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Risks associated with delivery of a software project and the effort spent on managing these risks are well 

researched topics. Very few have included this extra effort termed as risk exposure of a project, in the 

software effort estimate of a project. This research proposes to improve the accuracy of software effort 

estimates by integrating the risk exposure with the initial effort estimate of the project. A function to 

calculate integrated effort estimates has been defined and evolutionary algorithms ABC, PSO and 

GLBPSO have been used to optimize the MMRE. The approach has been tested on two datasets collected 

from industry, one for waterfall projects, and another for agile projects. For both the datasets, integrated 

effort estimates were more accurate on account of MMRE, standardized accuracy, effect size and R2, than 

the initial effort estimates. Evolutionary algorithms also gave the optimum weight values at which the 

MMRE was optimal for both the datasets. These weight values determine the contribution of risk 

associated with each project cost factor in the risk exposure of the project. Integrated effort estimates 

have been found to be more accurate, reliable, and comprehensive than the initial effort estimates. 

Application of evolutionary algorithms help in reducing any bias in the integrated effort estimates. 

Povzetek: Raziskava predlaga integrirano oceno dela pri razvoju programske opreme z upoštevanjem 

izpostavljenosti tveganjem in z uporabo evolucijskih algoritmov, kar izboljša tončnost ocen.

1 Introduction 
Software Effort estimation is the basis of software project 

management. But it is also one of the most challenging 

aspects of software project management. For a long time 

now, project management experts have been looking for 

estimation techniques which provide comprehensive 

effort estimates with high accuracy, which is required for 

delivering a project within schedule and within a budget. 

Despite the ongoing advancements and research in the 

field of software effort estimation, Standish group [1] and 

the International society of parametric analysis [2] report 

that two-thirds of the projects face budget overruns and 

schedule delays. The challenge lies in the accurate 

projection of project cost factors during the initial stages 

of the project delivery, and managing the uncertainties 

encountered during the development of the final product 

[3]. Uncertainties in the project cost factors lead to various 

risks in the software development process, which need to 

be identified, managed, and controlled for a successful 

software project delivery.  

The risks associated with a software project are due to 

factors like volatility in project requirements, availability 

of experienced personnel, ever-changing technology and 

many other project cost factors [4]. These project cost 

factors play a significant role in the effort estimation 

process as well as in project risk identification and 

management process [5]. Most often, risk planning and its 

management are treated as a separate activity from the 

software effort estimation task [6]. Risks are identified, 

analyzed, mitigated, and controlled but their impact on the 

effort estimate of a project is not considered. This might 

result in over-optimism and over-confidence in the 

software effort estimates of projects [7]. Thus, there is a 

need to integrate the risk management process in the effort 

estimation process for a more accurate, comprehensive, 

and fair effort estimate. 

Managing risks at the project level would require 

effort towards identification, analysis, mitigation, and 

control of the risks associated with the project. Projects 

with a pessimistic effort estimate can see a reduction in the 

overall effort required for the project if risk management 

is done along with effort estimation. Projects where the 

effort estimation has been done in an over optimistic 

manner will need extra effort to manage the risks [7]. This 

effort which is required for the risk management process 

is referred as the risk exposure of the project [6]. This 

research proposes to include the risk exposure of the 

project in the effort estimate of the project. The effort 

estimate would now include the effort required for 

development of the project along with the effort required 

in the risk management process [8]. 

In the proposed approach, the cost of risk exposure is 

calculated according to the procedure defined by 

Kitchenham and Linkman [9] in 1997. They suggested 

that the uncertainties in the software development process 

cause inaccuracies in the software effort estimate 

irrespective of the effort estimation technique being used. 

The effort estimation is done in the beginning of the 

project when not many details are available regarding the 
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various project cost factors impacting the effort estimate 

of the project. They have categorized the sources of 

estimate uncertainties into three types: measurement error, 

model error and assumption error. Assumption errors 

occur in the evaluations of the input parameters due to the 

inherent uncertainties associated with these parameters. 

This assumption error is the risk which creeps into the 

project when project cost factor values do not meet the 

assumed level. Kitchenham and Linkman [9], have linked 

the risk exposure of the project to the error in assumption 

of the project cost factor values. They have suggested to 

collect alternative cost values of the project cost factors 

along with the probabilities of not meeting the initial cost 

factor values. For each cost factor, two values are 

determined, the initial assumed value, and the alternative 

value that the project cost factor might attain during the 

execution of the project. Kitchenham and Linkman 

compute the effort/ cost of managing risk as follows: For 

each factor difference in the initial and alternate cost is 

multiplied by the corresponding probability of not meeting 

the initial cost of that factor. This is the cost of managing 

risk related to that factor. Sum of all these costs define the 

total effort/ cost for managing the risk of the whole project 

or the risk exposure of the project. 

The authors in an earlier paper [8] have added the cost 

of risk exposure to the initial effort estimate of the project 

to obtain an integrated effort estimate(𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙). Equation 

(5) gives the formula to calculate(𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙). 

The probabilities and project cost factor values in the 

formula, proposed by Kitchenham and Linkman, are based 

on expert judgment, which may result in a biased effort 

estimate. In the proposed approach, these probabilities are 

treated as variables and these variables/ weights are then 

optimized using evolutionary algorithms like  

Artificial Bee Colony (ABC), Particle Swarm 

Optimization (PSO), and a hybrid global local binary 

particle swarm optimization algorithm (GLBPSO), to 

obtain more accurate and fair effort estimates. This 

reduces the dependency of the model on expert judgment 

and removes any bias in the integrated effort estimates due 

to the probabilities. This research determines the optimal 

value of the estimated effort and the weights which 

determine the impact of risks due to each cost factor on 

the estimated effort. The proposed approach has been 

tested for waterfall model delivery projects as well as 

projects using agile delivery.  

The main contributions of this research are as follows: 

• Risk exposure of a project is added to the effort 

estimate of the project which gives an integrated 

effort estimate for the project. 

• A weighted function for calculating the integrated 

effort estimate has been defined. 

• Two questionnaires have been prepared: one based on 

CoCoMo II project cost factors for waterfall delivery 

projects, and another based on project cost factors by 

Ziauddin for agile delivery projects. Based on the 

responses received for these questionnaires, two 

datasets have been collected: ‘Waterfall model 

dataset’ and ‘Agile model dataset’. 

• Integrated effort estimate has been optimized using 

evolutionary algorithms ABC, PSO and GLBPSO. 

2 Related work 
The need for risk assessment and risk control in software 

development projects was highlighted by Boehm in 1989 

[10]. His work proposed a framework for identification of 

software validation and verification activities and the 

effort which would go into the risk management process. 

They attributed 40%-50% of the software project costs to 

rework costs, and 80 % of that rework costs to the highest 

risk factor associated with the project. Fairley in 1994, 

used regression cost modelling of the effort estimates of 

the past projects in the organization to determine the risks 

associated with a software project [11]. Residual error due 

to the difference between the estimated effort and actual 

effort was used to determine the project cost factors which 

impacted the software effort estimates. He suggested 

controlling and mitigating these project cost factors to 

manage the project risk. 

In 1997, Madachy proposed a heuristic to calculate 

the cost of risk exposure of the project using the project 

cost factors [12]. He identified risk rules based on the 

CoCoMo cost factors to assign levels to the risks identified 

in the project. The cost of risk exposure of the project was 

calculated based on the risk level and the contributing 

project cost factor values. Briand et al. introduced a hybrid 

model for project effort estimation, risk assessment and 

benchmarking without relying on the historical data for 

project effort estimate [13]. The proposed model based its 

effort estimate on productivity of the project and 

calculated the project cost overheads based on a 

questionnaire, which would be filled by the experts 

associated with the project. 

In 2006, Jantzen estimated the impact of project risks 

on project effort estimate, project duration and project 

quality. His work emphasized on re-estimating and re-

planning the software project during its execution, based 

on the various risks, their level and risk status at various 

stages of the project [14]. Huang et al. in 2006, proposed 

an effort estimation technique based on the fuzzy and 

uncertain nature of the project cost factors. The effort was 

estimated using fuzzy decision tree where along with the 

effort estimate of the project, the estimation error was used 

for risk analysis and management [15]. Manalif in 2013, 

proposed a fuzzy expert – CoCoMo model which added a 

contingency to the estimated effort based on the project 

cost factors of the CoCoMo model [16]. The contingency 

effort was kept separate from the total effort estimate of 

the project. 

In 2017, Aslam et al. considered the risks associated 

with rich mobile application development projects 

developed using agile methodology [17]. Along with risk 

factors, they also included the quality aspect of the project 

in the effort estimate of the project which enabled the 

development effort estimation at multiple quality levels. 

Their work was limited to project on rich mobile 

application development. 

In 2018, Koutbi & Idri proposed inclusion of the cost 

of risk management in the effort estimation process at the 
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organization level instead of handling it at a specific 

project level [18]. They argued that risk is better handled 

and mitigated over a portfolio of projects which improves 

the effort estimation process of the organization. On the 

other hand, organizations can have projects of varied 

nature, for which the project cost factors contributing to 

risks may vary. 

In 2019, Ramakrishnan et al. built a multilayer 

perceptron model to estimate the software development 

effort. The model included project risk score in the effort 

estimation process [19]. They used an enhanced gradient 

boosting technique which decreased the standard 

deviation of the residuals indicating better effort 

estimation results. 

In 2020, Michael Kataev et al. [20], reiterated the 

importance of including the cost of risk management in 

the software development process for on time and in 

budget software project deliveries. They included the 

internal and external risks which impacted the overall 

financial health of the organization. 

It is clear that researchers have focused on integrating 

risk management process with the software effort 

estimation process, but none have included the effort spent 

on risk management in the effort estimate of the project 

itself. Thus, this research tries to bridge this gap and 

analyses the impact of risk exposure on the effort estimate 

of the project. Also, the probability of risk occurrence is 

optimized using evolutionary algorithms ABC, PSO, 

GLB-PSO.  

Rest of the paper is organized as follows: Section 3 

details the proposed approach of integrating the impact of 

risk on the software effort estimate and optimizing it using 

evolutionary algorithms. It outlines the algorithms used in 

the proposed approach. Section 4 gives the details of the 

datasets collected for this research. Section 5 contains the 

details of calculating integrated effort estimates for 

waterfall and agile projects. Section 6 gives the details of 

experimental setup and algorithms for ABC, PSO and 

GLBPSO. It contains the details of the fitness function 

used in the algorithms and explains the evaluation criteria 

used for comparing the proposed approach with the 

baseline effort estimation techniques. Section 7 presents 

and compares the experimental results obtained for both 

the waterfall and agile delivery projects. Section 8 points 

out some threats to validity of the proposed approach. 

Section 9 draws the conclusion, and Section 10 describes 

the scope for future work. 

3 Theoretical background 
This section explains the risk exposure of a project, 

research questions which motivated the research and 

presents the proposed model for calculating integrated 

effort estimates. 

3.1 Risk exposure 

The risk exposure of the project is the total effort required 

to identify, mitigate, and control the risks in the project 

which occur due to various project cost factors. Risk 

exposure due to each cost factor of the project is calculated 

separately and then added together to give the total risk 

exposure of the project. These risks arise due to the 

uncertainties associated with the software projects. The 

initial effort estimate of the project is determined based on 

certain assumptions made regarding the project cost 

factors like reliable requirements, team communication, 

availability of hardware and software resources, and 

expertise & experience level of the team. Since very little 

information is available when these assumptions are made 

at the beginning of the project, quite often these 

assumptions are not met giving rise to risks which may 

increase or decrease the effort required to develop the 

project.  

According to Kitchenham and Linkman [9], for a 

project with 𝑛 cost factors, initial effort estimate 

(𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) required to develop a project is calculated using 

the assumed project cost factor values at the beginning of 

the project. To calculate the risk exposure of the project, 

risk exposure due to each project cost factor is added. Risk 

exposure of the  𝑖𝑡ℎ project cost factor is calculated by 

multiplying the probability of not meeting the initial level 

(𝑝𝑖,𝑎𝑙𝑡𝑒𝑟) of the 𝑖𝑡ℎproject cost factor with difference 

between the effort estimated (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟) at the alternative 

level of the 𝑖𝑡ℎproject cost factor and the initial estimated 

effort(𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙). The risk exposure (𝐸𝑟𝑖𝑠𝑘) of a project can 

be calculated using the equation given below: 

 
𝐸𝑟𝑖𝑠𝑘 = ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟  −  𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙)  ×  𝑝𝑖,𝑎𝑙𝑡𝑒𝑟

𝑛
𝑖=1                        (1) 

 

This risk exposure is the extra effort that would be 

needed for risk management and planning of the project.  

3.2 Proposed approach 

In the proposed approach, the risk exposure of a project 

has been added to the initial effort estimated required to 

develop the project. Thus, according to the proposal in this 

research, the total effort estimate of a project must reflect 

the effort involved in managing the various risks 

encountered during the completion of the project. If 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  denotes the initial effort estimate of a project, 𝐸𝑟𝑖𝑠𝑘  

is the risk exposure calculated using equation (1), then the 

integrated effort estimate (𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of the project can be 

determined using the equation given below: 

 

 
𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐸𝑟𝑖𝑠𝑘                                           (2) 

 

Substituting the value of 𝐸𝑟𝑖𝑠𝑘  in equation (2) from 

equation (1) will give us the initial integrated software 

development effort estimate for a project. 

  
𝐼𝐸𝑖𝑛𝑖𝑡𝑎𝑙 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟  −  𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) ×  𝑝𝑖,𝑎𝑙𝑡𝑒𝑟

𝑛
𝑖=1                    (3) 

 

This estimate will now include the effort that would 

be required for development as well as risk management, 

and planning of the project. Values of the probabilities 

𝑝𝑖,𝑎𝑙𝑡𝑒𝑟  of not attaining the assumed initial level of project 

cost factors in equation (3) can be ascertained from the 

program manager or the expert responsible for effort 
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estimation of the project. It is possible that the values of 

the probabilities {𝑝𝑖}𝑖=1
𝑛 may be biased, and hence may not 

accurately estimate the cost of risk management. 

 

In this paper, 𝑝𝑖’s are treated as variables between 0 

and 1 and then their optimal values are computed using 

evolutionary algorithms such as ABC, PSO and GLBPSO, 

so that the estimated cost is as close as possible to the 

actual cost of a project. Therefore, in equation (1), the 𝑝𝑖’s 

have been replaced by 𝑤𝑖’s. The risk exposure of a project 

is expressed as the weighted mean of the risk exposures 

due to all the project cost factors using the formula given 

below: 

  
𝐸𝑟𝑖𝑠𝑘 = ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟  −  𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙)  ×  𝑤𝑖

𝑛
𝑖=1                         (4) 

 

The formula in equation (3) for calculating integrated 

software development effort estimate of a project (𝐼𝐸) can 

now be expressed using the equation given below: 

  
𝐼𝐸 = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∑ (𝐸𝑖,𝑎𝑙𝑡𝑒𝑟  −  𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙)  ×  𝑤𝑖

𝑛
𝑖=1              (5) 

 

The 𝑤𝑖  in equation (5) can now be optimized using 

evolutionary algorithms.  

 

In this research three evolutionary algorithms have 

been experimented with: ABC, PSO and GLBPSO. 

Previous research on software effort estimation has 

demonstrated promising results with the application of 

evolutionary algorithms such as ABC, PSO, and GLBPSO 

[21-23]. These algorithms have been effective in 

optimizing complex, non-linear software project effort 

estimation problem.   

3.3 Artificial bee colony optimization 

Artificial bee colony (ABC) is a metaheuristic algorithm 

proposed by Karaboga et al. [24], which is based on the 

intelligent social behavior of the honeybee swarm. ABC 

algorithm employs collaborative trial and error approach 

to identify honeybee swarm. The ABC optimization 

algorithm is driven by peer-to-peer learning behavior of 

social colonies and reaches the optimal solution following 

an iterative process. There are four phases in the ABC 

algorithm: initialization phase, employed bee phase, scout 

phase and onlooker bee phase. In the initialization of the 

population, ABC generates a uniformly distributed 

population of solutions where each solution is a 

dimensional vector. In the proposed approach, the weight 

vector (𝑤𝑖
′𝑠) described in Section 6.1 will represent the 

solution vector. Each 𝑤𝑖  varies between 0 and 1. The 

employed bees update the current solution based on their 

own experience and fitness value of the new solution. If 

the new solution has a higher fitness value than the current 

solution, the bee selects the new solution and discards the 

current one. In this research, weight vector which gives 

the lowest MMRE will be selected.              

3.4 Particle swarm optimization 

Particle swarm optimization (PSO) algorithm also belongs 

to the family of swarm intelligence algorithms, and  was 

first proposed by J. Kennedy and R. Eberhart in 1995 [25]. 

PSO algorithm models the social behavior of flocking of 

birds or school of fish to optimize nonlinear functions. 

Each particle/bird which represents the solution to the 

problem has a position and velocity associated with it. In 

the algorithm, particles change their position by adjusting 

their velocity either to seek food, avoid predators or to 

identity optimized environmental parameters. Also, each 

particle memorizes its best position during the process and 

communicates it to other particles in the swarm. So, the 

velocity of a particle is modified using the flying 

experience of the particle itself and the flying experience 

of the whole group, termed as global best PSO. For this 

research, the particles are the weight vectors which 

determine the risk exposure due to each cost factor. The 

objective is to minimize the MMRE of the project in the 

dataset.  

3.5 Global local binary PSO optimization 

An improved PSO algorithm was proposed by Rita 

Chhikara et al. [26] to overcome the disadvantages of the 

global best PSO. The algorithm Global local binary PSO 

(GLBPSO) integrated the global best PSO with local best 

PSO and dynamically changed the population size using 

(Hope/ Rehope). The algorithm begins by using the global 

best PSO and if the value of the fitness function does not 

change for two consecutive iterations, local best PSO is 

applied with a neighborhood size of 4. The particles move 

towards the best solution in the neighborhood by 

communicating with their four immediate neighbors. If 

the local best PSO does not improve the fitness function 

in three consecutive iterations, this indicates stagnation in 

the search process. To avoid this stagnation, hope/ rehope 

is applied on the population. For kth iteration, for particles 

having marginal distance (less than 0.01) among 

themselves, only the particle with higher fitness function 

value is retained in the population. However, it could lead 

to decrease in population size. To avoid such a situation, 

the population size is checked after each iteration, and if it 

reduces to less than 50% of its original size, then the 

population size is increased randomly by 30%. This 

eliminates the bad performing particles and at the same 

time revives the hope for a better solution. These steps are 

repeated until the stopping criteria is met or the set number 

of iterations have been executed. 

3.6 Research questions 

This paper aims to provide the experimental evidence to 

answer the research questions given below: 

 

RQ1: Does the accuracy of effort estimate of the project 

improve by adding the cost of risk exposure to the initial 

estimated effort of the project? 

This research integrates the effort that goes into risk 

management and control into the initial effort estimate of 

the project. A function 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  as given in equation (3) is 
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proposed, to determine the integrated effort estimates for 

software projects. The weighted cost of the risk exposure 

due to each project cost factor is added to the initial effort 

estimate of the project. The research aims to find out 

whether these integrated effort estimates are more 

accurate than the initial effort estimates. 

 

RQ2: What is the impact of bias on risk exposure of the 

project?  

Some biases in the cost of risk exposure might have 

been introduced due to 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟  in the integrated effort 

estimates (𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙), as given in equation (3). The values 

of 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟  are based on expert judgment and have been 

collected based on a questionnaire for the respective effort 

estimation models: waterfall and agile. These values 

might be biased as per the expert’s understanding and 

knowledge. This research reduces these biases by 

obtaining optimal values of the 𝑤𝑖′𝑠 (𝑝𝑖,𝑎𝑙𝑡𝑒𝑟) by using 

evolutionary algorithms ABC, PSO and GLBPSO. In the 

weighted function 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  in equation (3), the 

probabilities are replaced with weights to obtain the 

weighted function 𝐼𝐸 as given in equation (5). 𝐼𝐸 is 

optimized using evolutionary algorithms, which obtain 

optimal values of the weights 𝑤𝑖
′𝑠. 

 

RQ3: Can project cost factors be ranked with respect to 

their risk exposure? 

Using equation (5), optimal values of 𝑤𝑖 ′𝑠  are 

obtained. These weights determine the contribution of 

each project cost factor in the total cost of risk exposure of 

the project. Higher the value 𝑤𝑖  implies that the associated 

project cost factor will contribution more to the total risk 

exposure of the project. This information can be used by 

project managers to identify the project cost factors which 

need better management of the risks associated with them. 

4 Data collection 
The proposed integrated effort estimation model was 

tested on data collected from an Indian IT firm involved 

in software development, maintenance, and consultancy. 

Two types of projects were considered for the research – 

projects with Waterfall delivery model [27] and projects 

with Agile delivery model [28]. Experts who handled the 

projects were interviewed over a span of 1 year and data 

was collected based on a questionnaire. Two separate 

questionnaires were prepared – one for each delivery 

model, Waterfall and Agile. Experts included project 

managers, technical architects, analysts, and developers. 

These experts were directly involved in the project effort 

estimation process. Experts from over 75 different 

projects were interviewed. 45 projects followed the 

Waterfall delivery model, and rest of the 30 projects were 

working on the agile principles. Projects were from varied 

domains covering banking, healthcare & pharmaceutical, 

and Insurance. Waterfall model questionnaire had 69 

fields to be filled while the agile questionnaire had 45 

fields. Table 1 shows a general format of the 

questionnaire.  

 

 

 

 

 

 

 

Table 1: Questionnaire format 

Questionnaire 

Project Id KLOC / Story 

Points 

Actual Effort 

(Man Months) 

Cost Factor 

Initial Level Probability of 

not meeting the 

initial Level 

Alternative 

Level 

Questionnaire for the Waterfall model was based on 

CoCoMo II project cost factors. There were 5 scale factors 

and 17 cost factors identified in the CoCoMo II Model. All 

the scale and cost factors have been calibrated at five 

levels: very low, low, nominal, high, very high and extra 

high [29]. The questionnaire focused on lines of code in 

the project (measured in KLOC), actual effort spent (Man 

Months), scale factors and the cost factors. For the scale 

and cost factors three inputs were taken from the experts 

– their initial assumed level while estimating effort, 

probability of not meeting that assumed level and an 

expected alternative level. The dataset thus collected is 

referred to as the “Waterfall model” dataset.  

Similarly, questionnaire for the Agile model was 

based on the frictional and dynamic forces suggested by 

Ziauddin [30] . In the Agile delivery model, the stories are 

delivered in sprints. This questionnaire collected 

responses for one sprint in each project covering story 

size, story complexity, actual velocity, sprint time, 

dynamic factors, and frictional factors related to the 

project. Size of the story was rated on a scale of 1-5 based 

on the effort required for the development of the story. 

Complexity was also rated on a scale of 1-5 depending 

upon the nature of the work and complexity of technical 

and non-technical requirements. There are 4 frictional 

factors and 9 dynamic factors identified in the model 

which impact the effort estimates of agile projects. 

Ziauddin has laid down guidelines to determine the size 

and complexity of the story on a scale of 1-5. The 

questionnaire focused on the sprint time, story size, actual 

velocity, story complexity and the variable forces 

(dynamic & frictional factors) – their initial assumed 

levels during effort estimation, probability of not meeting 

that assumed level and the expected alternative level. The 
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dataset thus collected is referred to as the “Agile model” 

dataset.        

5 Calculation of Integrated effort 

estimates  
During the initial project planning phase, an estimate of 

the effort (𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) involved in development of a project is 

done with certain assumptions regarding the project cost 

factor values. With these assumptions the project cost 

factors are assigned certain values and then the initial 

effort is estimated. This effort can be estimated using any 

established effort estimation technique depending upon 

the nature of the project, its delivery model and local 

environment. The effort calculated is expressed in Man 

Months (MM), which is the average effort spent by one 

person for a month. Initial effort is calculated for both the 

datasets: waterfall and agile using the estimation 

techniques described below. 

5.1 Waterfall model dataset 

For the “Waterfall model” dataset, the project data was 

collected based on CoCoMo II project cost and scale 

factors [29]. So, the initial effort values (𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) for a 

project were calculated using the CoCoMo II effort 

estimation formula given below: 

 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐴 × 𝑆𝑖𝑧𝑒𝑆 × ∏ 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙               

𝑛

𝑖=1

 (1) 

  

where 

𝑆
= 𝐵
+ 0.01

× ∑ 𝑆𝐹𝑘,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

5

𝑘=1

  

                   

(2)                                             

 

                                                                                                                                                                                                                                                         

𝐴 is a constant whose value can be calibrated according to 

the project’s local environment. It has been established 

that CoCoMo II estimates the software development effort 

more accurately when the constant 𝐴 is calibrated 

according to the organization’s productivity and activity 

distributions [31]. This research uses the standard value of 

2.94 proposed in the CoCoMo II Model. 𝐵 is also a 

constant set at 0.90 in the CoCoMo II model. 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

denotes the project effort multiplier for the 𝑖𝑡ℎ project cost 

actor which impacts the estimated effort of the project. 

There are 17 cost factors (n=17) in the CoCoMo II Model. 

Size of the project is determined in KLOC. 𝑆𝐹𝑘,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  are 

the five scale factors. From the expression for 𝑆, it can be 

observed that that 𝑆𝐹𝑘’s make the effort grow 

exponentially. Substituting the values of 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  from 

equation (6) in equation (5), the integrated effort estimate 

(𝐼𝐸), for Waterfall model dataset can now be expressed as 

below: 

where 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  represent the project cost factor 

values at the initial assumed stage, and 𝐸𝑀𝑖,𝑎𝑙𝑡𝑒𝑟represents 

the project cost factor values at the alternative level. 

5.2 Agile model dataset 

For the “Agile model” dataset, initial effort value 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙for a project was calculated using the model 

proposed by Ziauddin [30]. The model estimates the effort 

for a sprint using the story size, complexity, dynamic and 

frictional factors. The software product to be developed, 

is described in the form of user stories creating a product 

backlog owned by the product owner, usually a 

representative of the customer for whom the product is 

being developed. The team delivers the selected user 

stories at completion of each sprint. As opposed to 

waterfall model where the manager is responsible for 

estimating the effort in the planning phase, in agile 

approach the team members decide on the effort that will 

go into the delivery of the user story at the beginning of 

each sprint. Team members estimate the required effort 

based on their experience, story size, complexity, and 

project cost factors. The effort is expressed in terms of 

story points, where one story point corresponds to a day’s 

work for the team member. The project cost factors might 

change during the sprint execution leading to the 

uncertainty in effort estimate by the team member. These 

project cost factors account for the risks associated with 

the project which impact the effort estimate of the sprint. 

Steps given below were followed to calculate the initial 

effort estimate. 

a) Effort for a story: For each story, the effort 

dispensed towards the development of the story was 

calculated using the formula given below: 

 

 

 

 

 

 

 

 

𝐼𝐸 = 𝐴 × 𝑆𝑖𝑧𝑒𝑆 × ∏ 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛

𝑖=1

+ ∑ {(𝐴 × 𝑆𝑖𝑧𝑒𝑆

𝑛

𝑖=1

× ∏ 𝐸𝑀𝑖,𝑎𝑙𝑡𝑒𝑟

𝑛

𝑖=1

)

− (𝐴 × 𝑆𝑖𝑧𝑒𝑆

× ∏ 𝐸𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛

𝑖=1

)}

× 𝑤𝑖 

(3) 

 

𝐸𝑆 (𝐸𝑓𝑓𝑜𝑟𝑡 𝑓𝑜𝑟 𝑎 𝑠𝑡𝑜𝑟𝑦)
= 𝑠𝑡𝑜𝑟𝑦 𝑠𝑖𝑧𝑒 
× 𝑠𝑡𝑜𝑟𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 

(4) 
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This effort estimate of the story is expressed in story 

points. 

b) Effort for the whole sprint: The estimated effort for 

all the stories in the sprint is added to get the effort 

estimate of the sprint, using the equation given below: 

 

 

𝐸 (𝐸𝑓𝑓𝑜𝑟𝑡 𝑓𝑜𝑟 𝑤ℎ𝑜𝑙𝑒 𝑠𝑝𝑟𝑖𝑛𝑡)

= ∑ 𝐸𝑆𝑖

𝑛

𝑖=1

 
(5) 

where, n is the number of stories being delivered in 

the sprint. Now, the effort for the whole sprint is in 

story points. 

c) Variable factors: From the agile project dataset, 

initial values of the frictional and dynamic factors 

were used to calculate the impact of variable factors 

on the initial effort estimate. The impact was 

calculated using the formula given below: 

 

𝐷 (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐹𝑜𝑟𝑐𝑒𝑠)

= ∏ 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎 𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑖

4

𝑘=1

× ∏ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑗

9

𝑚=1

 

(6) 

 

d) Agile Velocity: In this step, the velocity for each 

sprint in the project was determined based on the 

estimated sprint effort 𝐸, sprint time 𝑇 and variable 

forces 𝐷 in the sprint, using the formula given below: 

 𝑉 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦) = (
𝐸

𝑇
)

𝐷

 (7) 

In Agile delivery, the velocity of the project is 

improved and stabilized over various sprints [32]. 

This stability in velocity will depend on the project 

cost factors, in this case dynamic and friction factors. 

These factors change often during the execution of the 

sprint thus leading to uncertainties in the estimated 

effort. These uncertainties are the risks associated 

with the project which need to be addressed during 

the project execution. The effort that goes into the 

control and mitigation of these risks has been 

accounted for in the estimated effort in the proposed 

approach. The formula for integrated effort 
(𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is given in equation (13). 

e) Effort estimate: From equation (12), formula for 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  can be obtained as follows: 

 

 
𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐸 =  (𝑉)

1
𝐷 × 𝑇 

 

(8) 

Substituting the values of 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  from equation (13) in 

equation (5), the integrated effort estimate for the Agile 

model dataset can now be expressed as below: 

 

𝐼𝐸 = (𝑉)
1
𝐷 × 𝑇 + ∑ {((𝑉)

1
𝐷𝑖,𝑎𝑙𝑡𝑒𝑟 × 𝑇)

𝑛

𝑖=1

− ((𝑉)
1
𝐷 × 𝑇)} × 𝑤𝑖 

(9) 

where 𝐷𝑖,𝑎𝑙𝑡𝑒𝑟  represents the variable forces or project cost 

factors at the alternative level. 

6 Experimental setup 
The estimated effort expressed in equations (8) and (14) 

for waterfall and agile delivery models respectively can 

now be optimised using evolutionary algorithms. In this 

work, ABC, PSO and GLBPSO have been used to 

optimise the effort estimates as described below:  

6.1 Representation of the population 

In this research, each individual particle/ bee in the 

population is represented as a vector of weight values as 

shown below: 

 

Waterfall model 

 
 
Agile model 

 
 

The Waterfall model and the agile model datasets will 

have 21 and 13 weights respectively for associated project 

cost factors. In equations (8) and (14), the weights are 

optimized to calculate the integrated effort estimates for 

software project development. All the weights are in the 

range 0 to 1. The algorithms will return the vector with 

weight values at which the MMRE value is minimized. 

From equation (15), it follows that the optimization of 

weight values will bring the 𝐼𝐸`s close to the actual effort.  

6.2 Fitness function 

In evolutionary algorithms, fitness function is used to 

evaluate the fitness of the individuals in the population. 

Mean magnitude of relative error (MMRE) is the most 

widely used fitness function for software effort estimation 

problem [33]. Tomas Urbanek [33] et al. have found 

MMRE to be an average fitness function for the effort 

estimation problem. Considering earlier performance of 

MMRE, we have used MMRE as the fitness function for 

ABC, PSO and GLBPSO algorithms. 

6.2.1 Mean magnitude of relative error 

For the algorithms used in this research, mean magnitude 

of relative error (MMRE) is used as the objective function 

to evaluate the fitness of the individuals in the population 

[34]. Magnitude of relative error (MRE) is the ratio of the 

absolute difference between the integrated effort (𝐼𝐸) and 

the actual effort spent on the project, and the actual effort 

spent on the project. Thus, the formula for MMRE will be: 

  

 
𝑀𝑀𝑅𝐸 =

∑ 𝑀𝑅𝐸𝑁
𝑖=1

𝑁
 = 

∑ (
𝐼𝐸𝑖−𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡𝑖
)𝑁

𝑖=1 𝑁⁄  
(10) 
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where N is the total number of projects in the dataset. 

All the three algorithms are used to obtain weight values 

(𝑤𝑖) that minimize the MMRE. 

 

6.3 Parameter values 

The proposed approach is implemented on two datasets 

collected during the research described in section 4. The 

implementation for the considered evolutionary 

algorithms was executed on MATLAB. The fitness 

function values in ABC, PSO and GLBPSO showed little 

change after 20 iterations. So, the number of iterations is 

set to 20 in all the swarm optimization algorithms. 

6.3.1 Parameter values for ABC 

In ABC algorithm the population size is generally kept as 

the square of the number of employed bees [24]. The 

number of weights in the waterfall model dataset is small 

(21), an initial population of size 441 i.e., square of 21 was 

generated randomly. Similarly, the agile model dataset 

had 13 weights, so the randomly generated population size 

was kept at 169. The best fitness value after every iteration 

showed little change after around 17 iterations as shown 

in figures 2 and 6. Thus, the number of iterations in each 

run were set to 20. The number of trials for abandoning 

food source (Limit) was set to 50.  

6.3.2 Parameter values for PSO and GLBPSO 

The population size for PSO and GLBPSO were kept the 

same as for the ABC algorithm. So, the population size 

was set at 441 for Waterfall model dataset and 169 for 

agile model dataset. Other parameters values are given 

below: 

1) Number of iterations: 20 

2) c1 = c2 = 1.5 

3) w = 0.8 

 

For PSO and GLBPSO, the best fitness value after 

every iteration showed little change in waterfall model 

dataset after around 17 iterations and showed little change 

in agile model dataset after around 7 iterations as shown 

in figures 3, 4, 7 and 8 respectively. 

 

6.4 Performance evaluation metrics 

The integrated effort estimated with the proposed model 

is compared with the initial estimated effort using the 

benchmark model based on four performance evaluation 

metrics: mean magnitude of relative error (MMRE), 

standardized accuracy (SA), effect size (∆) and coefficient 

of determination (R2).  

6.4.1 Standardized accuracy 

The performance evaluation measures MRE and MMRE 

have been criticized for being biased towards effort 

estimation techniques resulting in underestimates [34-39]. 

Therefore, we compare integrated effort estimates from 

the proposed approach with the estimated effort of 

CoCoMo II and Ziauddin models using standardized 

accuracy (SA) also. In SA, an estimated effort value is 

randomly chosen and assigned as effort estimate of the 

remaining projects. This process is repeated 1000 times 

and then mean absolute error (MAR) is calculated every 

time.  Standardized accuracy is calculated based on the 

formula given below: 

 𝑆𝐴 = 1 −
𝑀𝐴𝑅

𝑀𝐴𝑅𝑃0

× 100 (11) 

where 𝑀𝐴𝑅 is the mean absolute error i.e., the mean 

of the absolute difference between the estimated and 

actual effort estimates of all the projects.  

 

𝑀𝐴𝑅𝑃0 is the mean MAR of the 1000 random 

assignments [38]. For performance evaluation, a lower 

MMRE value or a higher SA value implies a better effort 

estimation approach. 

6.4.2 Effect size 

Effect size (∆) is used to determine the reliability of the 

proposed approach [38, 40]. It can be calculated based on 

the formula given below: 

 ∆=
𝑀𝐴𝑅 − 𝑀𝐴𝑅𝑃0

𝜎𝑃0

 (12) 

where 𝜎𝑃0 refers to the standard deviation of MAR 

values of 1000 random assignments from 𝑀𝐴𝑅𝑃0. High 

value of ∆ (>0.5) indicates that the results obtained by the 

proposed algorithm are more reliable than those obtained 

by random guessing.  

6.4.3 Coefficient of determination 

Coefficient of determination (R2) is used to determine the 

correlation between the dependent and the independent 

variables [41]. It varies from 0 to 1. A value closer to 1 

indicates a strong correlation between the variables. For 

this research, independent variables are the project cost 

factor values and the size of the project. Estimated effort 

will be the dependent variable. 

7 Results & analysis 
Each algorithm was run 25 times. We have reported the 

best results obtained for each algorithm. 

7.1 Results for waterfall model dataset 

Table 2 lists the weight values obtained for all the three 

algorithms: ABC, PSO and GLBPSO for the Waterfall 

dataset. These weights represent the optimal values of 

𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 defined in equation (5). A higher value of 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟  

(>0.5) indicates high level of risk exposure due to the 

corresponding project cost factor. Weight values 0, 

indicate that there was negligible risk due to that project 

cost factor and it did not impact the effort estimate of the 

project. All the projects considered are from the same 

organization, where these project cost factors such as main 

storage constraint, platform volatility, platform experience 

and execution time constraint, might already be controlled 

efficiently thus having no impact on the integrated effort 

estimate. Weight values of 1 indicate that the associated 
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project cost factors highly impact the integrated effort of 

the project. These factors need to be monitored and 

controlled for successful project deliveries. Results 

indicate that the evolutionary algorithms give better 

results (lower MMRE) as compared to the MMRE values 

of initial integrated effort estimate 𝐼𝐸𝑖𝑛𝑡𝑖𝑎𝑙 . From table 3 it 

can be observed that among the evolutionary algorithms, 

PSO outperformed the other two algorithms (ABC and 

GLBPSO) with the lowest MMRE value of 0.131 in the 

shortest time. MMRE for GLBPSO was also 0.131, but it 

took more execution time than PSO. 

Table 2: Parameter values for ABC, PSO and GLBPSO 

algorithms: Waterfall model 

 

Table 3: Waterfall Model experimental results 

 
 

In table 4, the integrated effort estimates obtained by 

the five approaches: CoCoMo II, 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , ABC, PSO and 

GLBPSO are depicted project wise. These effort estimates 

are calculated by substituting the weight values listed in 

table 2 in equation (8). It can be noted that for most of the 

projects, integrated effort estimates for evolutionary 

algorithms are lower than their corresponding 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

value given in column 4 of table 7. This indicates that the 

experts might have overestimated the alternative cost of 

the project cost factors that increased the project risk 

exposure. For projects (P1, P3, P5, P8, P16, P19, P33, P36, 

P40 and P41), the integrated effort for the evolutionary 

algorithms is higher than their corresponding 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

value. The MRE for these projects were in the range: 

CoCoMo II (0%, 39%), 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (3%, 38%), ABC (1%, 

37%), PSO (0%, 41%) and GLBPSO (0%, 36%). This 

indicates under estimation of risk exposure due to the 

project cost factors by the experts.  Figure 1 shows the 

variation in MRE of projects for all the considered five 

estimation approaches. MRE for projects (P4, P7, P10, 

P11, P15, P17, P19, P20, P23, P24, P25, P26, P27, P30, 

P31, P33, P37, P39, P40, P41, P44 and P45) has reduced 

considerably with the use of evolutionary algorithms as 

compared to the MRE values obtained when using 

CoCoMo II or initial integrated effort estimates 𝐼𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .  

 

Table 4: Estimated effort for Waterfall Model 

Projec

t Id 

Actual 

Effort 

CoCoM

o II 
𝑰𝑬𝒊𝒏𝒊𝒕𝒊𝒂𝒍 ABC PSO 

GLBP

SO 

P1 1634 
1440.80

1 

1728.74

3 
1904.43 

2036.9

67 

2024.0

36 

P2 700 
666.953

6 

713.992

1 
594.992 

589.19

42 

564.23

96 

P3 3987 
3852.06

8 

4123.87

2 

4309.47

7 

4125.6

41 

4343.7

61 

P4 450 
404.289

3 
498.517 

441.591

4 

449.43

59 

442.94

01 

P5 2608 
2702.00

5 
2535.76 2652.95 

2430.5

74 

2594.0

73 

P6 3567 
3304.39

5 

3661.61

5 

3085.54

5 

2944.1

22 

2957.7

99 

P7 2256 
2048.07

8 
2473.87 

2150.13

4 

2320.1

1 

2295.6

57 

P8 912 
965.824

3 
952.08 

969.263

9 

918.23

94 
978.07 

P9 2879 
2518.21

5 

2959.18

3 

2329.92

6 

2673.0

46 

2492.9

19 

P10 2435 
1922.34

3 

2318.94

7 

2048.01

8 

2440.1

57 

2285.4

11 

P11 1456 
1297.09

3 

2202.69

1 

1957.83

2 

1884.4

66 

1590.1

99 

P12 2234 
1480.34

3 

2414.96

8 

2262.71

4 

2347.0

47 

2421.1

57 

P13 3200 
2020.04

7 

3080.99

2 

2835.48

8 

3174.4

99 

2578.9

9 

P14 3567 
2339.51

9 
4248.97 

3801.65

6 

3581.1

39 

3753.1

84 

P15 3678 
2044.51

4 
3905.35 

3523.73

4 

3309.4

43 

3461.9

98 

P16 2759 
2756.70

7 
2585.53 

2705.77

4 

2478.3

66 

2645.3

65 

P17 3015 4621.11 
4901.98

3 

4300.25

3 

4093.6

11 

4115.9

07 

P18 3459 
2897.41

6 

3497.34

2 

3053.94

8 

3288.6

89 

3253.6

42 

P19 2435 1490.16 
1981.08

7 

2114.64

1 

2201.6

21 

2278.5

78 

P20 859 
1412.50

6 

1496.21

6 

1236.09

9 

1208.9

15 

1163.3

07 

P21 3147 
1821.51

6 

2934.55

7 
2384.43 

1944.1

2 

2307.8

94 

P22 1987 
1304.25

8 

2239.50

9 

1765.50

8 

1465.0

91 

1709.6

01 

P23 4567 
4632.82

6 

5968.33

4 

4640.55

7 

4502.9

62 

4047.4

02 

P24 3629 
3275.44

1 
4936.89 

4158.49

8 

3676.2

3 

4085.7

44 

P25 2897 
2937.63

4 
4906.66 

3734.72

4 

3305.2

51 

3671.4

37 

P26 2453 
1247.93

9 
1496.43 

1498.68

3 

1644.6

63 

1492.2

66 

P27 3786 
6163.26

6 

5581.17

3 

4626.05

6 

4513.5

31 

3955.9

72 

P28 2687 
2577.09

9 

2510.66

7 

2574.53

9 

2437.8

85 

2385.7

94 

Weights ABC PSO GLBPSO 

w1 0 0 0 

w2 0.168 0.552 0.579 

w3 0.596 1 0.686 

w4 0.826 1 1 

w5 0.954 1 1 

w6 0.685 1 0.729 

w7 0.755 1 1 

w8 0.33 0.631 0.525 

w9 0.884 1 1 

w10 0.695 0.818 0.935 

w11 0.334 0 0 

w12 0.624 0 0 

w13 0.796 0.79 0 

w14 0.891 0 1 

w15 0.302 1 0 

w16 0.551 0 0.742 

w17 0.713 0 0 

w18 0.437 0.733 0 

w19 0.301 1 0 

w20 0.549 0.736 0.678 

w21 0.917 0.159 0 
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Projec

t Id 

Actual 

Effort 

CoCoM

o II 
𝑰𝑬𝒊𝒏𝒊𝒕𝒊𝒂𝒍 ABC PSO 

GLBP

SO 

P29 2937 2395.47 
2887.84

8 

2622.17

6 

2534.7

78 

2455.0

68 

P30 2874 
3730.23

8 

3463.44

9 

3229.82

4 

2879.8

49 
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Figure 1: Variation of MRE in waterfall dataset 

 

Figure 2: Variation in fitness value: ABC algorithm                 Figure 3: Variation in fitness value: PSO algorithm 
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Figure 4: Variation in fitness value: GLBPSO algorithm 

7.2 Results for agile model dataset 

For the Agile dataset, the optimal weight values obtained 

for all the three algorithms: ABC, PSO and GLBPSO are 

listed in table 5. Results shown in table 6, indicate that the 

evolutionary algorithms gave better results (lower 

MMRE) as compared to the MMRE obtained for the initial 

integrated effort estimate (equation 3). It can also be 

observed that among the evolutionary algorithms, PSO 

outperformed the other two algorithms (ABC and 

GLBPSO) with the lowest MMRE value of 0.151 in the 

shortest time. MMRE for GLBPSO was also 0.151, but it 

took more execution time than the PSO.  

 

Table 5: Parameter values for ABC, PSO and GLBPSO 

Algorithms for Agile model 

 

The integrated effort estimates for the various 

approaches: Ziauddin, IE(Initial), ABC, PSO and 

GLBPSO are depicted in table 7. These effort estimates 

are calculated by substituting the weight values listed in 

table 5 in equation (11). For the Agile dataset, the MMRE 

(0.282) for IE(Initial) is close to the MMRE (0.288) of 

Ziauddin approach. The initial integrated effort estimates 

IE(Initial) for most of the projects are lower than the effort 

estimates using Ziauddin approach. The integrated effort 

estimates IE for all the evolutionary algorithms are higher 

than their IE(Initial) estimates. This indicates that the 

experts had assumed the cost of project cost factors 

optimistically. Use of evolutionary algorithms has 

considerably reduced this over optimism, as indicated by 

the MMRE values (ABC: 0.155, PSO, GLBPSO: 0.151). 

Figure 5 shows the variation of MRE obtained for projects 

for all the considered estimation approaches. MRE for 

projects (P3, P4, P5, P6, P9, P12, P15, P16, P17, P20, P21, 

P24, P26 and P30) has reduced considerably with the use 

of evolutionary algorithms as compared to the MRE 

values obtained when using Ziauddin approach or the 

initial integrated effort estimates. 

 

Table 6: Agile model experimental results 

 

 

 

Figure 6: Variation in fitness value: ABC algorithm 

 

Figure 7: Variation in fitness value: PSO algorithm 

 

Figure 8: Variation in fitness value: GLBPSO algorithm 

 

Weights ABC PSO GLBPSO 

w1 0.9183 1 1 

w2 0.0223 0 0 

w3 0.603 0.783 0.781 

w4 0 0 0 

w5 0.0733 0 0 

w6 1 1 1 

w7 0.4551 0.3888 0.3936 

w8 0.8715 1 1 

w9 0.7779 1 1 

w10 0.0417 0 0 

w11 0.2197 0 0 

w12 0.0697 0 0 

w13 0.0396 0 0 

Agile 

Model 

MMRE SA Effect 

Size (∆) 

R2 Time 

(seconds) 

Ziauddin 0.288 1.85 0.603 0.018 356.36 

IE(Initial) 0.282 2.14 0.713 0.102 347.56 

ABC 0.155 2.34 0.756 0.113 9.32 × 103 

PSO 0.151 2.43 0.766 0.114 6.17 × 103 

GLBPSO 0.151 2.44 0.765 0.113 1.19 × 104 
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Table 7: Estimated effort for agile model 

7.3 Revisiting the research questions 

RQ1: Does the accuracy of effort estimate of the project 

improve by adding the cost of risk exposure to the initial 

estimated effort of the project? 

 

Results as discussed in sections 7.1 and 7.2, show that 

the integrated effort estimates have lower values of 

MMRE and higher values of SA, effect size and R2 than 

the corresponding initial effort estimates, for both the 

datasets. Thus, it can be concluded that the integrated 

effort estimates are more accurate, reliable, and 

comprehensive than the initial effort estimates. 

 

RQ2: What is the impact of bias on risk exposure of the 

project? 

 

Results in sections 7.1 and 7.2, show that the MMRE 

of the software effort estimate is reduced by using 

evolutionary algorithms ABC, PSO and GLBPSO for both 

the datasets. In the process, we also obtain the optimum 

weight value, 𝑤𝑖 , corresponding to the 𝑖𝑡ℎ project cost 

factor, which is the optimum value of 𝑝𝑖,𝑎𝑙𝑡𝑒𝑟 . These 

optimal values of the  𝑤𝑖 ′𝑠 reflect the unbiased values of 

(𝑝𝑖,𝑎𝑙𝑡𝑒𝑟)
′
𝑠. 

 

RQ3: Can project cost factors be ranked with respect to 

their risk exposure? 

 

High value of 𝑤𝑖  implies that the contribution of the 

𝑖𝑡ℎproject cost factor is also high in the risk exposure of 

the project. So, the values of 𝑤𝑖’s are good indicators of 

project cost factors which have high risk exposure. 
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8 Threats to validity 
This section discusses threats to validity of the proposed 

model.  

External validity 

External validity [42] is concerned with 

generalization of the results obtained. Threats to external 

validity are conditions that limit the ability to generalize 

the results of the proposed experiment to other effort 

estimation models [43-46].  

For this research, the datasets have been collected 

from a single organization. Although the organization is a 

large IT consultancy firm working on projects in varied 

domains, the proposed approach could be further validated 

by experimenting on data from different organizations. To 

test the efficacy of evolutionary algorithms, large datasets 

are ideal. The results in this paper are based on datasets 

with 30 to 45 projects. 

9 Conclusion  
This paper has introduced a novel approach for integrating 

the impact of risk exposure into the effort estimate of a 

software project. This impact is determined using the 

weights associated with the risk exposure due to each 

project cost factor. These weights are then optimized using 

evolutionary approaches like ABC, PSO and GLBPSO. 

Experimental results show that the PSO and GLBPSO 

algorithms gave more accurate effort estimates for both 

waterfall and agile projects, but GLBPSO took more time. 

The approach essentially reduces the bias due to the 

probabilities which were associated with the impact of risk 

exposure on the effort estimates of the projects. Software 

effort estimation for projects now, will, not have to rely 

solely on the expert judgment for assessing the probable 

impact of the risk exposure due to project cost factors. 

The project factors can be ranked based upon the 

associated optimal weight values. Software Project 

managers can prepare and plan for risk management and 

development of the project effectively using the ranking 

obtained. Cost factors with higher weight values will need 

to be mitigated and controlled earlier than the cost factors 

with lower weight values. 

10 Future directions 
In the manuscript, tables 4 & 7 list the effort estimates 

calculated by using the optimum weight values obtained 

by applying ABC, PSO and GLBPSO on waterfall and 

agile model datasets respectively. To validate the obtained  

results, tables 5 and 6, then compare the calculated effort 

estimates based on MMRE, SA, Effect size and R2.  The 

results obtained confirm that the risk integrated effort 

estimation accuracy improves with the application of 

evolutionary algorithms such as ABC, PSO and GLBPSO. 

The proposed risk integrated approach can further be 

validated through additional case study / company data. 

The proposed risk integrated effort estimation 

approach can be applied to other benchmark effort 

estimation models such as Use Case Point [47], Function 

Point [48], and  Analogy based estimation [49] for 

Waterfall projects. Poker [50], T-shirt sizing and Three 

point estimation [51] for Agile projects. To enable the 

comparison, cost factor data for the suggested benchmark 

models will have to be collected / generated.  

To further investigate the impact of evolutionary 

algorithms on weight values associated with cost factors, 

other available evolutionary algorithms such as firefly, ant 

colony optimization, cuckoo search and whale 

optimization could be used, and results compared with the 

results obtained in this research. The weight values can 

also be optimized using artificial intelligence techniques 

like neural networks, convolutional neural networks, and 

deep learning techniques.  
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