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Authors investigate the p-median location problem on networks and propose a heuristic algorithm which
is based on the probability changing method (a special case of the genetic algorithm) for an approximate
solution to the problem. The ideas of the algorithm are proposed under the assumption that, in the large-
scale networks with comparatively small edge lengths, the p-median problem has features similar to the
Weber problem. The efficiency of the proposed algorithm and its combinations with the known algorithms
were proved by experiments.

Povzetek: Avtorji predlagajo nov hevristični algoritem za iskanje p-mediane v omrežjih.

1 Introduction
The aim of the location problem [13] is to determine the
location of one or more new facilities in a set of possible
locations (discrete or continuous). The main parameters
of such problems are the coordinates of the facilities and
distances between them [37, 14, 15]. Examples of the lo-
cation problems include the location of warehouses [15],
computer and communication networks, base stations of
wireless networks [30] etc. They are also useful in the
approximation theory, statistical estimation problem [28],
signal and image processing and other engineering appli-
cations.

The Fermat-Weber problem (Weber problem) [35, 37]
is the problem of searching for such a point that a sum of
weighted distances from this point to the given points (de-
mand points) is minimal. In the location theory, several
generalizations of these problems are known [11]. The first
one is the multi-Weber problem where the aim is to find
optimal locations of p new facilities:

F (X1, ..., Xp) =

N∑
i=1

wi min
j∈{1,p}

L(Xj , Ai)→ min. (1)

Here, {Ai|i = 1, N} is a set of the demand points,
{Xj |j = 1, p} is a set of new placed facilities, wi is a
weight coefficient of the ith demand point, L() is a distance
function.

One of the problems of the discrete location theory, a p-
median problem, can also be considered as a generalization
of the Weber problem [17, 23]. The medians are searched
for in a finite set of graph vertices. Generally this problem
is NP-hard [24]. The polynomial-time algorithm is de-
veloped for trees only [20]. A procedure for network flow
searching (an algorithm for the p-median problem solving)
is adapted for location problems in a continuous space with

the rectangular metric [10].
Despite the complexity of the problem, various heuristic

algorithms could give good results for most problems in
reasonable time. One of the simplest but efficient heuristics
for the p-median problem is local search [31, 32]. Rabbani
[29] proposes an algorithm based on new graph theory for
small size problems. Using Lagrangian relaxation allows
an approximate solving of huge-scale problems [5], up to
90000 vertices in a network. However, ”good” solutions
[6] were achieved by the analogous technique for problems
with n = 3795 which were also considered as large-scale
problems.

Hosage and Goodchild [19] proposed the first genetic
algorithm for the p-median problem. In [9], authors pro-
pose a genetic algorithm providing rather precise results
but its convergence is slow. In [1], authors propose a quick
and precise genetic algorithm for the p-median problem.
However, solving large-scale problems still takes too much
time.

In [14], a continuous problem with an arbitrary lp met-
ric is solved. In [24] and [25], authors prove that the un-
constrained Weber problems with Euclidean or rectangular
metric are NP-complete.

For the continuous location problems with Euclidean
(l2), rectangular (l1) and Chebyshev (l∞) metrics, the al-
gorithms based on the Weiszfeld procedure are proposed
[36]. However, a solution of the same problems with re-
stricted zones [39], barriers [8] or modified distance func-
tions is not trivial. In practically important problems, mod-
els based on the Euclidean or rectangular metric are usu-
ally rough approximations [27, 38] since they do not take
into account characteristics of the space and transportation
means, in particular, the presence and quality of roads, bar-
riers, relief etc. Sometimes, the distance function is given
algorithmically as a solution of another optimization prob-
lem [38]. Thus, if the problem is formulated as a Weber
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problem, its discretization should be often useful [21].
We can always consider practical problems as discrete.

Any scheme (or map) has finite resolution, digital copy of
any map is always discrete. The implementation of the ob-
tained solution of a problem is also performed by the tools
with finite precision. However, such a discrete problem is a
large-scale problem and any algorithms which guarantee an
exact solution in polynomial time do not exist (polynomial
time algorithm exists for a discretized generalized Weber
problem with rectangular metric only [10]).

The unconstrained location problems with mixed coor-
dinate systems (discrete and continuous) are considered in
[33, 16].

Heuristic random search algorithms do not guarantee an
exact solution. However, they are statistically optimal, i.e.,
the percentage of the ”near optimal” solutions increases
with growth of the problems dimension [3]. In case of
discrete location problems, genetic algorithms [30, 26],
greedy search [26, 18] and other methods are implemented.

The probability changing method initially proposed for
unconstrained optimization is a random search method de-
scribed by the pseudo-code below.

Algorithm 1. Basic probability changing method

1: Set k = 0; set the initial values of the components of
the probability vector P0 = {p0,1, p0,2, ..., p0,N} (here, the
value of each element at the kth step is the probability (ex-
pectation) of generating a vector X with the corresponging
element equal to 1: pk,j = µ{xj = 1});

2: In accordance with the distribution given by the el-
ements of the vector P , generate a set of NPOP vectors
Xk,i, i ∈ {1, NPOP };

3: Calculate the value of the objective function F (Xk,i)
∀i ∈ {1, NPOP }.

4: Select some vectors Xk,i (for example, a vector with
the best and the worst value of the objective function);

5: Based on the results of the Step 4, modify the proba-
bility vector P ;

6: k = k + 1; if k < NSTEPS then goto 2 (other stop
conditions are also possible);

7: STOP.

This simple method is a special variant of the genetic
algorithm [12]. The modifications of this algorithm for
the constrained optimization problems proposed in [22] can
solve pseudo-Boolean problems (multi-knapsack problem,
travelling salesman problem) with dimensions up to mil-
lions of Boolean variables.

2 Problem statement, known
algorithms

Let G = (V,E) be an undirected adjacent graph (a net-
work), V = {v1, ..., vn} be a set of its vertices (Fig. 1),
E = {ei|i = 1,m} be a set of its edges, ei = (vj , vk),
j ∈ {1, n}, k ∈ {1, n}, i ∈ {1,m} without loops

(ei 6= (vj , vj) ∀i = 1,m, j = 1, n). For each edge ei,
its length li is defined, li ≥ 0∀i = 1,m. For an edge
ei = (vj , vk), let us denote lj,k = li. Weight wj ≥ 0 is
defined for each vertex vj . For each pair of the vertices
(vj , vk), a distance function L(j, k) is defined as the length
of the shordest path from vi to vj .

L(j, k) =
∑
q∈P∗j,k

lq = min
P∈Pj,k

∑
q∈P

lq (2)

Here, P ∗j,k is a set of the edges of the shortest path between
vj and vk, Pj,k is a set of all possible paths between these
vertices. We can formulate the the p-median problem as

arg min
m1,...,mp∈{1,n}

f(m1, ...,mp)

= arg min
m1,...mp∈1,n

n∑
i=1

wi min
i=1,p

L(mj , i),

p < n. (3)

The aim of this problem is to select p vertices so that the
sum of weighted distances from each of the vertices of the
graph to the nearest selected vertex is minimal.

Let

Si = {j|∃ej = (vi, vk), j ∈ {1,m}, k ∈ {1, n}}

be a set of the edges of the vertices incident to the ith ver-
tex;

Ci = {k|∃ej = (ci, vk), j ∈ {1,m}, k ∈ {1, n}}

be a set of the indexes of the vertices adjacent to the ith
vertex;

l∗i = min
j∈{1,p}

L(mj , i)

be the length of the shortest path from the ith vertex to the
nearest of p vertices m1, ...,mp.

For calculating the value of the objective function
f(m1, ...,mp), we use the algorithm below.

Algorithm 2. p-median objective function calculation

Require: indexes m1, ...,mp of p selected vertices. 1:
l∗i = +∞∀i = 1, n;

2: l∗mi
= 0∀i = 1, p;

3: V ∗ = {m1, ...,mp}; V ∗∗ = V ∗;
4: while |V ∗∗| 6= 0 do
4.1: V ′ = ∅;
4.2: for i ∈ V ∗∗ do
4.2.1: for j ∈ Ci do
4.2.1.1: if vj /∈ V ∗ then V ′ = V ′ ∪ {j}; l∗j = l∗i + li,j ;
4.2.1.2: else if l∗j = l∗i + li,j then l∗j = l∗l + li,j ;
4.2.1.3: next 4.2.1;
4.2.2: next 4.2;
4.3: V ∗∗ = V ′; V ∗ = V ∗ ∪ V ′;
4.4: next 4;
5: return f(m1, ...,mp) =

∑n
i=1 wil

∗
i .
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a) solution for p = 32 b) solution for p = 3

Figure 1: Scheme of a problem and its solutions, n = 400

For comparison, we used the local search algorithm [32]
with a random order of vertices evaluation (Algorithm 3)
as one of the simplest but efficient algorithms.

Algorithm 3. Local search

Require: array of indexes M = {m1, ...,mp} of the
vertices (initial solution), value of the objective function
f∗ = f(m1, ...,mp).

1: shuffle elements ofM; r = 0;
2: for each element m of the arrayM do
2.1: for each vertex m∗ which is adjacent to m do
2.1.1: f∗∗ = f(m1, ...,m

∗, ...,mp) (here, the vertex m
is replaced by m∗);

2.1.2: if f∗∗ < f∗ then replace m by m∗ inM; f∗ =
f∗∗; r = 1;

2.1.3: next 2.1;
2.2: next 2;
3: if r = 1 then goto 1;
5: return new solution (m1, ...,mp).

The genetic algorithm with greedy heuristic proposed in
[1] includes a special crossover procedure (Algorithm 4).
The ”chromosomes” of this algorithm are sets of the ver-
tices (solutions of the problem).

Algorithm 4. Crossover procedure for the GA with greedy
heuristic

Require: sets of indexes M1 = {m1,1, ...,m1,p},
M2 = {m2,1, ...,m2,p} of the vertices (”chromosomes”).

1:M =M1 ∪M2; pM = |M|;
2: while pM > p do
2.1: f∗ = +∞;
2.2: for each vertex m∗ inM do
2.2.1:M∗ =M\ {m∗};
2.2.2: f ∗ ∗ = f(M∗);
2.2.2: if f∗∗ < f∗ then m∗∗ = m∗;
2.1.3: next 2.2;
2.3:M =M\ {m∗∗}; pM = pM − 1;
2.3: next 2;

5: return new solution (”chromosome”)M.

This method uses an original procedure of the initial
population generation [1]. It does not use any mutation
procedure.

The probability changing method is a pseudo-Boolean
optimization method, the objective function must be a func-
tion of Boolean variables.

Let us introduce new variables x1, ..., xn:

xi =

{
1, i ∈ {m1, ...,mp}
0, i /∈ {m1, ...,mp}

. (4)

In this case, our problem has a constraint

n∑
i=1

xi = p. (5)

The transformation of the problem back into the problem
with integer variables is performed as follows:

{m1, ...,mp} = {i|xi = 1, i = 1, n}. (6)

The problem with the pseudo-Boolean objective func-
tion is stated as follows:

fb(x1, ..., xn) =f({j|xj = 1, j = 1, n})

=

n∑
i=1

wi min
j|xj=1,j=1,n

L(i, j) (7)

with the constraint (5).
In this form, our problem can be solved using many

methods [3, 4, 2, 22] including the probability changing
method.

3 An algorithm based on the
probability changing method

Continuous location problems such as multi-Weber prob-
lem with Euclidean, rectangular or Chebyshev meric are
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amenable to analysis and analytical solution methods.
Weiszfeld [36] procedure and Trubin’s procedure for rect-
angular metric [34] are based on the assumption that the
partial derivatives of the objective function are defined, i.e.,
a small change of the location of any point in a feasible so-
lution leads to some small change in the value of the ob-
jective function. If X = (x1, x2) is a solution of some 2D
unconstrained location problem then

∆f(X)

∆X
=

∆f(x1, x2)

∆
√

∆x1 + ∆x2

< const.

Let Lmax be the maximum distance between 2 vertices:

Lmax = max
i,j∈{1,n}

L(i, j), (8)

lavg be the average length of the edge:

lavg =

m∑
j=1

lj/m. (9)

Our algorithm is based on 2 hypotheses:

Hypothesis 1. If lavg/Lmax is small (lavg/Lmax → 0)
then the character of the p-median problem shows features
of the continuous problem. In particular, if {m1, ...,mp} is
a solution of the p-median problem then, having replaced
any mith vertex of this solution to any jth point such that
L(j,mi) is small, the change in the objective function value
is also small:

∃l∆,∆Fmax > 0 : (j,mi) < l∆ ⇒
|f(m1, ...,mi, ...,mp)− f(m1, ..., j, ...,mp)|
< ∆Fmax

Hypothesis 2. If the solution {m1, ...,mi, ...,mj , ...,mp}
contains 2 vertices vi and vj such that L(mi,mj) is small
then there is high probability (expectation) that for the so-
lution {m1, ...,mi, ..., k, ...,mp} with a vertex vj replaced
by another arbitrary chosen vertex vk, the value of the ob-
jective function is ”better” than for the original solution:

∃lmin :

L(mi,mj) < lmin ∧ L(mi, k) > lmin ⇒

⇒ µ

{
f(m1, ...,mi, ...,mj , ...,mp)
≥ f(m1, ...,mi, ..., k, ...,mp)

}
> 0.5

and

lim
lmin→0

µ

{
f(m1, ...mi, ...mj , ...mp)
≥ f(m1, ...mi, ...k, ...mp)

}
→ 1.

Let us prove the consistency of the hypotheses for the
special cases.

Lemma 1. Let L(mi, j) = 0. Then

f(m1, ...,mi, ...,mp) = f(m1, ..., j, ...,mp).

Proof. Let us choose arbitrarily the i∗th vertex, i∗ ∈
{1, n}.

If i∗ ∈ {m1, ...,mi, ...,mp} then, obviously,
mini′′∈{m1,...mi,...mp} L(i∗, i′′) = 0.

min
i′′∈{m1,...,j,...,mp}

L(i∗, i′′)

= min

{
min

i′′∈{m1,...mi,...mp}
L(i∗, i′′) + L(mi, j);

L(i∗, j) }
= min{0 + 0;L(i∗, j)} = 0.

If i∗ /∈ {m1, ...,mi, ...,mp}, let us introduce the nota-
tion:
Pi∗,j is a set of all possible paths from the i∗th vertex to the
jth one,
Pi∗,mi is a set of all possible paths from the i∗th vertex to
the mith,
Pi∗(mi)j is a set of all possible paths from the i∗th vertex
to the jth one through the mith vertex,
Pi∗(mi)j is a set of all possible paths from the i∗th vertex
to the jth one which do not include the mith vertex.

L(i∗, j) = min
P∈Pi∗,j

∑
ek∈P

lk

= min{ min
P∈Pi∗(mi)j

∑
ek∈P

lk; min
P∈Pi∗(mi)j

∑
ekinP

lk}

= min { min
P∈Pi∗,mi

∑
ek∈P

lk + min
P∈Pmi,j

∑
ek∈P

lk;

min
P∈Pi∗(mi)j

∑
ek∈P

lk }

= min{ min
P∈Pi∗,mi

∑
ek∈P

lk + 0; min
P∈Pi∗(mi)j

∑
ekinP

lk}

= min{L(i∗,mi); min
P∈Pi∗(mi)j

∑
ekinP

lk}

≤ L(i∗,mi).

L(i∗,mi) = min
P∈Pi∗,mi

∑
ek∈P

lk

= min{ min
P∈Pi∗(j)mi

∑
ek∈P

lk; min
P∈Pi∗(j)mi

∑
ekinP

lk}

= min { min
P∈Pi∗,j

∑
ek∈P

lk + min
P∈Pj,mi

∑
ek∈P

lk;

min
P∈Pi∗(j)mi

∑
ek∈P

lk }

= min{ min
P∈Pi∗,j

∑
ek∈P

lk + 0; min
P∈Pi∗(j)mi

∑
ekinP

lk}

= min{L(i∗, j); min
P∈Pi∗(j)mi

∑
ekinP

lk} ≤ L(i∗, j).

L(i∗,mi) ≤ L(i∗, j) ∧ L(i∗, j) ≤ L(i∗,mi)

⇒ L(i∗,mi) = L(i∗, j). (10)
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Lemma 2. Let {m1, ...,mi, ...,mj , ...,mp} be a solution
of the p-median location problem on a network with n ver-
tices, wi > 0∀i = 1, n, L(mi,mj) = 0 and ∃k ∈ {1, n}:
L(mq, k) > 0∀q = 1, p.

Then

f (m1, ...,mi, ...,mj , ...,mp)

> f(m1, ...,mi, ..., k, ...,mp). (11)

Proof. Let us introduce the notation

M0 = {m1, ...,mi, ...,mj , ...,mp};

M1 = {m1, ...,mi, ..., k, ...,mp}.

Let us define a function

fm(i′, S) = min
i′′∈S

L(i′′, i′).

Its value for the sets denoted above is

fm (i′,M0)=min { fm(i′, {mi}); fm(i′, {mj});
fm(i′,M0 \ {mi}) } ∀i′ ∈ {1, n}.

Taking into account L(mi,mj) = 0, from Lemma 1, for
the set of vertices of the solution

fm (i′, {m1, ...,mi, ...,mj , ...,mp})
= fm(i′, {m1, ...,mi, ...,mi, ...,mp})
= fm(i′,M0) ∀i′ ∈ {1, n}.

Further,

fm(i′,M1)

= min { fm(i′, {mi}); fm(i′, {k});
fm(i′,M1 \ ({mi} ∪ {k})) }
∀i′ ∈ {1, n};

fm (i′,M0)

= min {fm(i′, {mi}); fm(i′,M0 \ {mi})}
= min {fm(i′, {mi}); fm((M1 \ {k}) \ {mi})}
= min {fm(i′, {mi}); fm(M1 \ ({k} ∪ {mi}))}
≥ min { fm(i′, {mi}); fm(i′, {k});

fm(i′,M1 \ ({mi} ∪ {k})) }
= fm(i′,M1) ∀i′ ∈ {1, n};

Thus,

f (m1, ...,mi, ..., k, ...,mp)

=

n∑
i′=1

fm(i′,M1) ≤
n∑

i′=1

fm(i′,M0)

= f(m1, ...,mi, ...,mj , ...,mp).

In our version of Algorithm 1, steps 2 and 5 are modi-
fied. At Step 2 (generation of the samples of vectors X),
the constraint (5) must be taken into consideration. The so-
lutions generated by algorithm below are always feasible.

Algorithm 5. Step 2 of Algorithm 1

Require: Probability vector P = (p1, ..., pn).
1: χ = ∅;
2: for each i ∈ {1, p} do
2.1: r = Random() ·

∑n
j=1 pi; S = 0;

2.2: for each j ∈ {1, n} do
2.2.1: S = S + pi;
2.2.2: if S ≥ r then χ = χ ∪ {j}; goto 2.3;
2.2.3: next 2.2;
2.3: next 2;
3: return χ.

The result of this algorithm is a set χ. The corre-
sponding vector X of boolean variables can be calculated
in accordance with (4). Here, Random() is a generator
of the random value with continuous uniform distribution
(Random() ∼ U [0, 1)).

Let L0 be the maximum distance considered as ”small”
in terms of Hypothesis 1 and Hypothesis 2. In accordance
with Hypothesis 2,

µ {∃mi,mj ∈ χ : L(mi,mj) < L0}
< µ {L(mi,mj) ≥ L0∀mi,mj ∈ χ} ;

lim
L∗→0

µ{∃mi,mj ∈ χ : L(mi,mj) < L∗} = 0.

Let us modify Algorithm 5.

Algorithm 6. Step 2 of Algorithm 1, v. 2

Require: Probability vector P = (p1, ..., pn).
1: χ = ∅;
2: for each i ∈ {1, p} do
2.1: P ∗ = P ;
2.2: r = Random() ·

∑n
j=1 p

∗
i ; S = 0;

2.3: for each j ∈ {1, n} do
2.3.1: S = S + p∗i ;
2.3.2: if S ≥ r then χ = χ ∪ {j}; j′ = j; goto 2.3;
2.3.3: next 2.3;
2.4: for each j ∈ {k|k ∈ {1, n} ∧ L(j′, k) < L0} do:

p∗j = p∗j · L(j, j′) · L0 ; next 2.4;
2.5: next 2;
3: return χ.

Step 5 of he Algorithm 1 (adaptation of the probability
vector P ) in its kth iteration must be performed in accor-
dance with Hypothesis 2. We use the multiplicative adap-
tation.

Pk,i = p(k−1),i · dbk,i/dwk,i, (12)
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dbk,i =

{
1 + L0

1+L(ib(i),i)
, L(i, ib(i)) < L0

1, L(i, ib(i)) ≥ L0
, (13)

dwk,i =

{
1 + L0

1+L(iw(i),i) , L(i, iw(i)) < L0

1, L(i, iw(i)) ≥ L0
. (14)

Here,

ib(i) = argi′ min
i′∈χb

L(i, i′), (15)

iw(i) = argi′ min
i′∈χw

L(i, i′), (16)

χb and χw are the best and the worst samples of the sets of
vertex indexes χ generated by Algorithm 2 or Algorithm 5.
In the simplest case,

χb = argχ′ min
χ′∈X

f(χ′), (17)

χb = argχ′ max
χ′∈Xk

f(χ′). (18)

Here, Xk is a set of all samples of the vector χ at the kth
iteration of Algorithm 1.

Note that the discretized Weber problem described in
[21] is a special case of the p-median problem considered
in this paper.

4 First results, adjusting parameters
For testing purposes, we used the p-median problems gen-
erated automatically by the special Algorithm 7.

Algorithm 7. Sample problem generating

Require: n.
1: for i in {1, n} do
1.1: cix = Random() · 500; ciy = Random() · 500;

wi = 1 + 9Random();
1.2: if ∃j ∈ {j, n− 1} :√
(cix + cjx)2 + (ciy + cjy)2 < 10 then goto 1.1;
1.3: next 1;
2 Fill the adjacency matrix A with the zero values; E =

∅;
3: for i in {1, n} do
3.1:

Di =


1, i ∈ {[0.6n+ 1], n},
2, i ∈ {[0.4n] + 1, [0.6n]},
3, i ∈ {[0.25n] + 1, [0.4n]},
4 + [Random() · 4], i ≤ [0.25n].

3.2: for d in {1,
∑n
j=1Ai,j};

3.2.1:
j = arg minj∈{1,n},Ai,j=0

√
(cix − c

j
x)2 + ciy − c

j
y)2;

Ai,j = 1; Aj,i = 1; E = E ∪ {(i, j)}; li,j =√
(cix − c

j
x)2 + ciy − c

j
y)2;

3.2.2: next 3.2;
4: return adjacency matrix A, edges set E, edge lengths

{li,j}∀(i, j) ∈ E and weights wi∀i ∈ {1, n}.

Scheme of of such problem example is shown in Fig. 1.
The lengths of the edges are proportional to ones shown
in the scheme, the diameters of the vertices show their
weights. In addition, in Fig. 1, the solutions calculated by
our algorithm for p = 32 and p = 3 are shown. The ver-
tices selected as the solution are shown in a circle. For each
of the vertices, the color of the vertex shows the distance to
the nearest selected vertex. The nearest vertices are shown
in dark, the farthest are shown in white.

For our experiments, we used a computer Depo X8Sti
(6-core CPU Xeon X5650 2.67 GHz, 12Gb RAM), hyper-
threading disabled and ifort compiler with full optimiza-
tion and implicit parallelism (option -O3). Comparison of
the results reached with this hardware configuration with
the results of the small system with 2-core Atom CPU
N2701.6GHz, 1Gb RAM are shown in Fig. 2 (a combined
method ”probability changing+GA” is explained in Sec-
tion 6).

Fig. 3 illustrates change in the probability vector for
p = 3. The vertices with high value of the expectation
of being included in the generated solutions are shown in
white, the vertices with the smallest value of the expecta-
tion are shown in black.

The diameter L0 of the consistency area of Hypothesis 1
and Hypothesis 2 is an important parameter of the algo-
rithm. For the problem with p = 12, the comparison of the
algorithm efficiency with various values of L0 is shown in
Fig. 4. The results of running the algorithm with use of Al-
gorithm 5 as the generating procedure is shown as ”L0=0”.
The best results are achieved with Lo = 90. The optimal
value of L0 depends on p. With p = 32, the best results are
achieved with L0 = 60. Nevertheless, the algorithm with a
wide variety of the parameter values L0 ∈ [10, 350] gives
the results better than the ”classical” probability changing
method (the case L0 = 0).

For the further experiments, we used L0 = Lavg/3
where Lavg is the expectation of the average distance to the
closest facility in a randomly generated solution (arbitrary
chosen set of p vertices):

Lavg = µ{
n∑
i=1

min
j∈{1,p}

L(i, j)/n}. (19)

As the estimation the value Lavg , we used the average
distance from 10 randomly chosen vertices to the closest
vertex from 10 randomly generated sets of p vertices.

The calculation of Lmax used in the conditions of the
Hypotheses 1 and 2 takes significant time. Instead, we used
lavg/Lavg → 0 (19) as the condition of applicability of our
algorithm.

5 Comparison with the existing
methods

For testing purposes, we used the local search method (Al-
gorithm 3) with multistart from randomly generated initial
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Figure 3: Probability values change L0 = 100, p = 3

solution as one of the simplest methods and the genetic al-
gorithm (GA) [1] with the crossover procedure given by
Algorithm 4 (greedy heuristic) as one of the most efficient
methods . As the testbed, we used the p-median problems
from the OR Library [7]. The same library was used in
[1]. Since this library contains problems with numbers of
vertices up to n = 900, we used our Algorithm 7 for gen-
erating larger problems.

The results of our algorithm based on the probability
changing method used standalone show its low conver-
gence in comparison with the GA (Fig. 5). Problems
”pmed22” and ”pmed39” are included in the OR Library,
a problem with n = 5000 was generated by Algorithm 7.
This figure shows the average values for 10 runs and the
worst result. The results of the combined method (”Proba-
bility changing+GA”) are explained in the next section. To
calculate the quantity of exemplars of the generated solu-
tions in each population NPOP , we used formula

NPOP = d

√
nC

(
n
p

)
100dn/pe

edn/pe. (20)

The GA with greedy heuristic uses formula

NPOP = d
nC

(
n
p

)
100dn/pe

edn/pe. (21)

6 Results of combined methods
The genetic algorithm [1] uses the regular method of filling
of the initial population. In case of large-scale problems
(pmed39, pmed32, generated problems with n = 2000,
n = 5000), experiments with the randomly filled initial
population decrease the accuracy of the results and the con-
vergence insignificantly.

Our experiments with using the last generated popula-
tion of the probability changing method as the initial pop-
ulation of the GA with greedy heuristic show significant
speed-up of such combined algorithm in comparison with
the original GA. We used two variants of the population
size, standard population (21) and reduced population (20).
Both variants show significant speed-up for most problems.
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Figure 4: Comparison of the efficiency of the algorithm with various values L0, p = 12
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Figure 5: Comparison of the probability changing methods and its combinations with the GA

The variant with the reduced population shows worse accu-
racy but it can be useful for fast search for an approximate
solution of the large-scale problems.

We performed 5 steps of Algorithm 1 (NSTEPS = 5 in
the Step 6) with the probability adaptation (Algorithm 5)
and used its last population {X5,i|i = 1, NPOP } as the

initial population for the GA. The ”chromosomes” M ∈
{X5,i|i = 1, NPOP } are then passed to the crossover pro-
cedure (Algorithm 4).

The results shown in Fig. 5 and Fig. 6 were calculated
for 10 runs of the original and combined algorithms (3 runs
for n = 7500). The dependency of the average and worst
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values achieved by the algorithms on the spent time was
calculated for problems from the OR Library with compar-
atively small value of lavg/Lavg (see (9) and (19)). The
results for the problems ”pmed11”, ”pmed12”, ”pmed14”,
”pmed16”, ”pmed18”, ”pmed19”, ”pmed21”, ”pmed23”,
”pmed35”, ”pmed31” show the analogous tendencies. We
used a combination of 3 stop conditions: reaching the best
result announced in the OR Library (if such exists), reach-
ing [
√
n · p] steps which do not improve the best result or

reaching the time limit.
For the problem with n = 7500, the results are shown

for the combined algorithm with the reduced population
only due to memory allocation problems in case of stan-
dard population (21).

In case of using the probability changing method, the
standard deviation of the objective function in the popula-
tion of decreases faster than in case of the GA (Fig. 7). In
the combined algorithm, the search continues with a com-
paratively ”good” population.
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Figure 7: Comparison of the standard deviation of the orig-
inal and combined GAs

We used the local search (Algorithm 3) with randomly
selected initial solutions for testing purposes. Also, the lo-
cal search was implemented as a procedure of the algorithm
based on the probability changing method. We modified
Step 2 of Algorithm 1 :

2: In accordance with the distribution given by the el-
ements of the vector P, generate a set of NPOP vectors
Xk,i, i ∈ {1, NPOP };

2.1: If [k/5] = k/5 and k > 0 then apply Algorithm 3
to each vector Xk,i;

The results are shown in Fig. 8. Both, original and com-
bined algorithm ran 10 times. The size of the popula-
tion of the probability changing algorithm was calculated
in accordance with (20). For small size problems, local
search in both variants is more efficient than the GA. For
most problems included in the OR Library, the results of
the combined method are the same as the results of the
local search with multistart (case ”a” on Fig. 8) because
2-100 starts of the local search procedure are enough for
obtaining the exact solution. An exception is the prob-

lems with high density (p/n) and comparatively large size
(”pmed19”, ”pmed24”, ”pmed25”, ”pmed29”). In this case
(case ”b” of Fig. 8), combined algorithm allows to reach the
exact result faster. For the large scale problems (n ≥ 2000,
case ”c”) generated by Algorithm 7, the combined algo-
rithm gives better results.

7 Conclusion
The proposed algorithm based on the probability changing
method is useful for solving the p-median problem in a net-
work under the assumption that the lengths of the edges are
much smaller than the expectation of the path length from
a randomly selected vertex to the closest vertex of the so-
lution. Very slow convergence of the algorithm obstructs
its implementation as a standalone algorithm. However,
its running in combination with other algorithms improves
their efficiency significantly. Adjusting the parameters of
the algorithm is the subject to the future research.
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