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Driven from its uniqueness, immutability, acceptability, and low cost, fingerprint is in a forefront between
biometric traits. Recently, the GPU has been considered as a promising parallel processing technology due
to its high performance computing, commodity, and availability. Fingerprint authentication is keep grow-
ing, and includes the deployment of many image processing and computer vision algorithms. This paper
introduces the fingerprint local invariant feature extraction using two dominant detectors, namely SIFT and
SURF, which are running on the CPU and the GPU. The paper focuses on the consumed time as an im-
portant factor for fingerprint identification. The experimental results show that the GPU implementations
produce promising behaviors for both SIFT and SURF compared to the CPU one. Moreover, the SURF
feature detector provides shorter processing time compared to the SIFT CPU and GPU implementations.

Povzetek: Predstavljen je nov algoritem prepoznavanja prstnih odtisov.

1 Introduction
Biometrics authentication is an emerging technology, and it
is a crucial need for different applications such as physical
access and logical data access. It compensates some weak-
ness of the traditional knowledge-based and toke-based au-
thentication methods [1]. Fingerprint image, shown in Fig-
ure 1 (a), is one of the dominant biometric identifiers that
keeps populate for its uniqueness, immutability, and low
cost. Due to the high demand on fingerprint deployments,
it receives a great research attention in order to enhance the
overall performance of the automated fingerprint identifi-
cation system. The aimed enhancements include the reduc-
tion of the system’s response time, and the improvement of
the system’s identification accuracy [2].

Unfortunately, the system’s response time comes from
the summation of the consumed times by a consequence
of system operations, which are defined as fingerprint en-
rolment, pre-processing, feature extraction, and features
matching. Therefore, enhancing the response time should
be carried out by investigating each system phase [3]. The
accuracy of the fingerprint identification system depends
on reducing the inter-user similarity by accurately extract-
ing distinctive and robust features to image shift and ro-
tation. The local invariant features are robust to image
scale, shift, and rotation. These qualified features can be
extracted using some local invariant feature detectors [4].

A local feature of an image is usually associated with a
change of an image property such as intensity, color, and
texture [5]. The advantages of using the local features in
fingerprint identification are that they are computed at mul-
tiple points in the image, and hence, they are invariant to

image scale and rotation. In addition, they do not need fur-
ther image pre-processing or segmentation operations [6].
The dominant local feature extractors are the Scale Invari-
ant Feature Transform (SIFT) [7], and the Speeded-Up Ro-
bust Feature (SURF) [8]. Due to their robustness and their
time efficiency, SIFT and SURF have been deployed in a
broad scope of applications such as object recognition [9],
texture recognition, and image retrieval [10], [11]. Thus,
the two feature detectors have been selected for this re-
search, and they have been applied on a standard fingerprint
images database.

Graphic Processing Unit (GPU) is a 3D graphic acceler-
ator that is available in most of the recent computers, and it
runs equivalent to the CPU with better performance in par-
allel processing tasks. The GPU programming opens doors
to image processing, computer vision, and pattern recogni-
tion algorithms to run efficiently compared to the CPU im-
plementations [12]. GPU supports different computing lan-
guages with minimal code changes to port the previously
developed algorithms to GPU. The Compute Unified De-
vice Architecture (CUDA) [13] is one of the GPU comput-
ing languages that supports “C“ and “Fortran“ languages
for efficient algorithms deployment [12].

The response time degradation becomes even worse in
the system identification mode because the system needs to
run (1:N) matching operations over a huge size fingerprint
database. Some research contributions tried to reduce the
identification time by classifying fingerprint database [14],
[15], while some other researchers focused on the matching
process, and proposed an efficient Matching Score Matrix
algorithm (MSM) [10], [16] over a fingerprint database to
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Figure 1: Fingerprint local feature extraction and matching: (a) Raw fingerprint image, (b) Extracted local features using
the SURF detector, and (c) Fingerprint matching using the extracted local features. The number of matched features have
been reduced for a clear representation purpose.

achieve better identification time reduction. This paper tar-
gets the feature extraction time and the matching time re-
ductions as two factors for enhancing the overall system’s
response or identification time.

The contribution of this paper is a step forward to-
ward reducing the fingerprint feature extraction and fea-
tures matching time, and hence, enhancing the overall sys-
tem’s response time. The contribution includes the devel-
opment of SIFT and SURF local feature detectors on both
CPU and GPU for processing a whole fingerprint database.
Moreover, the behaviour of SIFT and SURF on both CPU
and GPU with focus on the number of extracted features,
the feature extraction time, and the features matching time
are considered. The reported results in this research can be
used as a start point and ground truth for developing many
GPU based fingerprint algorithms in the future.

The rest of this paper is organized as follows. Section 2
reviews the preliminaries backgrounds for the local feature
extraction, and the graphic processing unit. Section 3 sheds
lights on the implementation methodologies, and explains
the exhaustive evaluations of both SIFT and SURF feature
detectors deployed on the both CPU and GPU, in terms of
processing time, number of features, and features match-
ing. Conclusions and future work are reported in section
4.

2 Preliminaries
This section clarifies the local feature extraction, and high-
lights the different structures of the SIFT and the SURF
feature detectors. Moreover, it covers the GPU architecture
compared to the CPU one.

2.1 Local Feature Detectors
SIFT is one of the popular methods for image matching
and object recognition. The SIFT feature detector has been
used by some researchers in biometrics based authentica-
tion with applications on fingerprints [10] and palmprints
[17]. Due to its reliability, SIFT features are used to over-

come different fingerprint degradations such as noise, par-
tiality, and rotations.

The SIFT feature detector works through sequential
steps of operations. These steps can be summarized as:
1) Scale space extrema detection, 2) Keypoints localiza-
tion, 3) Keypoint orientation assignment, and 4) Build-
ing the keypoints descriptor [18], [19]. The Difference-of-
Gaussian (DOG) is used to detect the keypoints as the local
extrema of DOG function. The DoG function is defined as
[18]:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ), (1)

where I(x, y) is the input image at point (x, y) pixels, and
G(x, y, σ) is the variable-scale Gaussian function that is
defined as:

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

, (2)

and L(x, y, σ) is the scale space of an image, and it is de-
fined as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (3)

where (∗) represents a convolution operation.
The pixel is compared against 26 neighboring pixels (8

in the same scale, 9 in the above scale, and 9 in the below
scale) to detect the local pixel extrema and minima. Fol-
lowing on, the detected keypoint is localized by setting its
neighborhoods and examine them for contrast and edge pa-
rameters. The keypoints with low contrast and weak edge
responses are then rejected. The keypoint neighborhoods
region is used to build the histogram of the local gradi-
ent directions, and the keypoint orientation is calculated
as the peak of the gradient histogram [11]. The default
SIFT feature extraction produces keypoint associated with
a descriptor of 128 element length. The descriptor is con-
structed from (4 × 4 cells) × 8 orientations [19]. The cas-
caded operations of building a single SIFT keypoint de-
scriptor from fingerprint image, and the descriptor struc-
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Figure 2: The process of building a single SIFT keypoint descriptor: (a) A single SIFT keypoint selected from fingerprint
image, (b) 16 × 16 pixel gradients, and (c) A single 4 × 4 cells keypoint descriptor with 8 pixel orientations each. The
default length of a single SIFT keypoint descriptor is 4× 4× 8 = 128 element.

ture are shown in Figure 2. Applying SIFT feature extrac-
tion translates the fingerprint image into a set of keypoints
according to the detected local maxima. The keypoint is
associated with a descriptor related to the gradients of the
enclosed pixels.

The SURF feature detector works in a different way from
SIFT. The SURF keypoint detector uses Hessian matrix for
keypoint extraction compound with the integral image to
increase the computation efficiency. The Hessian matrix
H(x, σ) is calculated at a given point p = (x, y) pixels of
image I at scale σ as [8]:

H(x, σ) =

[
Sxx(x, σ) Sxy(x, σ)
Sxy(x, σ) Syy(x, σ)

]
, (4)

where Sxx(x, σ) is the convolution (∗) of the Gaussian
second order derivative with the image I in a point p.

The SURF descriptor is formed around the keypoints
neighborhood by using Haar wavelet responses instead of
gradient histogram applied in the SIFT. The standard length
of the SURF descriptor can be 64 (4 × 4 subregions × 4
Wavelet components), 36, and 128 vector length. The
SURF features are found to be an efficient compared to the
SIFT one with preserved repeatability, robustness, and dis-
tinctiveness of the descriptors [8], [19]. Figure 1 (b) and (c)
show the feature extracted using the SURF detector, and a
sample of the local features matching process, respectively.

2.2 Graphic Processing Unit
The GPU is a multi-processor unit equipped with four types
of memories that are defined as constant, texture, global,
and shared memory for efficient data access. The GPU was
initially designed for processing graphic functions, and it
was required special skills for programming such functions
via OpenGL [20]. The hardware architecture of the GPU
is internally different from the CPU design. The two hard-
ware design architectures are shown in Figure 3 (a) and (b)

for the CPU and the GPU, respectively. The GPU architec-
ture takes into its account the existence of many Arithmetic
and Logic Units (ALUs) devoted for parallel processing
and flow control [21].

The full power of the GPU architecture can be accessed
via CUDA computing language as the threads are grouped
into blocks, the blocks are grouped into grids, and the grid
is executed as a single GPU kernel [20]. In real execution,
the blocks are mapped to the GPU cores for efficient scala-
bility. The CUDA computing language is designed to sup-
port general purpose computing on GPU. CUDA program-
ming brings a development environment similar to “C“
which is familiar to most of programmers and researchers.
Additionally, minimal changes are required to port the CPU
based code to the CUDA programming scheme, and be
compiled using the provided NVCC compiler. Further-
more, CUDA introduces additional “C“ libraries such as
cuFFT for Fast Fourier Transform, and cuRAND for ran-
dom number generation. Concisely, CUDA provides an
integrated “C“ similar environment for building the GPU
based applications [13].

(a) (b)

Figure 3: The differences between the CPU and the GPU
hardware design architectures: (a) The CPU hardware ar-
chitecture, (b) The GPU hardware architecture with multi-
ple Arithmetic and Logic Units.
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3 Performance Evaluation

The open source computer vision library (OpenCV) [22]
is a promising tool for developing most of computer vi-
sion and image processing algorithms. Recently, a new
OpenCV module that provides a GPU acceleration, and
covers the most significate part of the library was added
to the OpenCV [20]. Although, the GPU module provides
an implementation to the SURF feature detector, it does
not provide the same implementation to the SIFT detector.
Therefore, we have adopted, compiled, and worked with
the SIFTS [23] as an open source library for evaluating the
SIFT performance using the GPU implementation.

Prior to the evaluation process, OpenCV version 2.4.2
has been compiled with CUDA 4.2, the Threading Building
Blocks (TBB) for the GPU, and the multi-core CPU sup-
ports, respectively. The local features matching was car-
ried on the CPU using OpenCV BruteForceMatcher
with knnMatch support. During the experimental work,
the optimum Knn radius is set to 1 for the best matching
performance.

3.1 Experimental Environment Setup

The experiments have been conducted using a PC with
Intel R© CoreTM i3-2120 running at 3.30 GHz, and 8 GB of
RAM. The PC is empowered by NVIDIA GeForce GT 430
GPU with 96 CUDA cores, and 1 GB of memory running
on Windows R© 64-bit. It is worth noticing that the qual-
ity of the extracted features is not considered in the present
phase of this research.

The experimental work was applied on a standard fin-
gerprint database, namely, the Fingerprint Verification
Competition 2002 (FVC2002) [24] DB2_B subset. The
FVC2002 DB2_B subset includes 80 fingerprint images
come from 10 different persons. Therefore, the feature ex-
traction using SIFT or SURF has been repeated 80 times.
Whereas the matching process has been repeated over
80 × 80 images to produce a matching matrix with 6400

Figure 4: The evaluation of the SIFT detector on the CPU
and the GPU with respect to the number of features, the
extraction time, and the matching time.

elements for evaluating the CPU based matching, and 80
elements for evaluating the GPU based matching with the
average time.

3.2 Performance Evaluation of SIFT

According to the previous evaluation of the SIFT fea-
ture detector reported in [10], we set the optimum SIFT
threshold to 0.01, and the other OpenCV SIFT param-
eters are set to the default values. The results of the SIFT
evaluation on the CPU and on the GPU are shown in Fig-
ure 4. The plotted data are the average value of running the
SIFT detector over the full database subset, and the match-
ing time on the CPU is the average of 6400 matching pro-
cesses.

The experimental results prove the significant reduction
of the feature extraction time, and the features matching
time when running the SIFT on the GPU. The time reduc-
tion comes from the powerful 96 CUDA cores supported
by the NVIDIA GPU hardware compared to the two cores
with two threads each supported by the CPU. The amount
of the speed ups of running the SIFT detector on the GPU
are 3.9X and 67.2X for the SIFT feature extraction, and the
SIFT features matching, respectively.

The CPU and the GPU utilizations for a particular 14
seconds time period are drawn in Figure 5. From that fig-
ure, the CPU utilization starts low (around 25%) during
the feature extraction phase, and it goes extremely high
(around 98%) during the SIFT feature matching. On the
other hand, the GPU load is fixed around 85% during the
feature extraction and matching operations. Additionally,
the figure gives an indication that is however, the match-
ing time is extremely reduced, the full power of the GPU
utilization still below the CPU one.

3.3 Performance Evaluation of SURF

The SURF feature detector has been evaluated on the CPU
and the GPU using the same SIFT evaluation criteria, re-

Figure 5: The CPU and the GPU utilizations of the SIFT
detector measured in a 14 seconds long as a particular time
slot.
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Figure 6: The evaluation of the SURF detector on the CPU
and the GPU with respect to the number of features, the
extraction time, and the matching time.

spectively. According to the evaluation results shown in
Figure 6, the advantage of running the SURF detector on
the GPU compared to the CPU is apparent. However, the
number of extracted features on the CPU and the GPU are
almost same. The feature extraction time on GPU is signif-
icantly reduced from 0.383 to 0.140 second. Moreover, the
features matching time is reduced from 0.1 to 0.0075 sec-
ond with almost the same number of features. The amount
of the gained speeds up of using the GPU are 2.7X and
13.3X for the SURF feature extraction, and features match-
ing.

Once again, the CPU and the GPU utilizations have been
measured and reported in Figure 7. The SURF feature
detector behaves very well on the GPU, and it consumes
around 70 to 80% of the GPU power. On the other side,
the SURF feature detector consumes around 98% from the
total CPU power.

3.4 Discussion

The experimental work confirms the efficiency, and the su-
periority of the SURF feature detector compared to the
SIFT feature detector. The evaluation factors are the fea-
ture extraction time, and the features matching time. From
Figure 4 and Figure 6, the SURF feature detector runs twice
faster than the SIFT one on the CPU due to the SURF en-
hancements such as using the integral images, Hessian ma-
trix, and Haar Wavelet for keypoint detection and descrip-
tor construction.

However, the SURF feature detector is optimized for a
faster running on the CPU and the GPU; Figure 6 rep-
resents a higher matching time on the GPU (0.0075 sec-
ond) compared to the SIFT (0.004 second). We do believe
that the difference comes from the data transfer between
the CPU and the GPU. The OpenCV implementation pro-
vides data upload and download between the CPU and the
GPU for each matching process. This confirms the fact that
the data transfer between the CPU and the GPU still a great
challenge, and it should be avoided as much as possible for

Figure 7: The CPU and the GPU utilizations of the SURF
detector measured in a 14 seconds long as a particular time
slot.

efficient GPU based implementations [20].

4 Conclusions and Future Work
This paper has presented a study for reducing the finger-
print identification time using two dominant local feature
detectors, particularly SIFT and SURF implemented on
CPU and GPU. The aim of the paper is to find the best
implementation of a feature detector in terms of the num-
ber of features, the feature extraction time, and the features
matching time. The experimental results proved the supe-
riority of the SURF feature detector compared to the SIFT
one. Moreover, the efficiency of using the GPU for both
SURF and SIFT has been confirmed. However, SURF con-
sumes longer matching time on the GPU, this time can be
significantly reduced by avoiding the data transfer between
the CPU and the GPU. Optimizing the SURF feature detec-
tor to work completely on the GPU, and avoiding the data
transfer between the CPU and the GPU is considered as an
appreciated future work. In addition, deploying the finger-
print related algorithms to work on the GPU is a common
future direction.
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