝑛 may be biased, and hence may not

accurately estimate the cost of risk management.

In this paper, 𝑝𝑖’s are treated as variables between 0

and 1 and then their optimal values are computed using

evolutionary algorithms such as ABC, PSO and GLBPSO,

so that the estimated cost is as close as possible to the

actual cost of a project. Therefore, in equation (1), the 𝑝𝑖’s

have been replaced by 𝑤𝑖’s. The risk exposure of a project

is expressed as the weighted mean of the risk exposures

due to all the project cost factors using the formula given

below:

𝐸𝑟𝑖𝑠𝑘 = ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) × 𝑤𝑖

𝑛
𝑖=1 (4)

The formula in equation (3) for calculating integrated

software development effort estimate of a project (𝐼𝐸) can

now be expressed using the equation given below:

𝐼𝐸 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) × 𝑤𝑖

𝑛
𝑖=1 (5)

The 𝑤𝑖 in equation (5) can now be optimized using

evolutionary algorithms.

In this research three evolutionary algorithms have

been experimented with: ABC, PSO and GLBPSO.

Previous research on software effort estimation has

demonstrated promising results with the application of

evolutionary algorithms such as ABC, PSO, and GLBPSO

[21-23]. These algorithms have been effective in

optimizing complex, non-linear software project effort

estimation problem.

3.3 Artificial bee colony optimization

Artificial bee colony (ABC) is a metaheuristic algorithm

proposed by Karaboga et al. [24], which is based on the

intelligent social behavior of the honeybee swarm. ABC

algorithm employs collaborative trial and error approach

to identify honeybee swarm. The ABC optimization

algorithm is driven by peer-to-peer learning behavior of

social colonies and reaches the optimal solution following

an iterative process. There are four phases in the ABC

algorithm: initialization phase, employed bee phase, scout

phase and onlooker bee phase. In the initialization of the

population, ABC generates a uniformly distributed

population of solutions where each solution is a

dimensional vector. In the proposed approach, the weight

vector (𝑤𝑖
′𝑠) described in Section 6.1 will represent the

solution vector. Each 𝑤𝑖 varies between 0 and 1. The

employed bees update the current solution based on their

own experience and fitness value of the new solution. If

the new solution has a higher fitness value than the current

solution, the bee selects the new solution and discards the

current one. In this research, weight vector which gives

the lowest MMRE will be selected.

3.4 Particle swarm optimization

Particle swarm optimization (PSO) algorithm also belongs

to the family of swarm intelligence algorithms, and was

first proposed by J. Kennedy and R. Eberhart in 1995 [25].

PSO algorithm models the social behavior of flocking of

birds or school of fish to optimize nonlinear functions.

Each particle/bird which represents the solution to the

problem has a position and velocity associated with it. In

the algorithm, particles change their position by adjusting

their velocity either to seek food, avoid predators or to

identity optimized environmental parameters. Also, each

particle memorizes its best position during the process and

communicates it to other particles in the swarm. So, the

velocity of a particle is modified using the flying

experience of the particle itself and the flying experience

of the whole group, termed as global best PSO. For this

research, the particles are the weight vectors which

determine the risk exposure due to each cost factor. The

objective is to minimize the MMRE of the project in the

dataset.

3.5 Global local binary PSO optimization

An improved PSO algorithm was proposed by Rita

Chhikara et al. [26] to overcome the disadvantages of the

global best PSO. The algorithm Global local binary PSO

(GLBPSO) integrated the global best PSO with local best

PSO and dynamically changed the population size using

(Hope/ Rehope). The algorithm begins by using the global

best PSO and if the value of the fitness function does not

change for two consecutive iterations, local best PSO is

applied with a neighborhood size of 4. The particles move

towards the best solution in the neighborhood by

communicating with their four immediate neighbors. If

the local best PSO does not improve the fitness function

in three consecutive iterations, this indicates stagnation in

the search process. To avoid this stagnation, hope/ rehope

is applied on the population. For kth iteration, for particles

having marginal distance (less than 0.01) among

themselves, only the particle with higher fitness function

value is retained in the population. However, it could lead

to decrease in population size. To avoid such a situation,

the population size is checked after each iteration, and if it

reduces to less than 50% of its original size, then the

population size is increased randomly by 30%. This

eliminates the bad performing particles and at the same

time revives the hope for a better solution. These steps are

repeated until the stopping criteria is met or the set number

of iterations have been executed.

3.6 Research questions

This paper aims to provide the experimental evidence to

answer the research questions given below:

RQ1: Does the accuracy of effort estimate of the project

improve by adding the cost of risk exposure to the initial

estimated effort of the project?

This research integrates the effort that goes into risk

management and control into the initial effort estimate of

the project. A function 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 as given in equation (3) is

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 333

proposed, to determine the integrated effort estimates for

software projects. The weighted cost of the risk exposure

due to each project cost factor is added to the initial effort

estimate of the project. The research aims to find out

whether these integrated effort estimates are more

accurate than the initial effort estimates.

RQ2: What is the impact of bias on risk exposure of the

project?

Some biases in the cost of risk exposure might have

been introduced due to 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 in the integrated effort

estimates (𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙), as given in equation (3). The values

of 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 are based on expert judgment and have been

collected based on a questionnaire for the respective effort

estimation models: waterfall and agile. These values

might be biased as per the expert’s understanding and

knowledge. This research reduces these biases by

obtaining optimal values of the 𝑤𝑖′𝑠 (𝑝𝑖,𝑎𝑙𝑡𝑒𝑟) by using

evolutionary algorithms ABC, PSO and GLBPSO. In the

weighted function 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 in equation (3), the

probabilities are replaced with weights to obtain the

weighted function 𝐼𝐸 as given in equation (5). 𝐼𝐸 is

optimized using evolutionary algorithms, which obtain

optimal values of the weights 𝑤𝑖
′𝑠.

RQ3: Can project cost factors be ranked with respect to

their risk exposure?

Using equation (5), optimal values of 𝑤𝑖 ′𝑠 are

obtained. These weights determine the contribution of

each project cost factor in the total cost of risk exposure of

the project. Higher the value 𝑤𝑖 implies that the associated

project cost factor will contribution more to the total risk

exposure of the project. This information can be used by

project managers to identify the project cost factors which

need better management of the risks associated with them.

4 Data collection
The proposed integrated effort estimation model was

tested on data collected from an Indian IT firm involved

in software development, maintenance, and consultancy.

Two types of projects were considered for the research –

projects with Waterfall delivery model [27] and projects

with Agile delivery model [28]. Experts who handled the

projects were interviewed over a span of 1 year and data

was collected based on a questionnaire. Two separate

questionnaires were prepared – one for each delivery

model, Waterfall and Agile. Experts included project

managers, technical architects, analysts, and developers.

These experts were directly involved in the project effort

estimation process. Experts from over 75 different

projects were interviewed. 45 projects followed the

Waterfall delivery model, and rest of the 30 projects were

working on the agile principles. Projects were from varied

domains covering banking, healthcare & pharmaceutical,

and Insurance. Waterfall model questionnaire had 69

fields to be filled while the agile questionnaire had 45

fields. Table 1 shows a general format of the

questionnaire.

Table 1: Questionnaire format

Questionnaire

Project Id KLOC / Story

Points

Actual Effort

(Man Months)

Cost Factor

Initial Level Probability of

not meeting the

initial Level

Alternative

Level

Questionnaire for the Waterfall model was based on

CoCoMo II project cost factors. There were 5 scale factors

and 17 cost factors identified in the CoCoMo II Model. All

the scale and cost factors have been calibrated at five

levels: very low, low, nominal, high, very high and extra

high [29]. The questionnaire focused on lines of code in

the project (measured in KLOC), actual effort spent (Man

Months), scale factors and the cost factors. For the scale

and cost factors three inputs were taken from the experts

– their initial assumed level while estimating effort,

probability of not meeting that assumed level and an

expected alternative level. The dataset thus collected is

referred to as the “Waterfall model” dataset.

Similarly, questionnaire for the Agile model was

based on the frictional and dynamic forces suggested by

Ziauddin [30] . In the Agile delivery model, the stories are

delivered in sprints. This questionnaire collected

responses for one sprint in each project covering story

size, story complexity, actual velocity, sprint time,

dynamic factors, and frictional factors related to the

project. Size of the story was rated on a scale of 1-5 based

on the effort required for the development of the story.

Complexity was also rated on a scale of 1-5 depending

upon the nature of the work and complexity of technical

and non-technical requirements. There are 4 frictional

factors and 9 dynamic factors identified in the model

which impact the effort estimates of agile projects.

Ziauddin has laid down guidelines to determine the size

and complexity of the story on a scale of 1-5. The

questionnaire focused on the sprint time, story size, actual

velocity, story complexity and the variable forces

(dynamic & frictional factors) – their initial assumed

levels during effort estimation, probability of not meeting

that assumed level and the expected alternative level. The

334 Informatica 48 (2024) 329–344 P. Singal et al.

dataset thus collected is referred to as the “Agile model”

dataset.

5 Calculation of Integrated effort

estimates
During the initial project planning phase, an estimate of

the effort (𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) involved in development of a project is

done with certain assumptions regarding the project cost

factor values. With these assumptions the project cost

factors are assigned certain values and then the initial

effort is estimated. This effort can be estimated using any

established effort estimation technique depending upon

the nature of the project, its delivery model and local

environment. The effort calculated is expressed in Man

Months (MM), which is the average effort spent by one

person for a month. Initial effort is calculated for both the

datasets: waterfall and agile using the estimation

techniques described below.

5.1 Waterfall model dataset

For the “Waterfall model” dataset, the project data was

collected based on CoCoMo II project cost and scale

factors [29]. So, the initial effort values (𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) for a

project were calculated using the CoCoMo II effort

estimation formula given below:

 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐴 × 𝑆𝑖𝑧𝑒𝑆 × ∏ 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛

𝑖=1

 (1)

where

𝑆
= 𝐵
+ 0.01

× ∑ 𝑆𝐹𝑘,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

5

𝑘=1

(2)

𝐴 is a constant whose value can be calibrated according to

the project’s local environment. It has been established

that CoCoMo II estimates the software development effort

more accurately when the constant 𝐴 is calibrated

according to the organization’s productivity and activity

distributions [31]. This research uses the standard value of

2.94 proposed in the CoCoMo II Model. 𝐵 is also a

constant set at 0.90 in the CoCoMo II model. 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

denotes the project effort multiplier for the 𝑖𝑡ℎ project cost

actor which impacts the estimated effort of the project.

There are 17 cost factors (n=17) in the CoCoMo II Model.

Size of the project is determined in KLOC. 𝑆𝐹𝑘,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are

the five scale factors. From the expression for 𝑆, it can be

observed that that 𝑆𝐹𝑘’s make the effort grow

exponentially. Substituting the values of 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 from

equation (6) in equation (5), the integrated effort estimate

(𝐼𝐸), for Waterfall model dataset can now be expressed as

below:

where 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represent the project cost factor

values at the initial assumed stage, and 𝐸𝑀𝑖,𝑎𝑙𝑡𝑒𝑟represents

the project cost factor values at the alternative level.

5.2 Agile model dataset

For the “Agile model” dataset, initial effort value

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙for a project was calculated using the model

proposed by Ziauddin [30]. The model estimates the effort

for a sprint using the story size, complexity, dynamic and

frictional factors. The software product to be developed,

is described in the form of user stories creating a product

backlog owned by the product owner, usually a

representative of the customer for whom the product is

being developed. The team delivers the selected user

stories at completion of each sprint. As opposed to

waterfall model where the manager is responsible for

estimating the effort in the planning phase, in agile

approach the team members decide on the effort that will

go into the delivery of the user story at the beginning of

each sprint. Team members estimate the required effort

based on their experience, story size, complexity, and

project cost factors. The effort is expressed in terms of

story points, where one story point corresponds to a day’s

work for the team member. The project cost factors might

change during the sprint execution leading to the

uncertainty in effort estimate by the team member. These

project cost factors account for the risks associated with

the project which impact the effort estimate of the sprint.

Steps given below were followed to calculate the initial

effort estimate.

a) Effort for a story: For each story, the effort

dispensed towards the development of the story was

calculated using the formula given below:

𝐼𝐸 = 𝐴 × 𝑆𝑖𝑧𝑒𝑆 × ∏ 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛

𝑖=1

+ ∑ {(𝐴 × 𝑆𝑖𝑧𝑒𝑆

𝑛

𝑖=1

× ∏ 𝐸𝑀𝑖,𝑎𝑙𝑡𝑒𝑟

𝑛

𝑖=1

)

− (𝐴 × 𝑆𝑖𝑧𝑒𝑆

× ∏ 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛

𝑖=1

)}

× 𝑤𝑖

(3)

𝐸𝑆 (𝐸𝑓𝑓𝑜𝑟𝑡 𝑓𝑜𝑟 𝑎 𝑠𝑡𝑜𝑟𝑦)
= 𝑠𝑡𝑜𝑟𝑦 𝑠𝑖𝑧𝑒
× 𝑠𝑡𝑜𝑟𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

(4)

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 335

This effort estimate of the story is expressed in story

points.

b) Effort for the whole sprint: The estimated effort for

all the stories in the sprint is added to get the effort

estimate of the sprint, using the equation given below:

𝐸 (𝐸𝑓𝑓𝑜𝑟𝑡 𝑓𝑜𝑟 𝑤ℎ𝑜𝑙𝑒 𝑠𝑝𝑟𝑖𝑛𝑡)

= ∑ 𝐸𝑆𝑖

𝑛

𝑖=1

(5)

where, n is the number of stories being delivered in

the sprint. Now, the effort for the whole sprint is in

story points.

c) Variable factors: From the agile project dataset,

initial values of the frictional and dynamic factors

were used to calculate the impact of variable factors

on the initial effort estimate. The impact was

calculated using the formula given below:

𝐷 (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐹𝑜𝑟𝑐𝑒𝑠)

= ∏ 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎 𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑖

4

𝑘=1

× ∏ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑗

9

𝑚=1

(6)

d) Agile Velocity: In this step, the velocity for each

sprint in the project was determined based on the

estimated sprint effort 𝐸, sprint time 𝑇 and variable

forces 𝐷 in the sprint, using the formula given below:

 𝑉 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = (
𝐸

𝑇
)

𝐷

 (7)

In Agile delivery, the velocity of the project is

improved and stabilized over various sprints [32].

This stability in velocity will depend on the project

cost factors, in this case dynamic and friction factors.

These factors change often during the execution of the

sprint thus leading to uncertainties in the estimated

effort. These uncertainties are the risks associated

with the project which need to be addressed during

the project execution. The effort that goes into the

control and mitigation of these risks has been

accounted for in the estimated effort in the proposed

approach. The formula for integrated effort
(𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is given in equation (13).

e) Effort estimate: From equation (12), formula for

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 can be obtained as follows:

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐸 = (𝑉)

1
𝐷 × 𝑇

(8)

Substituting the values of 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 from equation (13) in

equation (5), the integrated effort estimate for the Agile

model dataset can now be expressed as below:

𝐼𝐸 = (𝑉)
1
𝐷 × 𝑇 + ∑ {((𝑉)

1
𝐷𝑖,𝑎𝑙𝑡𝑒𝑟 × 𝑇)

𝑛

𝑖=1

− ((𝑉)
1
𝐷 × 𝑇)} × 𝑤𝑖

(9)

where 𝐷𝑖,𝑎𝑙𝑡𝑒𝑟 represents the variable forces or project cost

factors at the alternative level.

6 Experimental setup
The estimated effort expressed in equations (8) and (14)

for waterfall and agile delivery models respectively can

now be optimised using evolutionary algorithms. In this

work, ABC, PSO and GLBPSO have been used to

optimise the effort estimates as described below:

6.1 Representation of the population

In this research, each individual particle/ bee in the

population is represented as a vector of weight values as

shown below:

Waterfall model

Agile model

The Waterfall model and the agile model datasets will

have 21 and 13 weights respectively for associated project

cost factors. In equations (8) and (14), the weights are

optimized to calculate the integrated effort estimates for

software project development. All the weights are in the

range 0 to 1. The algorithms will return the vector with

weight values at which the MMRE value is minimized.

From equation (15), it follows that the optimization of

weight values will bring the 𝐼𝐸`s close to the actual effort.

6.2 Fitness function

In evolutionary algorithms, fitness function is used to

evaluate the fitness of the individuals in the population.

Mean magnitude of relative error (MMRE) is the most

widely used fitness function for software effort estimation

problem [33]. Tomas Urbanek [33] et al. have found

MMRE to be an average fitness function for the effort

estimation problem. Considering earlier performance of

MMRE, we have used MMRE as the fitness function for

ABC, PSO and GLBPSO algorithms.

6.2.1 Mean magnitude of relative error

For the algorithms used in this research, mean magnitude

of relative error (MMRE) is used as the objective function

to evaluate the fitness of the individuals in the population

[34]. Magnitude of relative error (MRE) is the ratio of the

absolute difference between the integrated effort (𝐼𝐸) and

the actual effort spent on the project, and the actual effort

spent on the project. Thus, the formula for MMRE will be:

𝑀𝑀𝑅𝐸 =

∑ 𝑀𝑅𝐸𝑁
𝑖=1

𝑁
 =

∑ (
𝐼𝐸𝑖−𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡𝑖
)𝑁

𝑖=1 𝑁⁄
(10)

336 Informatica 48 (2024) 329–344 P. Singal et al.

where N is the total number of projects in the dataset.

All the three algorithms are used to obtain weight values

(𝑤𝑖) that minimize the MMRE.

6.3 Parameter values

The proposed approach is implemented on two datasets

collected during the research described in section 4. The

implementation for the considered evolutionary

algorithms was executed on MATLAB. The fitness

function values in ABC, PSO and GLBPSO showed little

change after 20 iterations. So, the number of iterations is

set to 20 in all the swarm optimization algorithms.

6.3.1 Parameter values for ABC

In ABC algorithm the population size is generally kept as

the square of the number of employed bees [24]. The

number of weights in the waterfall model dataset is small

(21), an initial population of size 441 i.e., square of 21 was

generated randomly. Similarly, the agile model dataset

had 13 weights, so the randomly generated population size

was kept at 169. The best fitness value after every iteration

showed little change after around 17 iterations as shown

in figures 2 and 6. Thus, the number of iterations in each

run were set to 20. The number of trials for abandoning

food source (Limit) was set to 50.

6.3.2 Parameter values for PSO and GLBPSO

The population size for PSO and GLBPSO were kept the

same as for the ABC algorithm. So, the population size

was set at 441 for Waterfall model dataset and 169 for

agile model dataset. Other parameters values are given

below:

1) Number of iterations: 20

2) c1 = c2 = 1.5

3) w = 0.8

For PSO and GLBPSO, the best fitness value after

every iteration showed little change in waterfall model

dataset after around 17 iterations and showed little change

in agile model dataset after around 7 iterations as shown

in figures 3, 4, 7 and 8 respectively.

6.4 Performance evaluation metrics

The integrated effort estimated with the proposed model

is compared with the initial estimated effort using the

benchmark model based on four performance evaluation

metrics: mean magnitude of relative error (MMRE),

standardized accuracy (SA), effect size (∆) and coefficient

of determination (R2).

6.4.1 Standardized accuracy

The performance evaluation measures MRE and MMRE

have been criticized for being biased towards effort

estimation techniques resulting in underestimates [34-39].

Therefore, we compare integrated effort estimates from

the proposed approach with the estimated effort of

CoCoMo II and Ziauddin models using standardized

accuracy (SA) also. In SA, an estimated effort value is

randomly chosen and assigned as effort estimate of the

remaining projects. This process is repeated 1000 times

and then mean absolute error (MAR) is calculated every

time. Standardized accuracy is calculated based on the

formula given below:

 𝑆𝐴 = 1 −
𝑀𝐴𝑅

𝑀𝐴𝑅𝑃0

× 100 (11)

where 𝑀𝐴𝑅 is the mean absolute error i.e., the mean

of the absolute difference between the estimated and

actual effort estimates of all the projects.

𝑀𝐴𝑅𝑃0 is the mean MAR of the 1000 random

assignments [38]. For performance evaluation, a lower

MMRE value or a higher SA value implies a better effort

estimation approach.

6.4.2 Effect size

Effect size (∆) is used to determine the reliability of the

proposed approach [38, 40]. It can be calculated based on

the formula given below:

 ∆=
𝑀𝐴𝑅 − 𝑀𝐴𝑅𝑃0

𝜎𝑃0

 (12)

where 𝜎𝑃0 refers to the standard deviation of MAR

values of 1000 random assignments from 𝑀𝐴𝑅𝑃0. High

value of ∆ (>0.5) indicates that the results obtained by the

proposed algorithm are more reliable than those obtained

by random guessing.

6.4.3 Coefficient of determination

Coefficient of determination (R2) is used to determine the

correlation between the dependent and the independent

variables [41]. It varies from 0 to 1. A value closer to 1

indicates a strong correlation between the variables. For

this research, independent variables are the project cost

factor values and the size of the project. Estimated effort

will be the dependent variable.

7 Results & analysis
Each algorithm was run 25 times. We have reported the

best results obtained for each algorithm.

7.1 Results for waterfall model dataset

Table 2 lists the weight values obtained for all the three

algorithms: ABC, PSO and GLBPSO for the Waterfall

dataset. These weights represent the optimal values of

𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 defined in equation (5). A higher value of 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟

(>0.5) indicates high level of risk exposure due to the

corresponding project cost factor. Weight values 0,

indicate that there was negligible risk due to that project

cost factor and it did not impact the effort estimate of the

project. All the projects considered are from the same

organization, where these project cost factors such as main

storage constraint, platform volatility, platform experience

and execution time constraint, might already be controlled

efficiently thus having no impact on the integrated effort

estimate. Weight values of 1 indicate that the associated

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 337

project cost factors highly impact the integrated effort of

the project. These factors need to be monitored and

controlled for successful project deliveries. Results

indicate that the evolutionary algorithms give better

results (lower MMRE) as compared to the MMRE values

of initial integrated effort estimate 𝐼𝐸𝑖𝑛𝑡𝑖𝑎𝑙 . From table 3 it

can be observed that among the evolutionary algorithms,

PSO outperformed the other two algorithms (ABC and

GLBPSO) with the lowest MMRE value of 0.131 in the

shortest time. MMRE for GLBPSO was also 0.131, but it

took more execution time than PSO.

Table 2: Parameter values for ABC, PSO and GLBPSO

algorithms: Waterfall model

Table 3: Waterfall Model experimental results

In table 4, the integrated effort estimates obtained by

the five approaches: CoCoMo II, 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , ABC, PSO and

GLBPSO are depicted project wise. These effort estimates

are calculated by substituting the weight values listed in

table 2 in equation (8). It can be noted that for most of the

projects, integrated effort estimates for evolutionary

algorithms are lower than their corresponding 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

value given in column 4 of table 7. This indicates that the

experts might have overestimated the alternative cost of

the project cost factors that increased the project risk

exposure. For projects (P1, P3, P5, P8, P16, P19, P33, P36,

P40 and P41), the integrated effort for the evolutionary

algorithms is higher than their corresponding 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

value. The MRE for these projects were in the range:

CoCoMo II (0%, 39%), 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (3%, 38%), ABC (1%,

37%), PSO (0%, 41%) and GLBPSO (0%, 36%). This

indicates under estimation of risk exposure due to the

project cost factors by the experts. Figure 1 shows the

variation in MRE of projects for all the considered five

estimation approaches. MRE for projects (P4, P7, P10,

P11, P15, P17, P19, P20, P23, P24, P25, P26, P27, P30,

P31, P33, P37, P39, P40, P41, P44 and P45) has reduced

considerably with the use of evolutionary algorithms as

compared to the MRE values obtained when using

CoCoMo II or initial integrated effort estimates 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

Table 4: Estimated effort for Waterfall Model

Projec

t Id

Actual

Effort

CoCoM

o II
𝑰𝑬𝒊𝒏𝒊𝒕𝒊𝒂𝒍 ABC PSO

GLBP

SO

P1 1634
1440.80

1

1728.74

3
1904.43

2036.9

67

2024.0

36

P2 700
666.953

6

713.992

1
594.992

589.19

42

564.23

96

P3 3987
3852.06

8

4123.87

2

4309.47

7

4125.6

41

4343.7

61

P4 450
404.289

3
498.517

441.591

4

449.43

59

442.94

01

P5 2608
2702.00

5
2535.76 2652.95

2430.5

74

2594.0

73

P6 3567
3304.39

5

3661.61

5

3085.54

5

2944.1

22

2957.7

99

P7 2256
2048.07

8
2473.87

2150.13

4

2320.1

1

2295.6

57

P8 912
965.824

3
952.08

969.263

9

918.23

94
978.07

P9 2879
2518.21

5

2959.18

3

2329.92

6

2673.0

46

2492.9

19

P10 2435
1922.34

3

2318.94

7

2048.01

8

2440.1

57

2285.4

11

P11 1456
1297.09

3

2202.69

1

1957.83

2

1884.4

66

1590.1

99

P12 2234
1480.34

3

2414.96

8

2262.71

4

2347.0

47

2421.1

57

P13 3200
2020.04

7

3080.99

2

2835.48

8

3174.4

99

2578.9

9

P14 3567
2339.51

9
4248.97

3801.65

6

3581.1

39

3753.1

84

P15 3678
2044.51

4
3905.35

3523.73

4

3309.4

43

3461.9

98

P16 2759
2756.70

7
2585.53

2705.77

4

2478.3

66

2645.3

65

P17 3015 4621.11
4901.98

3

4300.25

3

4093.6

11

4115.9

07

P18 3459
2897.41

6

3497.34

2

3053.94

8

3288.6

89

3253.6

42

P19 2435 1490.16
1981.08

7

2114.64

1

2201.6

21

2278.5

78

P20 859
1412.50

6

1496.21

6

1236.09

9

1208.9

15

1163.3

07

P21 3147
1821.51

6

2934.55

7
2384.43

1944.1

2

2307.8

94

P22 1987
1304.25

8

2239.50

9

1765.50

8

1465.0

91

1709.6

01

P23 4567
4632.82

6

5968.33

4

4640.55

7

4502.9

62

4047.4

02

P24 3629
3275.44

1
4936.89

4158.49

8

3676.2

3

4085.7

44

P25 2897
2937.63

4
4906.66

3734.72

4

3305.2

51

3671.4

37

P26 2453
1247.93

9
1496.43

1498.68

3

1644.6

63

1492.2

66

P27 3786
6163.26

6

5581.17

3

4626.05

6

4513.5

31

3955.9

72

P28 2687
2577.09

9

2510.66

7

2574.53

9

2437.8

85

2385.7

94

Weights ABC PSO GLBPSO

w1 0 0 0

w2 0.168 0.552 0.579

w3 0.596 1 0.686

w4 0.826 1 1

w5 0.954 1 1

w6 0.685 1 0.729

w7 0.755 1 1

w8 0.33 0.631 0.525

w9 0.884 1 1

w10 0.695 0.818 0.935

w11 0.334 0 0

w12 0.624 0 0

w13 0.796 0.79 0

w14 0.891 0 1

w15 0.302 1 0

w16 0.551 0 0.742

w17 0.713 0 0

w18 0.437 0.733 0

w19 0.301 1 0

w20 0.549 0.736 0.678

w21 0.917 0.159 0

338 Informatica 48 (2024) 329–344 P. Singal et al.

Projec

t Id

Actual

Effort

CoCoM

o II
𝑰𝑬𝒊𝒏𝒊𝒕𝒊𝒂𝒍 ABC PSO

GLBP

SO

P29 2937 2395.47
2887.84

8

2622.17

6

2534.7

78

2455.0

68

P30 2874
3730.23

8

3463.44

9

3229.82

4

2879.8

49

3033.2

84

P31 3384 3851.66
3346.50

9

3377.76

7

3371.9

7

3199.1

05

P32 3287
3480.27

8

3906.63

6

3347.39

7

3729.6

17

3474.4

19

P33 2845
2376.81

7

2534.22

6

2807.81

8

2936.2

45

2840.3

76

P34 3504
3542.16

5

3598.08

6

3204.29

3

3514.3

48

3175.8

56

P35 2134
2005.14

2

2034.21

4

1882.42

5

1901.6

43

1827.6

61

P36 2739 1746.16
1710.68

6

1734.19

3

1628.7

57

1740.3

16

P37 2469
2391.85

5

3657.08

8

3391.12

8

3802.2

17

3087.4

05

Projec

t Id

Actual

Effort

CoCoM

o II
𝑰𝑬𝒊𝒏𝒊𝒕𝒊𝒂𝒍 ABC PSO

GLBP

SO

P38 3200
3963.38

6

3911.63

6

4026.35

8

3805.9

79

3724.7

16

P39 2489
2562.53

4

2590.45

1

2391.67

8

2407.5

34

2317.1

95

P40 1999
1411.73

6

1694.44

8

1865.93

5
1995.9

1983.0

34

P41 2598 1704.9
2264.62

2

2421.51

4

2521.1

87

2610.0

84

P42 2876
1369.66

4

2605.07

2

2319.31

9

2176.6

2

2281.7

17

P43 2309
2441.10

9

2374.30

7

2433.53

4

2304.8

95

2255.6

42

P44 1784
905.336

6

1072.12

6

937.964

8

1126.7

77

1054.3

62

P45 2792 3159.18
3502.63

9

2952.26

3

2818.4

42

2831.0

23

Figure 1: Variation of MRE in waterfall dataset

Figure 2: Variation in fitness value: ABC algorithm Figure 3: Variation in fitness value: PSO algorithm

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

P1 P3 P5 P7 P9 P11 P13 P15 P17 P19 P21 P23 P25 P27 P29 P31 P33 P35 P37 P39 P41 P43 P45

M
R

E

CoCoMo II EI(Initial) ABC PSO GLBPSO

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 339

Figure 4: Variation in fitness value: GLBPSO algorithm

7.2 Results for agile model dataset

For the Agile dataset, the optimal weight values obtained

for all the three algorithms: ABC, PSO and GLBPSO are

listed in table 5. Results shown in table 6, indicate that the

evolutionary algorithms gave better results (lower

MMRE) as compared to the MMRE obtained for the initial

integrated effort estimate (equation 3). It can also be

observed that among the evolutionary algorithms, PSO

outperformed the other two algorithms (ABC and

GLBPSO) with the lowest MMRE value of 0.151 in the

shortest time. MMRE for GLBPSO was also 0.151, but it

took more execution time than the PSO.

Table 5: Parameter values for ABC, PSO and GLBPSO

Algorithms for Agile model

The integrated effort estimates for the various

approaches: Ziauddin, IE(Initial), ABC, PSO and

GLBPSO are depicted in table 7. These effort estimates

are calculated by substituting the weight values listed in

table 5 in equation (11). For the Agile dataset, the MMRE

(0.282) for IE(Initial) is close to the MMRE (0.288) of

Ziauddin approach. The initial integrated effort estimates

IE(Initial) for most of the projects are lower than the effort

estimates using Ziauddin approach. The integrated effort

estimates IE for all the evolutionary algorithms are higher

than their IE(Initial) estimates. This indicates that the

experts had assumed the cost of project cost factors

optimistically. Use of evolutionary algorithms has

considerably reduced this over optimism, as indicated by

the MMRE values (ABC: 0.155, PSO, GLBPSO: 0.151).

Figure 5 shows the variation of MRE obtained for projects

for all the considered estimation approaches. MRE for

projects (P3, P4, P5, P6, P9, P12, P15, P16, P17, P20, P21,

P24, P26 and P30) has reduced considerably with the use

of evolutionary algorithms as compared to the MRE

values obtained when using Ziauddin approach or the

initial integrated effort estimates.

Table 6: Agile model experimental results

Figure 6: Variation in fitness value: ABC algorithm

Figure 7: Variation in fitness value: PSO algorithm

Figure 8: Variation in fitness value: GLBPSO algorithm

Weights ABC PSO GLBPSO

w1 0.9183 1 1

w2 0.0223 0 0

w3 0.603 0.783 0.781

w4 0 0 0

w5 0.0733 0 0

w6 1 1 1

w7 0.4551 0.3888 0.3936

w8 0.8715 1 1

w9 0.7779 1 1

w10 0.0417 0 0

w11 0.2197 0 0

w12 0.0697 0 0

w13 0.0396 0 0

Agile

Model

MMRE SA Effect

Size (∆)

R2 Time

(seconds)

Ziauddin 0.288 1.85 0.603 0.018 356.36

IE(Initial) 0.282 2.14 0.713 0.102 347.56

ABC 0.155 2.34 0.756 0.113 9.32 × 103

PSO 0.151 2.43 0.766 0.114 6.17 × 103

GLBPSO 0.151 2.44 0.765 0.113 1.19 × 104

340 Informatica 48 (2024) 329–344 P. Singal et al.

Table 7: Estimated effort for agile model

7.3 Revisiting the research questions

RQ1: Does the accuracy of effort estimate of the project

improve by adding the cost of risk exposure to the initial

estimated effort of the project?

Results as discussed in sections 7.1 and 7.2, show that

the integrated effort estimates have lower values of

MMRE and higher values of SA, effect size and R2 than

the corresponding initial effort estimates, for both the

datasets. Thus, it can be concluded that the integrated

effort estimates are more accurate, reliable, and

comprehensive than the initial effort estimates.

RQ2: What is the impact of bias on risk exposure of the

project?

Results in sections 7.1 and 7.2, show that the MMRE

of the software effort estimate is reduced by using

evolutionary algorithms ABC, PSO and GLBPSO for both

the datasets. In the process, we also obtain the optimum

weight value, 𝑤𝑖 , corresponding to the 𝑖𝑡ℎ project cost

factor, which is the optimum value of 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 . These

optimal values of the 𝑤𝑖 ′𝑠 reflect the unbiased values of

(𝑝𝑖,𝑎𝑙𝑡𝑒𝑟)
′
𝑠.

RQ3: Can project cost factors be ranked with respect to

their risk exposure?

High value of 𝑤𝑖 implies that the contribution of the

𝑖𝑡ℎproject cost factor is also high in the risk exposure of

the project. So, the values of 𝑤𝑖’s are good indicators of

project cost factors which have high risk exposure.

Figure 5: Variation of MRE in agile dataset

0 0,2 0,4 0,6 0,8 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

MRE

GLBPSO PSO ABC EI (Initial) Ziauddin

Proj

ect

Id

Ac

tu

al

Eff

ort

Ziaudd

in

IE

(Initial)

ABC PSO GLBPS

O

1 64 86.4923

1

83.6025

4

81.1865

2

82.4856 82.48179

2 76 117.116

5

109.145

3

109.792 110.935

5

110.9644

3 81 145.914

6

132.075

3

125.314

2

125.144

1

125.1514

4 68 119.152

8

107.420

5

92.3164

6

93.9578

4

93.87866

5 66 57.6667

1

56.3777

1

62.5820

7

62.7521

9

62.77239

6 67 63.5927

9

60.8842

4

64.9334

6

65.7520

3

65.7274

7 67 43.4354

8

43.2720

9

45.7215

2

46.5541

6

46.55146

8 68 67.0517

1

52.2107

1

57.0639

8

58.1592

9

58.10352

9 56 56.2762

7

44.2504

8

50.3249

4

50.8236

2

50.8004

10 60 47.195 44.3339

8

46.6364 47.2997

6

47.30984

11 58 72.4363

1

59.0868

1

67.4359

4

68.0235

5

67.97869

12 62 48.8973

4

45.2874

1

53.8864

8

54.9363

5

54.95424

13 65 48.8169

6

47.9638

5

53.4508

4

53.7969

1

53.81199

14 63 60.6509

4

52.0362

8

50.6961

6

51.9152

8

51.87922

15 65 56.0623

7

55.7661

8

63.8908

9

65.0014

1

65.01872

16 66 77.1008 45.0761

4

61.8912

9

64.4023

6

64.34528

17 65 70.8973

7

58.1672

7

67.6481

6

68.4295

6

68.44052

18 62 57.0143

2

55.2009

9

56.3030

9

56.1034 56.12013

19 76 57.5975

8

57.1290

1

61.9198

6

62.7889

8

62.80839

20 75 75.0529

9

65.0108

5

69.1518

4

70.2077

5

70.20775

21 73 70.5518

5

64.7260

8

68.5125

8

69.7986

1

69.78006

22 72 61.6248

4

53.0843

7

58.6932

1

58.7892

4

58.80578

23 73 70.1498

2

67.5612

1

81.8011

1

83.0083

2

83.00832

24 74 89.0737

3

76.9740

9

74.2441

6

75.2267

3

75.20611

25 60 49.5266

4

42.8176

7

49.6179

5

50.5586

2

50.54135

26 65 77.7804

1

59.7399 65.0433

7

65.0029

7

64.99734

27 62 58.0827

3

42.8917

8

49.4238

3

49.8615

8

49.86158

28 55 47.4579

5

46.4074

8

47.0234

4

47.1733 47.17914

29 60 66.8164

2

61.0654

7

63.3694

6

63.9554

6

63.93309

30 59 64.9804

8

44.3468

7

55.1033

7

56.3919

4

56.37387

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 341

8 Threats to validity
This section discusses threats to validity of the proposed

model.

External validity

External validity [42] is concerned with

generalization of the results obtained. Threats to external

validity are conditions that limit the ability to generalize

the results of the proposed experiment to other effort

estimation models [43-46].

For this research, the datasets have been collected

from a single organization. Although the organization is a

large IT consultancy firm working on projects in varied

domains, the proposed approach could be further validated

by experimenting on data from different organizations. To

test the efficacy of evolutionary algorithms, large datasets

are ideal. The results in this paper are based on datasets

with 30 to 45 projects.

9 Conclusion
This paper has introduced a novel approach for integrating

the impact of risk exposure into the effort estimate of a

software project. This impact is determined using the

weights associated with the risk exposure due to each

project cost factor. These weights are then optimized using

evolutionary approaches like ABC, PSO and GLBPSO.

Experimental results show that the PSO and GLBPSO

algorithms gave more accurate effort estimates for both

waterfall and agile projects, but GLBPSO took more time.

The approach essentially reduces the bias due to the

probabilities which were associated with the impact of risk

exposure on the effort estimates of the projects. Software

effort estimation for projects now, will, not have to rely

solely on the expert judgment for assessing the probable

impact of the risk exposure due to project cost factors.

The project factors can be ranked based upon the

associated optimal weight values. Software Project

managers can prepare and plan for risk management and

development of the project effectively using the ranking

obtained. Cost factors with higher weight values will need

to be mitigated and controlled earlier than the cost factors

with lower weight values.

10 Future directions
In the manuscript, tables 4 & 7 list the effort estimates

calculated by using the optimum weight values obtained

by applying ABC, PSO and GLBPSO on waterfall and

agile model datasets respectively. To validate the obtained

results, tables 5 and 6, then compare the calculated effort

estimates based on MMRE, SA, Effect size and R2. The

results obtained confirm that the risk integrated effort

estimation accuracy improves with the application of

evolutionary algorithms such as ABC, PSO and GLBPSO.

The proposed risk integrated approach can further be

validated through additional case study / company data.

The proposed risk integrated effort estimation

approach can be applied to other benchmark effort

estimation models such as Use Case Point [47], Function

Point [48], and Analogy based estimation [49] for

Waterfall projects. Poker [50], T-shirt sizing and Three

point estimation [51] for Agile projects. To enable the

comparison, cost factor data for the suggested benchmark

models will have to be collected / generated.

To further investigate the impact of evolutionary

algorithms on weight values associated with cost factors,

other available evolutionary algorithms such as firefly, ant

colony optimization, cuckoo search and whale

optimization could be used, and results compared with the

results obtained in this research. The weight values can

also be optimized using artificial intelligence techniques

like neural networks, convolutional neural networks, and

deep learning techniques.

11 Declarations

Funding

Not Applicable

Availability of data and material

The datasets generated during and/or analyzed during the

current study are available from the corresponding author

on reasonable request.

Code availability

Not Applicable

References
[1] S. Hastie and S. Wojewoda, "Standish group 2015

chaos report-q&a with jennifer lynch," Retrieved, vol.

1, p. 2016, 2015.

[2] D. Eck, B. Brundick, T. Fettig, J. Dechoretz, and J.

Ugljesa, "Parametric estimating handbook," The

International Society of Parametric Analysis (ISPA),

2009.

[3] P. Pospieszny, B. Czarnacka-Chrobot, and A.

Kobylinski, "An effective approach for software

project effort and duration estimation with machine

learning algorithms," Journal of Systems and

Software, vol. 137, pp. 184-196, 2018.

https://doi.org/10.1016/j.jss.2017.11.066

[4] O. Morgenshtern, T. Raz, and D. Dvir, "Factors

affecting duration and effort estimation errors in

software development projects," Information and

Software Technology, vol. 49, pp. 827-837, 2007.

https://doi.org/10.1016/j.infsof.2006.09.006

[5] K. Kansala, "Integrating risk assessment with cost

estimation," IEEE software, vol. 14, pp. 61-67, 1997.

https://doi.org/10.1109/52.589236

[6] B. W. Boehm, "Software risk management: principles

and practices," IEEE software, vol. 8, pp. 32-41,

1991.

https://doi.org/10.1109/52.62930

[7] M. Jørgensen, "Identification of more risks can lead

to increased over-optimism of and over-confidence in

software development effort estimates," Information

and Software Technology, vol. 52, pp. 506-516, 2010.

https://doi.org/10.1016/j.infsof.2009.12.002

[8] P. Singal, P. Sharma, and A. C. Kumari, "Integrating

software effort estimation with risk management,"

https://doi.org/10.1016/j.jss.2017.11.066

342 Informatica 48 (2024) 329–344 P. Singal et al.

International Journal of System Assurance

Engineering and Management, pp. 1-16, 2022.

https://doi.org/10.1007/s13198-022-01652-y

[9] B. Kitchenham and S. Linkman, "Estimates,

uncertainty, and risk," IEEE Software, vol. 14, pp. 69-

74, 1997.

https://doi.org/10.1109/52.589239

[10] B. Boehm, "Software risk management," in European

Software Engineering Conference, 1989, pp. 1-19.

https://doi.org/10.1007/3-540-51635-2_29

[11] R. Fairley, "Risk management for software projects,"

IEEE software, vol. 11, pp. 57-67, 1994.

https://doi.org/10.1109/52.281716

[12] R. J. Madachy, "Heuristic risk assessment using cost

factors," IEEE software, vol. 14, pp. 51-59, 1997.

https://doi.org/10.1109/52.589234

[13] L. C. Briand, K. El Emam, and F. Bomarius,

"COBRA: a hybrid method for software cost

estimation, benchmarking, and risk assessment," in

Proceedings of the 20th international conference on

Software engineering, 1998, pp. 390-399.

https://doi.org/10.1109/ICSE.1998.671392

[14] K. Jantzen, "Estimating the effects of project risks in

software development projects," 2006.

[15] S.-J. Huang, C.-Y. Lin, and N.-H. Chiu, "Fuzzy

decision tree approach for embedding risk assessment

information into software cost estimation model,"

Journal of information science and engineering, vol.

22, pp. 297-313, 2006.

[16] E. Manalif, "Fuzzy Expert-COCOMO risk

assessment and effort contingency model in software

project management," 2013.

[17] W. Aslam, F. Ijaz, M. I. U. Lali, and W. Mehmood,

"Risk Aware and Quality Enriched Effort Estimation

for Mobile Applications in Distributed Agile

Software Development," J. Inf. Sci. Eng., vol. 33, pp.

1481-1500, 2017.

https://doi.org/10.6688/JISE.2017.33.6.6

[18] S. El Koutbi and A. Idri, "Software Effort Estimation

Risk Management over Projects Portfolio," Comput.

Inf. Sci., vol. 11, pp. 45-76, 2018.

https://doi.org/10.5539/cis.v11n4p45

[19] N. Ramakrishnan, H. Girijamma, and K.

Balachandran, "Enhanced Process Model and

Analysis of Risk Integration in Software effort

estimation," in 2019 International Conference on

Smart Systems and Inventive Technology (ICSSIT),

2019, pp. 419-422.

https://doi.org/10.1109/ICSSIT46314.2019.8987841

[20] M. Kataev, L. Bulysheva, L. Xu, Y. Ekhlakov, N.

Permyakova, and V. Jovanovic, "Fuzzy model

estimation of the risk factors impact on the target of

promotion of the software product," Enterprise

Information Systems, vol. 14, pp. 797-811, 2020.

https://doi.org/10.1080/17517575.2020.1713407

[21] M. Azzeh, A. B. Nassif, and S. Banitaan,

"Comparative analysis of soft computing techniques

for predicting software effort based use case points,"

IET Software, vol. 12, pp. 19-29, 2018.

https://doi.org/10.1049/iet-sen.2016.0322

[22] T. T. Khuat and M. H. Le, "A novel hybrid abc-pso

algorithm for effort estimation of software projects

using agile methodologies," Journal of Intelligent

Systems, vol. 27, pp. 489-506, 2018.

https://doi.org/10.1515/jisys-2016-0294

[23] D. Novitasari, I. Cholissodin, and W. F. Mahmudy,

"Hybridizing PSO with SA for optimizing SVR

applied to software effort estimation," Telkomnika

(Telecommunication Computing Electronics and

Control), vol. 14, pp. 245-253, 2016.

http://doi.org/10.12928/telkomnika.v14i1.2812

[24] D. Karaboga and B. Basturk, "A powerful and

efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm,"

Journal of global optimization, vol. 39, pp. 459-471,

2007.

http://doi.org/0.1007/s10898-007-9149-x

[25] J. Kennedy and R. Eberhart, "Particle swarm

optimization," in Proceedings of ICNN'95-

International Conference on Neural Networks, 1995,

pp. 1942-1948.

https://doi.org/10.1109/ICNN.1995.488968

[26] R. R. Chhikara, P. Sharma, and L. Singh, "A hybrid

feature selection approach based on improved PSO

and filter approaches for image steganalysis,"

International Journal of Machine Learning and

Cybernetics, vol. 7, pp. 1195-1206, 2016.

https://doi.org/10.1007/s13042-015-0448-0

[27] T. Gilb, "Evolutionary Delivery versus the" waterfall

model"," ACM sigsoft software engineering notes,

vol. 10, pp. 49-61, 1985.

https://doi.org/10.1145/1012483.1012490

[28] R. C. Martin, M. Martin, and M. Martin, Agile

principles, patterns, and practices in C#: Prentice

Hall, 2007.

[29] B. Boehm, C. Abts, B. Clark, and S. Devnani-

Chulani, "COCOMO II model definition manual,"

The University of Southern California, 1997.

[30] S. K. T. Ziauddin and S. Zia, "An effort estimation

model for agile software development," Advances in

computer science and its applications (ACSA), vol. 2,

pp. 314-324, 2012.

[31] S. Dalal, N. Dahiya, and V. Jaglan, "Efficient Tuning

of COCOMO Model Cost Drivers Through

Generalized Reduced Gradient (GRG) Nonlinear

Optimization with Best-Fit Analysis," in Progress in

Advanced Computing and Intelligent Engineering,

ed: Springer, 2018, pp. 347-354.

https://doi.org/10.1007/978-981-10-6872-0_32

[32] A. W. M. M. Parvez, "Efficiency factor and risk factor

based user case point test effort estimation model

compatible with agile software development," in

Information Technology and Electrical Engineering

(ICITEE), 2013 International Conference on, 2013,

pp. 113-118.

https://doi.org/10.1109/ICITEED.2013.6676222

[33] T. Urbanek, Z. Prokopova, R. Silhavy, and V. Vesela,

"Prediction accuracy measurements as a fitness

function for software effort estimation,"

SpringerPlus, vol. 4, pp. 1-17, 2015.

https://doi.org/10.1186/s40064-015-1555-9

Integrated Software Effort Estimation: a Hybrid Approach… Informatica 48 (2024) 329–344 343

[34] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit,

"A simulation study of the model evaluation criterion

MMRE," IEEE transactions on software engineering,

vol. 29, pp. 985-995, 2003.

https://doi.org/10.1109/TSE.2003.1245300

[35] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell,

and M. J. Shepperd, "What accuracy statistics really

measure," IEE Proceedings-Software, vol. 148, pp.

81-85, 2001.

https://doi.org/10.1049/ip-sen:20010506

[36] M. Korte and D. Port, "Confidence in software cost

estimation results based on MMRE and PRED," in

Proceedings of the 4th international workshop on

Predictor models in software engineering, 2008, pp.

63-70.

https://doi.org/10.1145/1370788.1370804

[37] D. Port and M. Korte, "Comparative studies of the

model evaluation criterions mmre and pred in

software cost estimation research," in Proceedings of

the Second ACM-IEEE international symposium on

Empirical software engineering and measurement,

2008, pp. 51-60.

https://doi.org/10.1145/1414004.1414015

[38] A. Idri, I. Abnane, and A. Abran, "Evaluating Pred (p)

and standardized accuracy criteria in software

development effort estimation," Journal of Software:

Evolution and Process, vol. 30, p. e1925, 2018.

https://doi.org/10.1002/smr.1925

[39] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit,

"A further empirical investigation of the relationship

between MRE and project size," Empirical software

engineering, vol. 8, pp. 139-161, 2003.

https://doi.org/10.1023/A:1023010612345

[40] A. B. Nassif, M. Azzeh, A. Idri, and A. Abran,

"Software development effort estimation using

regression fuzzy models," Computational

Intelligence and neuroscience, vol. 2019, 2019.

https://doi.org/10.1155/2019/8367214

[41] N. J. Nagelkerke, "A note on a general definition of

the coefficient of determination," Biometrika, vol. 78,

pp. 691-692, 1991.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.

Regnell, and A. Wesslén, Experimentation in

software engineering: Springer Science & Business

Media, 2012.

[43] A. Idri, F. azzahra Amazal, and A. Abran, "Analogy-

based software development effort estimation: A

systematic mapping and review," Information and

Software Technology, vol. 58, pp. 206-230, 2015.

https://doi.org/10.1016/j.infsof.2014.07.013

[44] J. Popovic, D. Bojic, and N. Korolija, "Analysis of

task effort estimation accuracy based on use case

point size," IET Software, vol. 9, pp. 166-173, 2015.

https://doi.org/10.1049/iet-sen.2014.0254

[45] I. Hussain, L. Kosseim, and O. Ormandjieva,

"Approximation of COSMIC functional size to

support early effort estimation in Agile," Data &

Knowledge Engineering, vol. 85, pp. 2-14, 2013.

https://doi.org/10.1016/j.datak.2012.06.005

[46] M. Usman, "Improving Expert Estimation of

Software Development Effort in Agile Contexts,"

Blekinge Tekniska Högskola, 2018.

[47] M. R. Braz and S. R. Vergilio, "Software effort

estimation based on use cases," in 30th Annual

International Computer Software and Applications

Conference (COMPSAC'06), 2006, pp. 221-228.

https://doi.org/10.1109/COMPSAC.2006.77

[48] A. Hira and B. Boehm, "COSMIC Function Points

Evaluation for Software Maintenance," in

Proceedings of the 11th Innovations in Software

Engineering Conference, 2018, p. 4.

https://doi.org/10.1145/3172871.3172874

[49] M. Azzeh and A. B. Nassif, "Analogy-based effort

estimation: a new method to discover set of analogies

from dataset characteristics," IET Software, vol. 9, pp.

39-50, 2015.

https://doi.org/10.1049/iet-sen.2013.0165

 [50] V. Mahnič and T. Hovelja, "On using planning

poker for estimating user stories," Journal of

Systems and Software, vol. 85, pp. 2086-2095,

2012.

https://doi.org/10.1016/j.jss.2012.04.005

 [51] R. K. Mallidi and M. Sharma, "Study on agile story

point estimation techniques and challenges," Int. J.

Comput. Appl, vol. 174, pp. 9-14, 2021.

344 Informatica 48 (2024) 329–344 P. Singal et al.

