
Informatica 37 (2013) 231–244 231

Web Phishing Detection Based on Page Spatial Layout Similarity

Weifeng Zhang
School of Computer, Nanjing University of Posts and Telecommunications, China
E-mail: zhangwf@njupt.edu.cn

Hua Lu
Department of Computer Science, Aalborg University, Denmark
E-mail: luhua@cs.aau.dk

Baowen Xu
Department of Computer, Nanjing University, China
E-mail: bwxu@nju.edu.cn

Hongji Yang
Software Technology Research Laboratory, De Montfort University, England
E-mail: hyang@dmu.ac.uk

Keywords: web phishing, page spatial layout similarity

Received: July 8, 2012

Web phishing is becoming an increasingly severe security threat in the web domain. Effective and efficient
phishing detection is very important for protecting web users from loss of sensitive private information and
even personal properties. One of the keys of phishing detection is to efficiently search the legitimate web
page library and to find those page that are the most similar to a suspicious phishing page. Most existing
phishing detection methods are focused on text and/or image features and have paid very limited attention
to spatial layout characteristics of web pages. In this paper, we propose a novel phishing detection method
that makes use of the informative spatial layout characteristics of web pages. In particular, we develop two
different options to extract the spatial layout features as rectangle blocks from a given web page. Given
two web pages, with their respective spatial layout features, we propose a page similarity definition that
takes into account their spatial layout characteristics. Furthermore, we build an R-tree to index all the
spatial layout features of a legitimate page library. As a result, phishing detection based on the spatial
layout feature similarity is facilitated by relevant spatial queries via the R-tree. A series of simulation
experiments are conducted to evaluate our proposals. The results demonstrate that the proposed novel
phishing detection method is effective and efficient.

Povzetek: Opisana je detekcija spletnega ribarjenja na osnovi podobnosti strani.

1 Introduction

Along with the wide use of the Internet, a rapidly growing
number of people are using various online services such
as e-banking, online shopping, etc. These services give
users great convenience. Meanwhile, the number of phish-
ing web sites also increases very quickly. According to the
statistics of PhishTank, over 1.3 million phishing sites are
verified and registered in its database merely in the first two
years after its launch. There are about 5919 online phish-
ing sites, an d the number of offline phishing sites are close
to 1.3 millon. And everyday a large number of new phish-
ing sites were found, in average 600 sites are submitted
and verified daily. Phishing sites cheat users by simulat-
ing the interfaces of genuine web sites, and defraud users
of their sensitive information like user ID, password, and
credit card number. Illegal uses of such stolen informa-
tion can cause significant loss to users. Plenty of phishing

web sites are found every day and phishing fraud is an in-
creasing crime on the Internet. Therefore, it is desirable
that phishing sites are detected effectively and users can
get alerts to avoid being trapped.

Phishing sites are often sent out in random spam emails.
Such emails often target those users who have no expe-
rience on network security, and make them believe that
the emails come from legitimate organizations. Typically,
these emails fake some reasons to require users to update
their account information. When a user tries to log in
through the interface provided in the email, sensitive infor-
mation like user name and password will be stolen by the
phishing site. Although many users nowadays have more
or less experience on security and many email gateways
can filter out most spams, a considerable number of users
still become victims of phishing sites. There exist various
anti-phishing approaches. A detailed review can be found
in Section 2. Blacklist based approaches can precisely filter

232 Informatica 37 (2013) 231–244 W. Zhang et al.

out any phishing web page included in the blacklist. How-
ever, it is very hard to maintain up-to-date blacklists be-
cause phishing pages often have short existence and new
phishing pages come out at a good pace [1,2]. Web feature
based approaches analyze the feature differences between
genuine web page and phishing web page, extract criti-
cal features, and construct classifiers to classify subsequent
web pages in phishing detection. Such approaches work
fast and are able to detect phishing pages that have not been
identified before. The difficulty of such approaches lies
in determining classification features as phishing pages are
always created to be alike to their corresponding genuine
pages, which lowers detection accuracy. The third-party
tools based phishing detection approach use the third-party
tools like search engines to detect phishing pages [3, 4].
We examined this method by experiments, and found lots
of phishing pages can be found in the search results, which
may be due to SEO(search engine optimization) methods
used by creators of phishing sites. If the phishing pages
can be searched in search engines, this approach fails basi-
cally.

Recently, whitelist approach is often used in phishing
page detection. It constructs a feature library from those
web pages that are likely to be imitated by phishing pages,
and then identifies phishing pages by computing the sim-
ilarities between a web page and the feature library. As
the whitelist approach is based on similarity search rather
than exact matching, its detection speed is greatly affected
by the feature library size as well as the search strategies.
Some filtering methods, e.g., measuring file size, count-
ing image number, and hierarchical clustering, have been
used to reduce the number of signature pages to be com-
pared. These methods can also rule out relevant web pages
and thus results in errors in phishing detection. Further-
more, hierarchical clustering based filtering usually pro-
duces poor clustering results because of the differences
among individual web pages, which inevitably impairs the
filtering accuracy of feature library.

In order to solve the above problems, we in this pa-
per propose a novel phishing detection approach that ex-
ploits the relevant spatial layouts of web pages. Song etal
use a vision-based page segmentation algorithm to parti-
tion a web page into semantic blocks with a hierarchical
structure. Then spatial features (such as position and size)
and content features (such as the number of images and
links) are extracted to construct a feature vector for each
block [5]. A phishing page and its corresponding genuine
page are close to each other visually. Consequently, page
elements (e.g., text fields, images, buttons, etc.) in the
phishing page are probably placed at the same or similar
positions and of the same or similar size to their counter-
parts in the genuine one. Such spatial layout similarities
can be used to determine whether a suspect page is close
enough to a genuine page to be a phishing page.

Our approach makes use of spatial index on web page
spatial layouts to quickly filter out unqualified candidates
from the feature library. Also, it takes into account the im-

portant spatial layout features in defining and computing
the similarity between web pages. On one hand, we im-
prove the filtering performance (filtering speed and filtering
accuracy) on feature library by including spatial layout fea-
tures in the library.On the other hand, we combine spatial
layout features with existing popular features to improve
the accuracy of phishing detection. By an R-tree indexing
pages in the feature library based on spatial features, we are
able to fast obtain candidate pages in the library that are vi-
sually close to a suspect page. The R-tree can also filter
out a considerable number of pages in the library without
computing the concrete similarities.

A crucial part in our approach lies in capturing the layout
characteristics of a web page to protect, i.e., a page likely
to be imitated by a phishing page. After displaying a web
page by the rendering engine (also known as layout engine)
in a web browser, we develop two segmentation methods
to extract its layout features. One method works by analyz-
ing the page’s DOM tree. For each tree node, it produces
the placement, width, and height of the corresponding page
block. Nested blocks are allowed in this method. Based
on image segmentation, the other method employs image
edge detection techniques to divide the entire image of a
web page into non- overlapping blocks.

All those blocks obtained in either way are represented
in rectangles and constitute the feature library. We then
build an R-tree to index the entire feature library to facil-
itate search in phishing detection. Subsequently, given a
suspect phishing page, its layout features are extracted like-
wise and used to compare against those pages whose lay-
outs have been captured in the feature library. Through the
R-tree, most pages in the library are filtered out based on
spatial layout dissimilarity. Further, the concrete similarity
is computed between the suspect page and each of the few
candidate pages passing the filter. The suspect page will be
regarded as phishing page if the similarity is greater than a
pre-specified threshold.

We make the following contributions in this paper:

– First, we define the spatial layout features for web
pages, and develop two feature extraction methods
that make use of relevant functionality of modern web
browsers.

– Second, we present an effective web page similarity
definition that takes into account the proposed page
spatial layout features.

– Third, we design an R-tree index for legitimate web
page library that is organized based on spatial lay-
out features, and propose library search algorithms for
phishing detection.

– Fourth, we conduct an extensive experimental study
to evaluate our proposals. The results suggest the pro-
posed approach is effective and efficient.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work on phishing page detection.

Web Phishing Detection Based on. . . Informatica 37 (2013) 231–244 233

Section 3 presents the layout features of web pages and our
extraction methods. Section 4 details how to build R-tree
to index the web page layout features in the feature library.
Section 5 reports on an extensive experimental study. Fi-
nally, Section 6 concludes the paper and discusses several
directions for future work.

2 Related work

The email based approach filters out phishing links in an
email by anti-spam technologies. Fette et al. proposed ma-
chine learning based PILFER [6] that extracts 9 features
from the links in an email and trains a random tree as a
classifier for subsequent pages. Bergholz et al. [7] gener-
ates extra email features through a trained Markov chain
and a new model of potential class topics. These extra
email features, together with basic ones, are used to train
a classifier that is able to reduce over two thirds false posi-
tives than PILFER. Moreover, Bergholz et al. [8] proposed
a detection method that simulates hidden interference in-
formation by OCR technology. It however incurs long run-
ning time and shows poor classification performance be-
cause the used OCR technology is not good at recognizing
texts in disturbed images.

The blacklist based method constructs a blacklist of col-
lected phishing site URLs. When a user visits a URL, the
URL will be checked up in the blacklist. If the URL is in
the blacklist, the access to it will be blocked. Popular web
browsers such as Microsoft Internet Explorer and Google
Chrome have built-in anti-phishing blacklists [9]. Some
other software, e.g., NetCraft [2], SiteAdvisor [10], can fil-
ter out phishing sites in the their blacklists by browser tool-
bars. However, it is a big challenge to maintain the black-
list up-to-date in the presence of the dynamics of phishing
sites.

The third-party tools based anti-phishing mainly de-
pends on the ranking of search engines. Such methods
make use of the fact that new web sites and sites with few
clicks are usually ranked lowest by search engines. Given
a web page, the TF-IDF scores of each term in it are calcu-
lated, and the top 5 terms are selected to generate a lexical
signature of the page. Subsequently, the lexical signature
is sent to a search engine (e.g., Google) to evoke a search.
The web page is regarded as a phishing page if its domain
name is out of the top N in the search result [1, 9]. Orthog-
onally, Moore et al. [11] proposed to use search engines to
find potentially vulnerable hosts. In particular, analyzing
search logs discloses the search terms commonly used by
attackers, which indicate vulnerable web sites.

There also exists similarity based anti-phishing. Such an
approach decides a given web page to be a phishing page
if its similarity to a genuine page is greater than a pre-
specified threshold. So far two kinds of similarities have
been used: structural and visual. Liu et al. [12] proposed
to detect phishing web pages by computing the structural
similarity between corresponding DOM trees. Angelo et

al. [13] proposed to compute the similarity by comparing
the HTML tags of two web pages. In contrast, visual sim-
ilarities are computed based on the image features of two
web pages [1, 14, 15]. It is noteworthy that our approach in
this paper not only extracts new visual features from web
pages, i.e., spatial layout, but also combines visual similar-
ity with structural similarity when comparing web pages.
To the best of our knowledge, this is the first work that is
characterized by such comprehensiveness in phishing de-
tection.

3 Spatial layout features of web page
After downloading a requested web page, a web browser
analyzes the html document, extracts the embedded web
links, executes the scripts in the html document, and then
decides whether to issue other URL requests. When the
resources (e.g., texts, pictures, etc.) contained in the page
are returned, the web browser will render these resources
according to their properties. The user then can see in the
browser the web page with both texts and visual resources.
As phishing pages are always intended to make people be-
lieve they are the genuine pages, they look very similar or
even identical to their target genuine pages. As a result, the
rendering features of a phishing page and the counterparts
in the target genuine page are very similar visually. Ac-
cordingly, the basic phishing detection process consists of
the following three steps (see Figure 1).

Step 1: Access the web page (denoted as url) and its em-
bedded resources. Step 2: Extract the features of the ren-
dered web page. All the extracted features form a signature
that is denoted as S (url). Step 3: Compute the similarity
between S(url) and those signatures in the feature library.
If there exists one signature Si in the library such that simi-
larity between S (url) and Si is greater than a pre-specified
threshold, the web page url is judged as a phishing page,
and an alert is issued.

From the above steps it can be seen that two points are
very important for good results of phishing detection. It is
vital to extract critical and suitable features from rendered
web pages. It is also very helpful to improve the accuracy
of feature similarity computation. Conventional features of
rendered web pages include text features, image features,
overall image features, etc. They are covered in detail else-
where [16]. In this paper, we focus on the spatial layout
features of rendered web pages, which have not been con-
sidered in the literature, and utilize them in effective phish-
ing detection.

3.1 Extraction of spatial layout features
After a web page is completely downloaded by a browser,
it is resolved into a HTML DOM tree and all its embed-
ded elements are rendered in the browser through a render-
ing engine. When a page is being rendered, it is easy to
get the rectangle region that each page element occupies
in the browser. Such rectangle regions can be obtained in

234 Informatica 37 (2013) 231–244 W. Zhang et al.

Legitimate Page Library

Suspicious Page

Phishing Page Legitimate Page

Query

Result

Figure 1: Feature library based phishing detection

an alternative way as follows. A rendered web page can
be divided into image segments by some edge detection al-
gorithm which can return the rectangle region each image
segments occupies in the browser.

Definition 1. (Spatial Feature) A spatial feature of a
web page element is a rectangle denoted as rect =
〈left , top,width, height〉, where (top, left) represents the
top-left corner coordinate of the rectangle in the browser,
width represents the rectangle’s width, and height repre-
sents the rectangle’s height.

The spatial features of all elements in a web page form
the spatial layout feature of that web page. As mentioned
above, the spatial layout feature can be obtained by either
combining a browser rendering engine with the page DOM
tree or applying image detection algorithms after page ren-
dering. Next, we present these two options in Sections
3.1.2 and 3.1.2 respectively.

3.1.1 DOM tree based spatial layout feature
extraction

DOM tree based extraction of spatial layout features needs
to call the browser layout engine and analyze a DOM tree
using some tools. The browser layout engine integrates
texts, images, css files, java scripts, and other related re-
sources altogether to render a web page, by referring to the
page’s DOM tree. Assume the pixel in the upper-left cor-
ner of the web browser display region is origin (0, 0), the
X-axis is from left to right, and Y-axis is from top to down,
both measured in units of pixel. The browser engine posi-
tions each DOM tree node according to its four numerical
attributes: X coordinate, Y coordinate, width and height.
These four attributes form the layout feature of a page ele-
ment corresponding to a DOM tree node.

The layout feature of a web page element is obtained
as follows. We first call the parsing engine of a chosen

web browser to parse the web page and get a corresponding
DOM tree. After that, we traverse the DOM tree, and get
the corresponding display region of each node. If a node’s
display region area is larger than a pre-specified threshold
(we set it 50 in this paper), the layout of this node is gener-
ated. Here we ignore DOM tree nodes with small display
regions because small regions are insignificant visually and
thus unimportant in phishing detection.

Definition 1 defines the general spatial features of web
page elements. Applying it to the DOM tree based feature
extraction, the spatial layout feature of a web page is a set
of relevant rectangles, as defined in the following.

Definition 2. (DOM Tree based Spatial Feature) Given
a web page p, and its DOM tree DT (p), its DOM tree
based spatial feature SFD(p) is a set of sufficiently large
rectangles, each corresponding to a node in the DOM
tree. Formally, SFD(p) = {recti | Area(recti) >
Tarea ,∃nodei ∈ DP(p) s.t. nodei

′s extent is recti}.

In the definition Tarea denotes a pre-specified threshold
that helps filter out small rectangles.

Figure 2: DOM tree based spatial layout features

Web Phishing Detection Based on. . . Informatica 37 (2013) 231–244 235

Figure 2 shows an example of DOM tree based spatial
layout features. Each block represents the position and size
of a rendered page element, which corresponds to a DOM
tree node. Note that we filter out small rectangles with area
smaller than 50 measured in pixels. It can also be seen
from the figure that different topology relationships exist
among these rectangles. A rectangle recti contains another
one rectj if the former’s corresponding DOM tree node ni
is an ancestor of the latter’s node nj. The adjacent relation-
ship between two rectangles also reflects their correspond-
ing nodes are adjacent in the DOM tree. In contrast, the
overlap relationship between rectangles results from the re-
layout of corresponding DOM tree nodes, which is done by
the rendering engine according to relevant CSS rules and/or
java script codes.

DOM tree based layout feature extraction needs to call
web browser APIs to get the layout information. However,
web browsers (e.g., the Microsoft Internet Explorer) only
allow us to get the width/height values of every block and
the Top/Left values relative to its parent block. In order
to get the X and Y coordinates of each block, we need to
recursively add the Top values and the Left values of the
related blocks. Figure 3 gives an example of calculation of
the block coordinates.

top 1

left 1

left 2

top 2

left total

top total

Figure 3: Calculation of block coordinates

In this example, we need to calculate the X and Y coor-
dinates of the innermost block. As the Microsoft Internet
Explorer does not provide methods to directly get these two
parameters, we calculate them through the parameters of
other blocks. First, we get the Top value and the Left value
of block A relative to its parent block. Second, we obtain
the Top value and Left value of the parent block relative to
the upper block, and so on. Finally, if we find that the upper
block has the label ’Body’, the iteration stops. As a result,
the sum of all the Top values is the coordinate Y, and the
sum of all the Left values is the coordinate X. In Figure 3,
we compute the left total and top total as follows:

left total = left 1 + left 2, and top total = top 1 + top 2.

Here, the left total is the value of the block relative to
the left value of the browser window, i.e., the X coordinate

of the block’s top-left corner. Likewise, top total is the Y
coordinate of its top-left corner.

3.1.2 Image segmentation based spatial layout
feature extraction

The image segmentation based extraction produces image
blocks in a rectangle. Each rectangle is also represented
by four numerical attributes: the X coordinate, the Y co-
ordinate, the width, and the height. Such rectangles are
extracted as follows. We first parse the web page, render it
through the browser’s rendering engine, and get the entire
page in an image. After that, we divide that image into a
collection of smaller image blocks based on the gaps be-
tween them, using some image edge detection algorithm.
Finally, we calculate the layout feature, i.e., the top-left
corner coordinates and size, of each image block thus ob-
tained.

Definition 3. (Image Segmentation based Spatial Fea-
ture) Given a web page p, its image segmentation based
spatial feature SFI (p) is a set of sufficiently large rect-
angles, each corresponding to an image block in the ren-
dered page. Formally, SFI (p) = {recti | Area(recti) >
Tarea , recti ∈ BlocksIS (p)1}.

Rectangles in Figure 4 are obtained from a rendered web
page through image segmentation, where each rectangle re-
flects the position and size of a displayed element. Note
less blocks are generated by image segmentation than by
DOM tree based extraction. Therefore, we set the area
threshold Tarea to a smaller value 20 in this example. As
a result, those blocks whose areas are smaller than 20 are
excluded. Compared to the DOM tree based layout fea-
tures in Figure 2, the image segmentation based blocks in
Figure 4 are more visible to human visual discrimination.

Figure 4: Image segmentation based spatial layout features

After the definitions and extractions of web page spatial
layout features, we are ready to introduce the concept of
corresponding blocks between two web pages.

1We use BlocksIS (p) to denote all the blocks that are obtained by an
image segmentation method applied to page p.

236 Informatica 37 (2013) 231–244 W. Zhang et al.

3.2 Corresponding blocks matching

The spatial similarity between web page blocks can be cal-
culated based on a number of ways, including distance,
shape, size, and topological relations. Zhang gives a fuzzy
topological surface matching method [17]. Tong put for-
ward a theory of probability matching model [18]. And
Masuyama calculate the possibility of matching based on
overlap area ratio of two blocks [19].

Our web page similarity definition is based on a con-
cept called corresponding blocks. A pair of corresponding
blocks Ai and Bi come from pages A and B respectively,
and they are visually close to each other. Intuitively, if each
Ai in a suspicious page A has a corresponding block Bi in
a genuine pageB,A is a phishing page that imitatesB. We
propose two rigorous definitions for corresponding blocks.

Definition 4. (OA based Corresponding Blocks) Given
blocks Ai and Bi that are extracted by a same method
from web pages A and B respectively, if the size difference
(both width and height) between Ai and Bi is less than
a threshold Tsize , and the ratio between the their overlap
area and max(Area(Ai), Area(Bi)) is larger than a thresh-
old Toverlap , Ai and Bi are considered as corresponding
blocks.

The idea behind OA based corresponding blocks is that
if the overlap occupies a very high portion of either block,
these two blocks are regard as a pair matching in phish-
ing detection. An example is shown in Figure 5. The size
difference between the left two blocks does not exceed a
pre-specified threshold, and the ratio between their over-
lap area and the larger block area exceeds a pre-specified
threshold. Therefore, the two blocks are determined to be
corresponding blocks. In contrast, the two blocks in the
right have a small portion as overlap, and they have a large
difference in height. As a result, they are not corresponding
blocks.

Figure 5: OA based block matching

Definition 5. (CDA based Corresponding Blocks) Given
blocksAi andBi that are extracted by a same method from
web pages A and B respectively, if the Euclidean distance
between their centers is less than a threshold Tdist , and
their size difference (both width and height) is less than a
threshold Tsize , Ai and Bi are considered as Center Dis-
tance and Area (CDA) based corresponding blocks.

On the other hand, the CDA method is based on the cen-
ter distance and area. If the center distance between the
query block and a block in the feature library is less than
the predetermined threshold and their size difference is suf-
ficiently small, they are matched as corresponding blocks.
For example, the left two blocks are corresponding blocks
in Figure 6. In contrast, although the center distance of
the right two blocks does not exceed the threshold, their
height difference is too large, and therefore they are not
corresponding blocks.

Figure 6: CDA based block matching

Given a query page and a page in the feature library, we
can find all pairs of corresponding blocks between them
according to either Definition 4 or Definition 5. In Sec-
tion 4 we will present how to obtain all such corresponding
blocks by making use of R-tree on the feature library. After
obtaining all corresponding block between two pages, we
are ready to compute the similarity between them.

3.3 Computing similarity based on spatial
layout features

In this section, we use an example shown in Figure 7 to
illustrate the similarity computation. Figure 7 shows the
layouts of web pages A and B. Here A has 5 blocks and
B has 6 blocks. We normalize both pages into the same
coordinate system. With appropriate thresholds, we can
find that A-1 and B-1 are corresponding blocks, A-2 and B-
2 are corresponding blocks, A-5 and B-3 are corresponding
blocks, and so are A-4 and B-4. In total, there are four pairs
of corresponding blocks between pages A and B.

Page A Page B

A-1

A-2

A-3

A-4

B-1

B-2

B-3

B-4

B-5

B-6

A-5

Figure 7: Corresponding blocks between two web pages

With the concept of corresponding blocks, we define the
layout similarity between two web pages as follows in For-

Web Phishing Detection Based on. . . Informatica 37 (2013) 231–244 237

mula 1. Here, nA is the number of blocks in web page A,
nB is the number of blocks in web page B, while ncor is
the number of corresponding blocks between A and B.

Sim(A,B) = (1− |nA − nB |
max(nA, nB)

) · n2cor
nA · nB

(1)

Formula 1 calculates the ratio of the corresponding
blocks in either page, normalizes the product of the two
ratios with respect to nA as well as nB , and uses the result
as the layout similarity between two pages A and B.

Alternatively, we can directly use the number of corre-
sponding blocks ncor as the similarity. We call this page
similarity Common block Number (CN). Or, we can use the
ratio of the corresponding blocks ncor/nA as the similarity
when we decide whether pageA is a phishing page. We call
this page similarity Common block Number Ratio (CNR).
In Section 5, both CN and CNR page similarity definitions
will be implemented and compared with the one defined in
Formula 1.

On the basis of extracting the page rendering features,
the similarity of page signatures can be computed as de-
scribed above. Further, page signatures can mix up text sig-
natures, image signatures, overall picture signatures, layout
signatures, and so on. The structure and search of the fea-
ture library have direct impact on the phishing detection
speed. To speed up layout based similarity search in the
detection, we create an R-tree to index all web page spatial
layout features in the library.

4 Spatial layout feature based
phishing detection

4.1 Motivation
Given the signatures of two web pages, their similari-
ties can be calculated by simple matching [13], N largest
match [20], EMD method [3, 21], Bipartite graph based
matching method [16, 22], etc. However, for web phish-
ing detection, a suspicious web page should be compared
to the feature library whose size has a significant impact
on the phishing detection speed. In practice, the feature li-
brary is often large and it needs to be frequently updated.
This demands an efficient filtering method that quickly fil-
ters out irrelevant web sites from the feature library and en-
ables to compare the suspicious page with a limited number
of candidates from the feature library.

The bipartite graph based matching method uses some
features to pruning web pages in the feature library, e.g.,
the number of DOM tree nodes, and the number of im-
age nodes in web pages. Although this method improves
the speed of phishing detection to some extent, it needs
to traverse the entire feature library with time complexity.
Therefore, this method does not apply to the case of large
feature libraries.

Motivated as such, we propose to build a spatial index
for the layout features of web pages in order to speed up

the search of the feature library.

4.2 Indexing spatial layout features of web
pages

R-tree is a tree based indexing data structure similar to B
tree. It is widely used in spatial databases for indexing
spatial data, which supports efficient processing of vari-
ous spatial queries. For example, we can easily use R-
tree to search for all gas stations within two kilometers to
the current location. In R-trees, each spatial object is ap-
proximated by a minimum bounding rectangle (MBR), and
MBRs are grouped to larger but fewer MBRs according to
specific rules. The grouping of MBR is conducted recur-
sively until a final single MBR is reached which is corre-
sponds to the root of the R-tree.

Each node of an R tree has a certain number of entries.
Each non-leaf node entry stores two fields: the address
(pointer) of the corresponding child node, and the MBR of
the corresponding child node. Each leaf-node entry stores
the address (identifier) of the corresponding object and the
object’s MBR. It is noteworthy that each non-leaf node’s
MBR, stored in its corresponding entry in its parent node,
is the MBR of all its child nodes’ MBR. Based on the
data partitioning described above as well as the consequent
MBR containment property, R-tree can prune unpromising
nodes in query processing and thus shorten the query time
significantly.

In this paper, we use an R-tree to index the spa-
tial features of all the web pages in the feature library.
In particular, we create an R-tree and insert to it each
spatial feature captured in an MBR for all web pages
in the feature library. Each block is represented as
〈pageID, blockID,MBR, pointer〉, where pageID is
the identifier of the page that contains the block, block is
the identifier of the block within its page, MBR is the
block’s MBR, and pointer points to other relevant infor-
mation of that block. The overall indexing scheme is shown
in Figure 8.

In particular, the Page Hash Table maps a given page
identifier to the address of a Block Hash Table for that page.
There are multiple Block Hash Tables, each for a specific
page. Each such a Block Hash Table maps a block identi-
fier to the R-tree leaf node where the block’s index entry is
contained.

4.3 Searching spatial layout feature library
Given a suspicious web page s that may be a phishing page,
we need to find those legitimate pages that s is similar to.
Here we employ the space layout based similarity to mea-
sure how similar two web pages are. All legitimate web
pages in the feature library are organized based on their
spatial layout features and indexed as described in Sec-
tion 4.2. In other words, the phishing detection is reduced
to a similarity search of the feature library using the spatial
layout based page similarity metric.

238 Informatica 37 (2013) 231–244 W. Zhang et al.

… ...

Block R-tree

Block Hash Tables

… ...

<Page ID, Block Hash Table>

Page Hash Table

... ...

… ...

… ...

<Block ID, R-tree Leaf Node>

Figure 8: Index of the Library of Page Spatial Layout Features

The overall page similarity search is encapsulated in a
function pageSearch. Its pseudo code is shown in Algo-
rithm 1. It takes as input a suspicious web page s, the le-
gitimate page feature library FL, and two integer numbers,
N and K, for controlling the sizes of corresponding block
matches and similar page matches respectively.

Algorithm 1 pageSearch(Suspicious web page s, legiti-
mate web page feature library FL, number of blocks to
match N , number of similar pages to return K)

1: bs← obtain all blocks from s . Either DOM tree
or image segmentation is employed here, depending on
how the feature library is constituted.

2: mbs← initialize an array of |bs| elements
3: pages← initialize a hash table that maps a page ID to

a list of block IDs
4: for each block bi in bs do
5: mbs[i]← topMatch(FL’s R-tree, b,N)
6: for each 〈PageID ,BlockID〉 in mbs[i] do
7: add 〈PageID ,BlockID〉 to pages
8: H ← initialize a max-heap
9: for each page p that appears in pages do

10: score← SIM(p, s) . According to Equation 1
11: push 〈p, score〉 to H
12: return top-K pages in H

In particular, the algorithm first obtains the blocks of a
given suspicious page s, and put them in bs (line 1). Here,
either s’s DOM tree or an image segmentation method is
applied to generate all the blocks, depending on how the
spatial layout features in the legitimate library are gener-
ated. Subsequently, for each block b in bs, it calls function
topMatch that searches through the block R-tree to get the
top-N corresponding block matches for b (line 5). Note
OA based corresponding block matching is shown in Algo-
rithm 2, and CDA based matching is shown in Algorithm 4.

Referring to Algorithm 2, OA based matching employs
a max-heap H for matching blocks and a recursive search
function queryOA via the library’s block R-tree (line 3).
The recursive function is shown in Algorithm 3. It con-
ducts a depth-first traversal on the R-tree, and only consid-
ers nodes that overlap with the current block b (lines 3, 14,
and 18). The overlapping blocks are kept in the max-heap
H . Finally, the top-N ones are returned by Algorithm 2.

Algorithm 2 topMatchOA(legitimate web page feature li-
brary RF ’s R-tree RRF , block b, integer value N)

1: H ← initialize a max-heap
2: OAN ← 0
3: queryOA(RRF , b, OAN , H)
4: return the top-N elements of H

The CDA based block match works as shown in Algo-
rithm 4. Taking the mindist [23] metric between an R-tree
node and the current block b as the key, it visits all block R-
tree nodes in a best-first manner [24]. During the process,
only those blocks with similar size are considered (line 6).
Once the first N closest and most similar blocks are found,
indicated by the result size, the algorithms returns the top-
N matches (lines 10–11).

Refer to the page search (Algorithm 1) again. After
the top-N corresponding block matches are obtained, it
adds each result record 〈PageID ,BlockID〉 to a list pages
(lines 6–7). After all blocks in the suspicious page s are
processed likewise, the page search algorithm calculates
the similarity between s and each page that appears in
pages, and returns the top-K pages with the highest sim-
ilarity scores (lines 8–12). The returned K pages will be
used for further check to decide whether s is a phishing
page or not. For that purpose, other page features like texts,
images can be used to take a closer comparison between
each returned page and the suspicious page s.

As a remark, we use the page spatial layout based simi-

Web Phishing Detection Based on. . . Informatica 37 (2013) 231–244 239

Algorithm 3 queryOA(R-tree node n, block b, the current
N th overlap areaOAN , the current matched block heapH)

1: if n is a leaf node then
2: for each block nb indexed by n do
3: if nb does not overlap with b then continue
4: if |H| < N then
5: push 〈nb.pageID, nb.blockID,OA(nb, b)〉

to H
6: if |H| = N then
7: update OAN is necessary
8: else if OA(nb, b) > OAN then
9: push 〈nb.pageID, nb.blockID,OA(nb, b)〉

to H
10: update OAN is necessary
11: else
12: if |H| < N then
13: for each child node cn of n do
14: if cn overlaps with b then
15: queryOA(cn, b,OAN , H)
16: else
17: for each child node cn of n do
18: if cn overlaps with b and OA(cn, b) >

OAN then
19: queryOA(cn, b,OAN , H)

Algorithm 4 topMatchCDA(legitimate web page feature
library RF ’s R-tree RRF , block b, integer value N)

1: result← initialize an empty set
2: H ← initialize a min-heap
3: push 〈RRF .root, 0〉 to H
4: while H is not empty do
5: pop H’s top element to 〈n, dist〉
6: if node n is a block and n has comparable size

length as b then add 〈n.pageID, nb.blockID〉 to
result

7: else
8: for each child node cn of n do
9: push 〈cn,mindist(cn.center, b.center)〉

to H
10: if |result| = N then break
11: return result

larity SIM (line 10) in Algorithm 1. This similarity defini-
tion can be replaced by the other two page similarities CN
and CNR that are defined in Section 3.3.

4.4 Overall phishing detection
implementation

We use the above algorithms presented in Section 4.3 to
compute the similarities between a suspicious web page
and relevant pages in the legitimate library. Note that we do
not compute such a similarity with respect to every page in
the library. Instead, we prune irrelevant pages in the library
through the R-tree.

The overall phishing detection procedure is shown in
Figure 9. A specifically-designed browser plug-in records
the protected web URLs that require username and pass-
word, extracts the spatial layout features (and other signa-
tures like text and/or image) of that page, and stores the
information in the feature library. The spatial layout fea-
ture R-tree is updated accordingly when the new piece of
information is inserted to the feature library.

When a user accesses a current web page that also re-
quires username and password but has a different URL
from the stored one, the phishing detection will be invoked.
The current page is used as the suspicious one.

The spatial layout features (and signatures) of the cur-
rent web page are then extracted by the plug-in. Next, a set
of K candidate web pages are returned by the page search
algorithm (Algorithm 1 in Section 4.3). Further, the sim-
ilarity of signatures between the suspicious page and the
feature library is computed. When the similarity is greater
than the given threshold, an alarm is raised to alert the user
that she/he may be accessing a phishing web site.

To ease the phishing detection we can apply the thresh-
old strategy directly to the spatial layout feature based sim-
ilarity in deciding whether a suspicious page is a phishing
page or not. In particular, if one of the computed similari-
ties (in Algorithm 1) is greater than a pre-specified thresh-
old, the suspicious web page will be considered as a phish-
ing web page directly without involving further signatures.

Note that the feature library can be stored either locally
or on a remote server. In the latter scenario, the browser
plug-in will send the current URL to the server when a user
visits a web page that requires a password. The server will
conduct the phishing detection for the URL and return the
detection result to the client browser.

5 Experimental study
In this section, we evaluate the spatial layout feature based
phishing detection through a series of experiments. We in-
vestigate the filtering performance of the spatial layout fea-
ture based library filtering, and the overall effectiveness of
phishing detection based on spatial layout similarity.

5.1 Performance metrics
Throughout our experiments, we have the following vari-
ables relevant to the numbers of different web pages in-
volved in phishing detection.

– A is the number of phishing web pages that are de-
tected as phishing web pages.

– B is the number of normal web pages that are detected
as phishing web pages.

– C is the number of phishing web pages that are de-
tected as normal web pages.

– D is the number of normal web pages that are detected
as normal web pages.

240 Informatica 37 (2013) 231–244 W. Zhang et al.

 Protected URLs

 Fetched Web
Pages

Suspicious
page

Feature
Extractor

 Spatial Layout
Feature R-tree

Feature
Extractor

Feature
Library

Feature
Comparator Report

Features

Figure 9: Spatial layout similarity based phishing detection

Accordingly, we consider the following performance
metrics in our experimental study.

– Precision = A/(A+B)

– Recall = A/(A+C)

– True positive rate (TPR) = A/(A+C)

– False positive rate (FPR) = B/(B+D)

Precision is the ratio of correct reports in all phishing
page reports. Recall describes the detected proportion of
all phishing pages. These two evaluations are mutually ex-
clusive. A high precision means a low recall, while a low
precision means a high recall. For phishing detection, re-
call is more important and small numbers of incorrect re-
ports of phishing pages are acceptable because the security
is the major concern.

In the experiments, phishing web pages are referred
as positive instances, and the normal web pages are re-
ferred as negative instances. TPR represents the proba-
bility that true phishing web pages are reported ass phish-
ing web pages; FPR represents the probability that normal
web pages are incorrectly reported as phishing web pages.
Different thresholds can be used in obtaining the corre-
sponding TPR and FPR, as well as the corresponding ROC
curve. Accordingly, the corresponding AUC (area under
the curve) can be calculated [4].

If the legitimate web page targeted by a phishing page
is reserved after the feature library filtering, i.e., it is not
pruned out, we call it a hit. Accordingly, we consider an-
other performance metric hit rate. It is the number of hits
divided by the total number of phishing web pages.

5.2 Experimental settings
We compare the design options listed in Table 1. All ex-
periments are implemented in javascript and Java. They
are run on a Pentium 5 desktop PC with double 2.6GHz
CPUs, 2GB main memory. The PC runs on Windows XP
SP3, and has a Mozilla Firefox 3.0 web browser.

We makes use of the data collected from web site Phish-
Tank [25]. As an open and free anti-phishing web site, it

allows users to easily submit the suspicioused web sites
which will be confirmed by experts. We do not directly re-
trieve phishing web sites because most phishing web pages
do not exist for a long period of time.

Specifically, we retrieve 100 positive pairs of English
phishing pages and their corresponding real-world legiti-
mate web pages. We also collect 100 negative legitimate
English web pages from banks, credit unions and online
services according to Yahoo! Directory [26]. In the exper-
iments, the 100 target web pages of phishing web pages
are stored in the feature library; the 100 corresponding
phishing web pages (positive examples) and the 100 gen-
eral web pages (negative examples) are used as suspicious
web pages.

For each legitimate or suspicious web page, its DOM
tree based spatial layout features are obtained by calling
a Firefox plug-in. Whereas the image segmentation based
spatial layout features are obtained using the nested Earth
Mover’s Distance based image segmentation [21].

5.3 Results

5.3.1 Hit rates

We first investigate the hit rates of different design options.
Specifically, we compare 12 different methods that are ob-
tained by selecting one option for each of the three phases
in Table 1. The results are shown in Figures 10 to 13. As
K increases, all methods get higher hit rates.

Figure 10 reports the results of those methods that use
OA block matching following DOM tree based block gen-
eration. For small (less than 5) and large (larger than 18)
K values, OA-SIM achieves the highest hit rates. Whereas
all three methods perform very closely. This shows that
the spatial layout feature based similarity (SIM) is able to
improve the hit rates.

Figure 11 reports the results of those methods that use
CDA block matching following DOM tree based block
generation. For four particular K values (8, 9, 10, 11),
all three methods have the same hit rate. Apart from that,
CDA-SIM clearly outperforms the other two methods for

Web Phishing Detection Based on. . . Informatica 37 (2013) 231–244 241

Table 1: Design Options
Phase Options

Block generation DOM tree based (DOM), Image segmentation based (IMG)
Corresponding Blocks Match Overlap Area (OA), Center Distance and Area (CDA)

Page similarity CN, CNR, SIM (Equ. 1)

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hi
t R

at
e

(%
)

K

OA-CN OA-CNR OA-SIM

Figure 10: OA block matching for DOM tree segmentation

all K values. This suggests that SIM is a very good simi-
larity definition that is able to get high hit rates.

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hi
t R

at
e

(%
)

K

CDA-CN CDA-CNR CDA-SIM

Figure 11: CDA block matching for DOM tree segmenta-
tion

In addition, comparing Figure 10 and 11 indicates that
CDA is a better corresponding block matching option as
it leads to higher hit rates that OA. Given to blocks, CDA
takes into account not only their size difference but also
the distance between their centers. Therefore, CDA cap-
tures corresponding blocks better than OA that considers
overlapping areas only. A large overlapping area does not
necessary mean two blocks are visually similar and close
to each other.

Figures 12 and 13 report the results of those methods that
use image segmentation based block generation, followed
by OA and CDA matching respectively.

According to the results shown in Figure 12, SIM works
very well as a novel similarity definition for methods us-
ing OA block matching. The method OA-SIM obtains the
highest hit rates for all K values except 19 and 20 where

OA-CN gets better with very slight differences.

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Hi

t R
at

e
(%

)

K

OA-CN OA-CNR OA-SIM

Figure 12: OA block matching for image segmentation

SIM still performs well for methods using CDA block
matching, according to the results reported in Figure 13.
All methods here are less steady, which indicates that CDA
is more sensitive to the image segmentation based block
generation.

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
it

 R
a
te

 (
%
)

K

CDA CN CDA CNR CDA SIM

Figure 13: CDA block matching for image segmentation

To summarize, image segmentation based block genera-
tion yields better performance than DOM tree based block
generation in terms of hit rates. This is because the segmen-
tation captures the visual effects and spatial layout features
better for web pages rendered in a browser. Also, CDA
captures corresponding blocks better than does OA.

5.3.2 TPR and FPR

We investigate both TPR and FPR for different methods.
They are two important indicators of the phishing detec-
tion accuracy. In particular, we study the receiver operating
characteristic by plotting both indicators in ROC curves.

242 Informatica 37 (2013) 231–244 W. Zhang et al.

The results are reported in Figures 14 and 15, for DOM
tree based block generation and image segmentation based
block generation respectively.

Both ROC curves are convex compared to their corre-
sponding main diagonals. This shows all three methods in
comparison (OA-CNR, OA-SIM and CDA-SIM) are effec-
tive in phishing detection. Moreover, the curves of CDA-
SIM have larger AUC (area under the curve) in both figures.
This indicates that CDA-SIM is the best among all the three
in consideration.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P
R

OA-CNR

OA-SIM

CDA-SIM

Figure 14: ROC curve of methods using DOM tree seg-
mentation

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

FPR

T
P
R

OA-CNR

OA-SIM

CDA-SIM

0
.2

0
.6

1
.0

Figure 15: ROC curve of methods using image segmenta-
tion

5.3.3 Precision and recall

Next, we study another two performance metrics, namely
precision and recall, for methods that use SIM as the page
similarity. We omit CN and CNR because the results from
previous experiments demonstrate that SIM has the best
overall performance. We compare DOM tree based block
generation and image based block generation, followed by
OA or CDA block matching. The results are listed in Ta-
ble 2.

The highest precision (0.933) is achieved by DOM-
CDA-SIM. While the highest recall (0.919) is achieved
by IMG-CDA-SIM. This demonstrates that CDA-SIM is
a very good combination for phishing detection because it
is able to achieve both high precision and high recall.

We also calculate the F1 score for each method using the
following formula:

F1 score = 2 · Precision · Recall
Precision + Recall

The results are also reported in Table 2. Among all the
four methods in comparison, IMG-CDA-SIM is overall the
best method for phishing detection as it achieves the high-
est F1 score.

5.3.4 Library search time

Finally, we study the execution time of the proposed spatial
layout based phishing detection. In particular, we measure
the execution time that is spent on search the legitimate
web page library. We compare a sequential scan method
with our R-tree facilitated library search. A sequential scan
compares a given suspicious web page with each legitimate
page in the legitimate library. We vary the R-tree fanout
from 5 to 15 in the index for spatial layout features. We
vary the legitimate library size from 1 to 100 to see its ef-
fect on the library search efficiency. The results on library
search time are reported in Figure 16.

0

200

400

600

800

1000

1200

1 5 10 20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Library Size

Sequential Scan Fanout-5 Fanout-10 Fanout-15

Figure 16: Legitimate library search time comparison

The sequential scan works the best for very a small le-
gitimate library with no more than 10 pages. As the library
size increases, the propose spatial layout feature based fil-
tering catches up and clearly outperforms the sequential
scan when the library contains more than 30 pages. A le-
gitimate library usually is large with tens or even hundreds
of legitimate pages, it is therefore beneficial to employ the
proposed spatial layout feature based search to filter out ir-
relevant legitimate pages quickly. This can speed up the
overall phishing detection.

Web Phishing Detection Based on. . . Informatica 37 (2013) 231–244 243

Table 2: Results of Precision and Recall

Method Precision Recall F1 Score
DOM-OA-SIM 0.911 0.837 0.872

DOM-CDA-SIM 0.933 0.857 0.894
IMG-OA-SIM 0.826 0.909 0.865

IMG-CDA-SIM 0.910 0.919 0.915

6 Conclusion and future work
directions

In this paper, we propose a spatial layout similarity based
approach for phishing web detection. This novel approach
takes into account important spatial layouts of web pages.
For this approach, we first invent two meaningful methods
that extract the spatial layout features from web pages. Af-
ter obtaining such spatial layout features, we define a sim-
ilarity function to quantize how visually similar two web
pages are. Such a similarity measurement indicates how a
suspicious page is a phishing one in relation to a legitimate
web page. In order to speed up searching the legitimate fea-
ture library, we further design an R-tree index for all spatial
layout features in the library and develop search algorithms
accordingly. Finally, we evaluate the proposed approach
through a series of experiments. The results demonstrate
the effectiveness and efficiency of our proposal.

Several directions exist for future work. First, it is of
interest to combine the spatial layout features proposed in
this paper with other types of features available for web
pages. For example, text features of web pages can be ex-
tracted together with spatial layout features. As a result,
phishing detection can make use of a mix of different types
of features.

Second, it is relevant to integrate DOM tree and image
segmentation in web page block generation. The former
is easy to implement with accessible web browser APIs;
while the latter captures the visual and spatial layouts of
web pages more closely to the way humans do. Combin-
ing these two methods may generate blocks that are more
decisive in phishing detection.

Third, the library search algorithms (Section 4) in this
paper can be further optimized by processing relevant spa-
tial queries in a collective way. Such optimization is more
relevant when the legitimate page library is large.

Acknowledgments

Weifeng Zhang’s work was supported by the Na-
tional Natural Science Foundation of China under Grant
No.61272080 and No.61100135, Opening Foundation of
Guangxi Key Laboratory of Trustworthy Software, and
Opening Foundation of Jiangsu Key Laboratory of Com-
puter Information Processing Technology in Soochow Uni-
versity (Grant No.KJS0714).

References
[1] Yue Zhang, Jason Hong, and Lorrie Cranor (2007).

Cantina: a content-based approach to detecting phish-
ing web sites. In WWW.

[2] (2011). Netcraft Anti-phishing Toolbar.
http://toolbar.netcraft.com.

[3] Anthony Y. Fu, WenYin Liu, and XiaoTie Deng
(2006). Detecting phishing web pages with visual
similarity assessment based on earth mover’s dis-
tance (EMD). IEEE Trans. Dependable Sec. Comput.,
3(4):301–311.

[4] Yue Jiang, Bojan Cukic, and Yan Ma (2008). Tech-
niques for evaluating fault prediction models. Empir-
ical Software Engineering, 13(5):561–595.

[5] R. Song, H. Liu, J.R. Wen, and W.Y. Ma (2004).
Learning blockimportance models for webpages. In
Proceedings of the WWW.

[6] I. N. Fette, Sadeh, and A. Tomasic (2006). Learn-
ing to detect phishing emails. ISRI Technical report,
CMU-ISRI-06-112.

[7] André Bergholz, Jeong Ho Chang, Gerhard Paass,
Frank Reichartz, and Siehyun Strobel (2008). Im-
proved phishing detection using model-based fea-
tures. In CEAS.

[8] André Bergholz, Gerhard Paass, Frank Reichartz,
Siehyun Strobel, Marie-Francine Moens, and
Brian Witten (2008). Detecting known and new
salting tricks in unwanted emails. In CEAS.

[9] Ziv Bar-Yossef and Maxim Gurevich (2009). Esti-
mating the impressionrank of web pages. In WWW,
pages 41–50.

[10] (2011). McAfee SiteAdvisor.
http://www.siteadvisor.com.

[11] Tyler Moore and Richard Clayton (2009). Evil
searching: Compromise and recompromise of inter-
net hosts for phishing. In Financial Cryptography,
pages 256–272.

[12] WenYin Liu, GuangLin Huang, XiaoYue Liu, Min
Zhang, and XiaoTie Deng (2005). Detection of phish-
ing webpages based on visual similarity. In WWW

244 Informatica 37 (2013) 231–244 W. Zhang et al.

(Special interest tracks and posters), pages 1060–
1061.

[13] Angelo P. E. Rosiello, Engin Kirda, Christopher
Kruegel, Fabrizio Ferr, and Politecnico Di Milano
(2007). A layout-similarity-based approach for de-
tecting phishing pages. In SecureComm, pages 454–
463.

[14] Ponnurangam Kumaraguru, Ro Acquisti, Lorrie Faith
Cranor, and Jason Hong (2010). Teaching johnny not
to fall for phish. ACM Trans. Internet Techn., 10(2).

[15] WenYin Liu, XiaoTie Deng, GuangLin Huang, and
Anthony Y. Fu (2006). An antiphishing strategy based
on visual similarity assessment. IEEE Internet Com-
puting, 10(2):58–65.

[16] WeiFeng Zhang, YuMing Zhou, Lei Xu, and
BaoWen Xu (2010). A method of detecting phishing
web pages based on hungarian matching algorithm.
Chinese Journal of Computers, 33(10):1963–1975.

[17] QiaoPing Zhang, DeRen Li, and JianYa Gong (2004).
Surface entity matching techniques of city map
database. International Journal of Remote Sensing,
8(2):107–112.

[18] XiaoHua Tong, SuSu Deng, and WenZhong Shi
(2007). Probability based map entity matching
method. International Journal of Surveying and Map-
ping, 36(2):210–217.

[19] A Masuyama (2006). Methods for detecting apparent
differences between spatial tessellations at different
time points. International Journal of Geographical
Information Science, 20(6):633–648.

[20] E. Medvet, E. Kirda, and C. Kruegel (2008). Visual-
similarity-based phishing detection. In SecureComm,
pages 1–6.

[21] JiuXin Cao, Bo Mao, JunZhou Luo, and Bo Liu
(2009). A phishing web pages detection algo-
rithm based on nested structure of earth mover’s dis-
tance (Nested-EMD). Chinese Journal of Computers,
32(5):922–929.

[22] Harold W. Kuhn (1955). The hungarian method for
the assignment problem. Naval Research Logistics
Quarterly, 2:83–97.

[23] Nick Roussopoulos, Stephen Kelley, and Frédéic Vin-
cent (1995). Nearest neighbor queries. In SIGMOD
Conference, pages 71–79.

[24] Gísli R. Hjaltason and Hanan Samet (1999). Distance
browsing in spatial databases. ACM Trans. Database
Syst., 24(2):265–318.

[25] (2011). PhishTank. http://www.phishtank.com.

[26] (2011). Yahoo! Directory. http://dir.yahoo.com/.

