
Informatica 37 (2013) 295–306 295

An ASM-based Model for Grid Job Management

Alessandro Bianchi, Luciano Manelli and Sebastiano Pizzutilo
Department of Informatics, University of Bari, via Orabona, 4, 70125 - Bari - Italy
E-mail: alessandro.bianchi@uniba.it, luciano.manelli@gmail.com, sebastiano.pizzutilo@uniba.it

Keywords: grid systems, OGSA services, asynchronous distributed Abstract State Machine.

Received: July 11, 2012

Job Execution Management Services in Grid systems are generally implemented using specific Grid
middleware, and they are considered very critical for the success of the entire system. In order to better
manage complexity and criticality, literature suggests the use of robust formal models to describe and
analyze these services. This paper abstracts strategic services in Grid Systems, proposes an Abstract
State Machine-based model to design them, and implements them by the coreASM tool. The obtained
results lead to consider the usage of Abstract State Machine models as a concrete control appliance for
Grid systems.

Povzetek: Avtorji predlagajo novo orodje coreASM, s katerim upravljajo storitve mreže.

1 Introduction
A Grid system is built to allow researchers in different
domains to use multiple heterogeneous resources for
problem solving in high performance computational
infrastructure. It provides efficient use of multiple
machines for executing jobs, in particular for parallel
applications, which can distribute the parallel units of
their work across the allocated resources through parallel
execution. To this end, a Grid system is defined as a set
of independent, distributed and cooperating
computational units, which are able to achieve a
particular computational goal in dynamic multi-
institutional Virtual Organizations [1], [2].

Several organizations have proposed standards for
requirements, architecture, specification and services for
Grid systems. Among them, the Globus Project (now
Globus Alliance [3]) proposed the Open Grid Service
Architecture (OGSA) in 2006: it provides a set of
important requirements and considers several services
needed to support Grid systems and applications [4]. In
particular, the requirements for Execution Management
Services (EMSs) deal with managing the execution of
jobs during their lifetimes by searching remote resources
for scheduling and executing jobs, and by returning
output to users.

1.1 Motivation
Grid systems represent fundamental assets in large-scale
scientific and engineering research, but several
difficulties are encountered in building reliable Grid
applications, mainly because of the high complexity of
these systems, [24], [25], and because of the lack of
proper conceptual framework and supporting tools [26].

These issues are highlighted in [40], where authors
state the huge gap between the proposed architectures
usually expressed by informal diagrams, and the existing
implementations, so concluding that “a good conceptual
reference model for grid is missing”.

The lack of precise specification heavily impacts
EMSs that are generally implemented using specific
middleware. Practically, Grid middleware supports the
development of service-oriented computing applications
and provides services with the aim to lead users to access
remote distributed resources and run jobs on them.
Different organizations developed different Grid
middleware, sometimes implementing the same proposal.
For example, two of the most popular middleware are
Globus Toolkit [3] and gLite [5], both obtained by OGSA
proposal and both used in several Grid applications.
Unfortunately, a uniform coordination of different
software is difficult or impossible across two different
middleware, so, in the example above jobs originated on
Globus Toolkit cannot be forwarded to gLite. According
to [39], the lack of this uniform coordination results in
different, often incompatibles interface between
middleware and services, and drives to non-interoperable
“Grid islands” that cannot share resources.

So, a challenge in realizing efficient Grid systems is
the development of a specific middleware for the
management and the execution of jobs in different
environments. The difficulty increases when different
Grid architectures are taken into account. According to
[20], the need to give clear, formal definition of Grid
systems architecture and services is an urgent task that
can help in solving these problems.

1.2 Purpose of the work
Our research contributes to execute this “urgent task” by
proposing a formal model of Grid system services.
Similarly to [40], we do not propose a new architecture,
but a formal executable model that precisely describe
logical modules in EMSs, with the aim to better
understand and improve analysis of job EMSs. Thanks to
the abstraction provided by formalism, the system is
expressed focusing only the main requirements and not

296 Informatica 37 (2013) 295–306 A. Bianchi et al.

considering specific implementation issues. In this way
the model strictly defines the overall organization and
specifies the services provided, without imposing formats
for accessing services. Note that the present paper does
not face the possible incompatibilities among existing
resources, but this is one of the future directions of our
research.

The preliminary study [6] examined the lifetime of a
job in OGSA Grid architecture and described a simple
model for its management and execution. The present
paper moves from that lifetime for formally modeling
execution management components through an approach
based upon Abstract State Machine (ASM) [7], [34], and
for implementing it using the coreASM tool [8], [9].

The coreASM provides an executable language and a
tool environment for high-level design and experimental
validation of ASM models by supporting execution of
ASM specifications. It consists in a platform-independent
engine implemented as a Java component. Moreover, a
graphical interactive environment in form of a plug-in for
Eclipse platform provides interactive visualization and
control. Finally, the Control State Diagram editor (CSDe,
another plug-in for Eclipse [38]) provides an abstract
structure for a first simple design of the system in form
of diagrams. In this way, our investigation enlarges
knowledge and experience in formalizing Grid systems
using ASM, and the obtained results represent a first step
in the development of a benchmark for formally
analyzing alternative implementation of Grid services
and architectures.

Next section overviews the literature concerning
formal models applied to Grid computing. Section three
provides the background on ASM-based approach.
Section four designs and models Grid job EMSs. Section
five reports on coreASM model implementation and on
its execution in some typical cases for validating the
model. Conclusion and future work are discussed in
Section six.

2 Related work
A rich literature deals with the application of formal
methods to the design of Grid systems architecture and
services, to their verification and validation, and to the
analysis of the most critical properties, which can heavily
affect the efficiency of provided services. Examples are
represented by π-calculus [35], used in [36] for formally
specifying dynamic binding and interactive concurrency
of Grid services, and by Z notation [28] and Hoare’s
Communication Sequential Processes - CSP [29], both
adopted in [27] for modeling an identity management
architecture for accessing Grid systems. Note that these
works adopt the formalism for facing just one specific
issue, and they do not generalize the approach to the
entire system: they are optimal solutions to specific
problems, but do not represent a general-purpose model
for EMSs. Conversely, our research is aimed at providing
a formal framework for specifying Grid services: in fact,
in this work we focus on the Job EMS, but the approach
we adopt can be easily extended form modelling the
entire system.

Petri nets are adopted in researches with wider
purposes. For example, composition of applications in a
Grid is orchestrated into a unique Petri net-based
workflow in [30]. Even though this paper provides high-
level access to Grid services, it operates only on one
middleware, and interoperability among different
middleware is not taken into account.

More general approaches are presented in [31], [32],
[10], and [40]. Guan and colleagues ([31]) propose the
design and prototype implementation of a scientific Grid
infrastructure using a Petri-net-based interface; OGSA
resource management and task scheduling is extended by
Liu and colleagues ([32]) using Timed Petri nets for
allowing services definition; a Colored Petri net-based
model is depicted by Zhao and colleagues ([10]) for
studying job scheduling problems; Colored Petri nets are
also used by van der Aalst and colleagues ([40]) for
specifying and validating a reference model for Grid
architectures.

All these examples show that Petri nets are effective
in designing and analyzing the workflow structure and
services provided by the Grid and for studying typical
properties of the system, e.g. liveness. Unfortunately,
Petri nets present some disadvantages. Storrle and
Hausmann [11] summarize Petri nets problems in
modeling behavior of exceptions, streaming and traverse-
to-completion, and they discuss problems arising when
trying to analyses these advanced features. Sarstedt and
Guttmann [12] underline that Petri nets are not adequate
and intuitive to describe the semantics of many system
diagrams, also due to the lack of a unified formalism.
Moreover, Eshuis and Wieringa [37] show that Petri nets
are suitable for modeling closed and active systems
rather than open and reactive/proactive systems, like
Grid. Analogously, Atlas and colleagues argue that PN-
based approaches are fairly rigid and are not suitable for
dynamic environments [41].

For these reasons, we consider ASM approach [34]
more suitable for modeling Grid architecture. This choice
is justified by different issues. Several similarities exist
between Petri nets and ASM and [7] shows that the run
in a Petri net can be expressed by ASM rules, in
particular it emphasizes the capability of asynchronous
distributed ASMs in modeling the distributed nature of
Petri nets. The capability of ASM in describing agent
based models allows us taking into account the entire
system in both its static and dynamic aspects, through a
set of ASMs implementing an asynchronous distributed
ASM.

Resuming, we applied ASM approach considering
the advantages it provides under three different points of
view. When the model expressivity is considered, a rich
literature (e.g. [9], [11], [13]) agrees that ASMs show
versatility in modeling complex architectures and they
have excellent capabilities to capture the behavioral
semantics of complex, dynamic, open, and reactive
systems, like Grid, where several different processes
occur, often with the need to properly model exceptions,
streaming and traverse-to-completion. Secondly,
considering software engineering development issues, it
is worth noting that, starting from the ASM formalism, a

An ASM-based Model for Grid Job Management Informatica 37 (2013) 295–306 297

development process has been defined and successfully
applied in several complex domains, e.g.
telecommunication, programming languages, control
systems, and so on [7]. Finally, considering the
implementation point of view, the lack of specific
environments for translating PN models in executable
code is overcome by using an ASM-based approach
thanks to tools like AsmL [33] and coreASM [8], [9],
[22]. Both AsmL and coreASM are high-level executable
languages based on ASM: the main difference is that the
former is integrated with Microsoft .NET platform, the
latter with the Eclipse platform.

The existing literature, which applies ASM to Grid
systems, encourages our choice. Several papers use ASM
to model communication systems behavior and to control
their management. A general, abstract communication
model for studying message-based communication
networks in distributed systems is presented in [14]: the
model is implemented and tested using asmL
environment.

Lemcke and Friesen propose in [15] a composition
algorithm of web services defining the execution of
business processes and orchestrations by providing ASM
representations for these processes and executing them
with coreASM . Lamch and Wyrzykowski [16] develop a
software environment in asmL implementing a hybrid
approach for integration of a formal model and existing
middleware components: the model-based testing
approach is useful for investigating properties of
specification of Grid middleware using ASM. Both these
papers focus on integration issues, but they do not
provide a comprehensive view of Grid systems.

In [17], [18], authors propose a semantic model for
Grid systems and for traditional distributed systems
describing differences between the two systems. They
used ASM at a very high level for describing resources
and users belong to a Virtual Organization (VO) without
developing any tools for simulation. In a different way,
[19] analyzes the similarities between distributed and
Grid systems, the characteristics and the requirements of
Grid systems and programming models. They develop an
ASM model and study the validity in Grid environments.
Finally, in [20] Zou and others propose a general
framework for Grids and model the virtual organization
based on ASM, considering quality issues for the user
requirements. With respect to these papers, our work
models the system at a lower abstraction level and
validates its implementation.

In [6], a preliminary, monolithic ASM was built to
model the standard mechanisms defined in OGSA for job
EMSs. That paper informally details the general
description of job EMSs, provides an overview of the
ASM-based model, and statically analyzes it. The present
work improves that paper, mainly with respect to two
issues: firstly, the model is structured in a number of
agents, each modeled by an ASM, so obtaining a more
realistic Distributed ASM. Secondly, the model is
implemented using coreASM, and dynamically validated
in some typical scenarios.

3 Background on ASM
Abstract State Machine, ASM for short, is a powerful
computational model [34], which has been successfully
applied in several cases for modeling critical, complex
systems, both in industry and in academia: wide
discussion about ASM application is in [7]. It simulates
every algorithm’s behavior through a step-by-step way:
each step computes a set of updates with given transition
rules. After the completion of a step, all updates are
committed simultaneously.

The concept of abstract state in ASM extends the
usual notion of state occurring in Finite State Machines:
it is an arbitrarily simple or complex structure, i.e. a
collection of domains, with arbitrary functions and
relations defined on them. On the other hand, rules are
basically nested if-then-else clauses with a set of
functions in their bodies. In each state, all conditions
guarding rules are checked, that is all rules whose
conditions are evaluated to true are simultaneously
executed, so determining the state transition. All the
parameters are stored in a set of so called locations and at
each time the particular configuration of parameters
values determines the current state of the ASM.

The transition from one state to another is described
through a set of formulas, in the form:

{if conditioni then updatesi} i = 1,..,n

where each conditioni (the guard of the i-th rule) is an
arbitrary first-order formula, whose interpretation can be
true or false, and each updatesi is a finite set of
assignments

f(t1,…,tn) = t
whose execution is to be understood as changing the
value of the function f at the given parameters ti, that
leads to a new value of the parameter t. The parameters
are stored in a set of locations and the configuration of
parameter values at each step determines the current state
of the ASM.

For the unambiguous determination of a next state, it
is necessary that updates are consistent. An update set is
consistent if it contains no pair of updates which assign
different values to the same location; otherwise, the
update set is inconsistent.

The concepts related to modeling monolithic systems
through ASMs can be extended to distributed systems.
The case of job management in Grid systems is a typical
case of asynchronous distributed systems. It is
distributed because its overall behavior is the
composition of different, independent, remote elements,
each operating on its own. It is asynchronous because all
involved logical components operate and communicate
concurrently, each according to its internal behavior. So,
job EMSs in Grid can be modeled by a Distributed
Asynchronous ASM - asyncASM [7], [21].

Essentially, asyncASMs generalize simple ASMs to
an arbitrary finite number of independent agents [23],
each executing an ASM in its own local state. Formally,
an asyncASM is given by a family of pairs (a, ASM(a)) of
pairwise different agents, elements of a possibly dynamic
finite set Agent, each executing its ASM, ASM(a). In this
sense, each agent a executes its own program, operating

298 Informatica 37 (2013) 295–306 A. Bianchi et al.

on its own states, so determining a partial view of the
entire system. The relation between global and local
states is supported by the reserved keyword self, used to
denote the specific agent executing a rule, and to store
information relevant to itself. A new agent can be
introduced into the asyncASM at any time by extending
the set Agent.

An ASM-based process for developing complex
systems is presented in [7]: it allows capturing system
model requirements and refining them through
intermediate models to any desired level of detail in a
validated and verifiable code. In the present work,
modeling and implementation activities have been
carried out with the support of the coreASM framework
[8], [9], [22]. It follows mathematical definition of ASMs
and inherits several typical features of the ASM
modeling. Its main purpose is to make ASM-based
models executable. To this end, the framework includes
some language constructs aimed at making easy the
development, as, for instance, forAll, which allows
executing all rules satisfying a given guard condition;
choose, aimed at expressing non-determinism in the
choice of a rule to execute when a condition is satisfied;
seqblock/endseqblock are the delimiters of block, whose
rules must be executed sequentially; par/endpar are the
delimiters of block, whose rules must be executed
concurrently; enqueue/dequeue are the operators for
adding / removing elements to a queue.

4 Modeling the Grid job EMSs
In order to model the job EMSs, firstly the Grid
capabilities and features are informally described, then
they are abstracted and formally defined, finally the
asyncASM is created in the coreASM environment [8].

4.1 Informal description of a Grid system

4.1.1 Services
The OGSA standard describes requirements
(interoperability and resource sharing, optimization,
quality of service, job execution, data services, security,
scalability and extensibility), and considers six important
independent services that implement such requirements
and are needed to support Grid systems and applications
[4]:
 Execution Management Services manage jobs to

completion: they concern job submission, description
instantiating, scheduling, and provisioning resources
(e.g. RAM, disk, CPU, etc.).

 Data Services focus on the management, access and
update of data resources (e.g. files, streams, DBMS,
etc…), and provide remote access facilities,
replication services and managing of metadata.

 Resource Management Services manage physical
and logical resources.

 Security Services provide security-related policy,
and manage access for cross-organizational users.

 Self-Management Services support the reducing of
the cost and complexity of operating on an IT

infrastructure. They provide self-configuration and
self-optimization of system components (e.g.
computers, networks and storage devices).

 Information Services concern the manipulation of
information about applications, resources and
services, support reliability, security, and
performance in a Grid. They provide registry,
notification, monitoring, discovering, and logging.
The specific implementation of these services is

delegated to Grid middleware. Practically, when a job is
submitted, the middleware creates a job manager process
for that job. The job manager manages the single job’s
lifetime, matches job requirements with the needed
resources, and controls the relative allocation in different
way for different Grid middleware. The allocation
consists in assigning and queuing the job to local
manager in resources. Note that in the following we only
focus Execution Management Services.

4.1.2 Architecture
We assume a Grid is over three levels, operating on
distributed heterogeneous resources, namely Grid
Application level, Middleware level, Resources Pool
level. Note that, this layered view is an abstraction of
OGSA proposal, often used in literature, for instance in
[40], and it fits our purposes.

The Grid Application is a higher-level structure built
on top of the architecture that for our purposes is only
aimed at partitioning each user job in jobs to submit to
the lower level. In fact, since it is usually considered that
a job is the smallest unit managed by a Grid
environment, we assume a user submits one or more
User Jobs (say UJ1, UJ2, … ,UJn), each composed by one
or more jobs (say job11, job12,…, job1k for UJ1; job21,
job22,…, job2h for UJ2;… jobn1, jobn2, …, jobnm for UJn).
Note that possible interactions among jobs are managed
by Grid Application level, but this issue is outside the
purposes of present work.

The Middleware level implements fundamental
functionality needed by Grid applications and required
by OGSA. It interacts with the Application level,
managing jobs until their completions and returning
results to users. In this context the EMSs concern
searching candidate resource and executing and
managing jobs until end, so users can transparently
execute their UJ-s on distributed resources. These tasks
are critical because their incorrect execution can heavily
affect the quality of provided services [24], so adoption
of formal method is useful and sometimes mandatory.

The Resources Pool level is characterized by
distributed and heterogeneous resources of a Grid. For
the purposes of our work a resource is a logical entity
with specific features needed to job execution, with its
local workload and managed by a local resource
manager.

For sake of simplicity, the architecture is
summarized in figures 1 to 3: Figure 1 is an overview of
the three levels: the box labeled “Grid Application Level”
is outside the purposes of present work, so it is not
further detailed. The boxes “Grid Middleware Level” and

An ASM-based Model for Grid Job Management Informatica 37 (2013) 295–306 299

“Grid Resources Level” are detailed in Figure 2 and
Figure 3, respectively.

The UJ-s submitted by users are processed by the
Application level and each of them is partitioned into
composing jobs. Next, each job is sent to the Grid
Middleware level, through a queue called waitingJobs,
according to a First-In-First-Out (FIFO) policy.
Moreover, the Application level receives the results of
jobs executions by lower level and it re-composes them
so that to obtain the results of UJs to send back to users.

A job must be executed on a resource that satisfies
all its computational constraints. To this end, the EMSs
chooses the proper resource in a shared pool, according
to job performance requests, allocates the job on the
selected resource for execution, and controls the job
lifetime until completion.

In order to achieve these goals, we assume that
Execution Management module is composed by two
logical components: a Dispatcher, and a set of Job
Managers (Figure 2), each accessed in mutual exclusion.

The former schedules execution of each job to a Job
Manager. Therefore, the role of the Dispatcher consists
in the following activities: extracting the job at the top of
the queue, searching for a free instance of a Job
Manager, and activating the Job Manager instance on
the submitted job.

After activation, the Job Manager becomes
unavailable for other jobs. Then, it searches a suitable
Resource in the Resource Pool level, matching the
required job performance. If a resource is found, the Job
Manager assigns it the job, waiting for control return, and
it manages the lifetime and the state of the job until
completion. In case of failure, an error is reported. Each
Job Manager becomes again available for other jobs only
after job completion.

A Resource in the Resources pool receives the job by
the Job Manager, enqueues the job in the local queue
and processes it, according to the position in the queue.

The set of resources is assumed to be fixed (from 1
to R), and during execution resources cannot be added or

Figure 1: Architecture Overview.

300 Informatica 37 (2013) 295–306 A. Bianchi et al.

removed. For abstraction purposes, we suppose that a
Resource computes jobs with a FIFO policy. If no
resource in the pool is able to satisfy job requirements,
the job fails due to a lack of available resources.
Moreover, we assume that a Resource is composed by
two logical components that work on the same job: a
ResourceLocalQueue module, devoted to enqueuing the
incoming jobs, and a ResourceExecutor module, for jobs
execution.

If problems occur in resource during job execution,
the Job Manager catches errors and stops the
computation. When the execution completes, either
successfully or unsuccessfully, middleware sends a
message to the user application. In Figure 3 a
representation of Resources pool is presented.

As a final remark, it is worth noting that users can
cancel their user jobs (UJ-s) before completion; if so, all
corresponding jobs are removed by the Grid system.

Figure 2: Overview of Grid Middleware Level.

Figure 3: Representation of the Resource pool.

An ASM-based Model for Grid Job Management Informatica 37 (2013) 295–306 301

4.1.3 Abstraction
Informal description above can be abstracted in the
following set of requirements:
Req.1 A Grid receives requests for UJ-s from clients;

each UJ is decomposed in a set of atomic jobs,
and each job is queued waiting for service.

Req.2 A Dispatcher module in middleware loads a job,
and sends it to a specific Job Manager module.

Req.3 For each job, Job Manager finds the most
adequate resource satisfying job requirements and
runs it on that resource.

Req.4 That Resource enqueues and processes the job.
Req.5 If there are no failures, the job is completed with

success.
Req.6 If errors occur the job is aborted.
Req.7 A user can cancel or remove a User Job, so

cancelling/removing the corresponding jobs.
Req.8 At the end of the computation Resource is

released.
Req.9 At the end of the computation the result is

communicated to the end user.
Moreover, the model of system operations must be

able to execute the following actions:
Act.1 The Dispatcher takes the first job in the

waitingJob queue and sends it to the first
available instance of Job Manager, if the system is
ready.

Act.2 The system needs to find available resources
necessary for the computation: if so, resources are
reserved, else the job is immediately rejected.

Act.3 The job sent to a Resource is enqueued in its local
queue and when possible the computation starts;

Act.4 The job can complete the computation with
success and the system traces the result of the
computation; if problems arise, the execution fails
and the systems returns to the idle state.

Act.5 At the end of the computation, the system resets
and returns in a state of inactivity and user is
noticed about the result.

Act.6 The user can cancel UJ before execution or
remove it before completion.

4.2 The ASM models
Modeling job management services in a Grid system is
so reduced to modeling one Dispatcher Agent, a set of
JobManager Agents and a pool of ResourceExecutor
Agents, each with a Resource Local Queue Agent.

Note that the ASMs of the agents will be described
separately, but all of them are a unique Distributed
Asynchronous ASM - asyncASM.

In the resulting asyncASM there is one instance of
the Dispatcher ASM, up to M instances of the Job
Manager ASM, and R instances for both Resource Local
Queue and Resource Executor ASMs. In real word, M is
established by the capability of the middleware, and R
depends on the actually available resources.

Figures 4 to 7 show the graphical view of the ASMs
modeling Dispatcher, Job Manager, Resource Local
Queue and Resource Executor agents, respectively. They
are screenshots of the graphical representation of the

ASMs, obtained by the ASM Control State Diagram
editor (CSDe [38]). According to the usual notation of
ASMs, circles represent states, diamonds represent
conditions and boxes represent rules. Moreover, we
added asterisks “*”, “**”, “***” to the screenshots for
indicating the logical link between Dispatcher and Job
Manager, between Job Manager and Resource Local
Queue, and between Resource Local Queue and
Resource Executor, respectively. For space reasons, in
the following each ASM will be described in general and
only some parts will be detailed.

After activation, Dispatcher ASM (Figure 4) goes in
“IDLEDISP” state. When one or more jobs are in
waitingJobs queue, the condition labeled “OneJob”
evaluates to true, so the “LOAD” rule is activated. As a
result, the job at the top of waitingJobs queue is loaded
in Dispatcher. Then the ASM waits for the availability of
at least one JobManager. The ASM stops waiting when
the value of the location parameter inactive for a
JobManager JMi evaluates to true, for some i, i.e., JMi is
not currently processing, so it is available for executing
that job.

Then the rule “ACTIVATION” is fired: this results
in activating JobManager JMi, so changing the value of
the location parameter inactive to false, the state of the
Dispatcher ASM evolves to “JOBSUBMITTED”, and
the Job Manager ASM (Figure 5) can start its execution.
The computations of both Dispatcher ASM and Job
Manager ASM then continue asynchronously: Dispatcher
ASM checks if more jobs are waiting; meanwhile, Job
Manager ASM processes the job.

After activation, if user does not cancel the job, the
Job Manager ASM checks whether a proper resource,
which satisfies job requirements exists in resource pool.
To this end the condition labeled “exists resource in
Resource” is evaluated. If the condition is not satisfied,
then the job is rejected and the run stops, otherwise,
“ACCEPT” rule is executed. The result of rule is
assigning job execution to one of the available proper
resources, selected in a non-deterministic way using the
“choose” construct of coreASM language, and the
location parameter submitJobToResource is set to the
couple <identifier of chosen resource; identifier of job>.

Figure 4: Representation of the Dispatcher ASM.

302 Informatica 37 (2013) 295–306 A. Bianchi et al.

After execution of this rule, the Job Manager ASM
evolves in “RUNNING” state, and the Resource Local
Queue ASM (Figure 6) can start its execution,
asynchronously with respect to Job Manager ASM.

The condition labeled “OneJobAllocated” in
Resource Local Queue ASM is satisfied when the
location parameter submitJobToResource establishes the
relation between the resource and a job. Therefore, after
activation of Resource Local Queue ASM, this condition
evaluates to true and the rule “ENQUEUE” fires. This
rule sets to true location parameter jobAllocated, so the
condition labeled “OneJobInQueue” in the Resource
Executor ASM (Figure 7) becomes true, and therefore
the rule “SCHEDULE” can be executed. Next, Resource
Local Queue ASM and Resource Executor ASM perform
their computations asynchronously.

5 Model implementation and
simulation

According to the ASM-based method for designing
critical systems presented in [7], the modeled behavior is
validated through simulation. So, after implementation,
the ASMs shown above have been executed in some
typical scenarios. Note that simulations are aimed at
validating the main functionality, without the purpose to
verify the correct behavior of the whole system.

Figure 5: Representation of the Job Manager ASM.

Figure 6: Representation of the Resource Local Queue
ASM.

An ASM-based Model for Grid Job Management Informatica 37 (2013) 295–306 303

5.1 Implementation
The executable code of the modeled ASMs, have been
obtained through a 4-steps process. In the first step each
ASM is edited using the Control State Diagram editor
(CSDe [38]), an Eclipse plugin for creating and
modifying ASMs and translating them into coreASM
specifications. The second step is the production of the
coreASM specification for every ASM. It is
automatically executed by the CSDe. In the third step the
four files obtained so far, one for each ASM, are merged
in a unique coreASM file, which specifies the unique
asyncASM modeling the system. Finally, the specific
behavior of the obtained asyncASM is manually
customized by the programmer by adding instructions for
rules and conditions.

The entire process was executed in about four days
by one person, without any previous experience in
coreASM language. The step that consumed more time
was the last, which required about three days. Note that
the few time spent for designing the ASMs during the
first step is due to the previous study of the model, which
required much more effort.

The result of the process is one file, about 650 lines
long: about 300 were automatically generated and about
350 manually produced.

5.2 Simulation setting
After implementation, the model has been simulated in
five typical scenarios.

Scenario 1 is the standard ideal scenario, in which
the Grid system is able to process all jobs submitted, all
resources are available for all submitted jobs, and no user
stops the submitted UJ. It is expected that each user
receives the result concerning the computation of the
submitted job.

In Scenario 2 the system is able to process all jobs
submitted, but constraints for some of them are not
satisfied by any resource. Moreover, in this scenario the
users do not stop computation before end. It is expected
an error message to users that submitted unsatisfied jobs.

Scenario 3 is analogous to the first one, i.e. the
system is able to process all submitted jobs, and all
resources are available for all submitted jobs, but one of
them (say, stopped_job) is stopped by an explicit user
request, so a message confirming job deletion due to user
action is expected.

Scenario 4 simulates the behavior of the Grid when
the number of submitted jobs is greater than the total
number of available Job Managers. Moreover, in this
scenario the users do not stop the computations. It is
expected that some jobs are not dispatched to a Job
Manager Agent as well as they are submitted, because all
Job Manager Agents are busy, so their execution must be
delayed; nevertheless they should be correctly processed
later.

Scenario 5 is aimed at validating the behavior of the
Grid when only one resource satisfies the constraints for
the submitted jobs. So, it is expected that if the users do
not stop computations, all the submitted jobs are queued
and they are processed according to arrival order.

Figure 7: Representation of the Resource Executor ASM

304 Informatica 37 (2013) 295–306 A. Bianchi et al.

For each scenario, ten simulations have been
executed, and in all cases the Grid system is composed of
one instance of Dispatcher ASM, 10 instances of Job
Manager ASM, and 10 instances of both Resource Local
Queue ASM and Resource Executor ASM. In scenarios
1, 2, 3, and 5 the number of jobs queued in the
waitingJob is variable, but always lower than the total
number of Job Managers. Instead, in scenario 4 the
number of jobs is always greater.

5.3 Simulation execution
For each scenario, after setting the initial condition, the
computation executed by the involved ASMs have been
observed, looking at both the locations at each step, and
the output shown in coreASM console. An example of
the coreASM console output produced during execution
of scenario 2 is in Figure 8.

For all scenarios, the Dispatcher Agent activates a
JobManager instance for each submitted job, then the
JobManager Agent searches for an adequate resource
matching job constraints. During simulation of scenarios
1 and 3, all needed resources are found and reserved for
job execution. Then, in scenario 1, each resource
processes its job until completion and finally the
expected message is sent back to each user. Instead, in
scenario 3 the JobManager associated to the stopped_job
ends its own execution when the guard condition
abortRunning is encountered. In this case, stopped_job is
removed by the JobManager Agent, and a message
confirming deletion is correctly sent to the user.

Execution of scenario 2 shows that due to the lack of
proper resources for some jobs, they cannot be satisfied.
In other words, some JobManager Agents fail in finding
adequate resources, and their jobs are rejected. The final
messages for these jobs correctly show the failure.

In scenario 4 some jobs correctly wait for Job
Manger availability; when a Job Manager Agent
becomes ready, it accepts the job at the top of the queue.

The final message sent to users correctly shows the result
of job execution.

In scenario 5 all submitted jobs are correctly
enqueued, each waiting for the availability of the
resource, and they are all correctly executed, according to
their arrival order.

Therefore, in all cases we executed, the model
correctly evolves according to the expected behavior,
and, after completion all resource are correctly released,
so becoming available for processing new jobs, and the
agents return to the idle state.

6 Conclusion and future work
Grid technology makes available a great extent of
computational power for solving many application
problems with acceptable resource consumption. In this
context, the specific middleware adopted for executing
Users Jobs is a very critical requirement, which can
affect success of the system. Its high complexity requires
the use of formal methods for guaranteeing correct
behavior within required quality of service. This paper is
part of our research aimed at building a formal
framework for studying Grid systems. Since ASMs have
proven their practical benefits for the specification and
analysis of several complex systems, we apply this
formalism in Grid systems domain.

Here, we provide a formal description of the job
Execution Management Services in terms of asyncASMs,
and its implementation into coreASM tool. Job EMS is
expressed as a composition of interoperable, always
refineable, building blocks, and the resulting asyncASM
model is an effective choice for defining a precise
semantic foundation of Grid system. This solution allows
coordination among different logical components in the
Grid.

The simulation-based validation of the model
provides an informal evidence of requirement
satisfaction, and it makes possible a preliminarily
analysis of some system properties. For example we can

Figure 8: Console Output for Scenario 2.

An ASM-based Model for Grid Job Management Informatica 37 (2013) 295–306 305

see that each state can be reached starting from the initial
idle state, and that all rules can always be fired, so the
modeled system is deadlock free. Moreover, we can
observe that it is always possible returning to the initial
state, so that it is always possible implementing a proper
recovery procedure in case of failures. Finally, it is worth
noting that the Dispatcher Agent can be a bottleneck for
the system, because it has to manage a lot of jobs.

The ASM approach can be seen as a reference model
for Grids studies: it can help both researchers and
practitioners to better understand Grid behavior, to
clarify concepts at the abstract desiderate formal level, to
improve the efficiency and reduction of development
costs, and to compare different solutions. In fact, thanks
to the abstraction process, and to tools like coreASM, it is
quite easy building an implementation of the model,
spending few efforts, and different Grid strategies,
depending on different middleware, can be derived as
different refinements of the same abstraction. In this
way, researchers can verify and validate the behavior of
solutions they propose, and practitioners can easily
compare the implementation of different proposals.

Future development of research is aimed at a twofold
goal: on one hand, the model will be completed for
encompassing proper management of some side aspects,
for example resource allocation policy, and management
of a pool of Dispatchers. On the other hand, since ASM-
based approach enables the analysis of the model for
evaluating computationally interesting properties, the
obtained models will be analyzed for identifying possible
weaknesses. In this sense, it can be challenging for
researchers and practitioners investigating how the ASM
models can help the interoperability and the
standardization of Grid systems achieving optimal
performance and reduction of costs.

Acknowledgement
This work has been partially funded by the Italian
Ministry of Education, University and Research (MIUR),
within the Piano Operativo Nazionale -
PON02_00563_3489339.

The authors are very grateful to the anonymous
reviewers for their constructive remarks and comments.

References
[1] I. Foster, C. Kesselman, and S. Tuecke, “The

anatomy of the Grid: Enabling scalable virtual
organizations”, International Journal of High
Performance Computing Application, vol. 15, no.3,
pp. 200-222, 2001.

[2] I. Foster, “What is the Grid? A Three Point
Checklist”, Global Grid Forum, Available:
http://www.globus.org/alliance/publications/papers.
php, 2002.

[3] Globus Alliance – Globus Toolkit –
www.globus.org

[4] I. Foster, I., Kishimoto, H., Savva, A., Berry, D.,
Djaoui, A., Grimshaw, A., Horn, B., Maciel, F.,
Siebenlist, F., Subramaniam, R., Treadwell, J.,

Reich, J.V. Reich, “The Open Grid Services
Architecture, Version 1.5” , GFD-I.080, Open Grid
Forum, Available:
www.ogf.org/documents/GFD.80.pdf, 2006.

[5] http://glite.cern.ch/
[6] A. Bianchi, L. Manelli and S. Pizzutilo, “A

Distributed Abstract State Machine for Grid
Systems: A Preliminary Study”, in P. Iványi and
B.H.V. Topping (Eds.) Proceedings of the Second
International Conference on Parallel, Distributed,
Grid And Cloud Computing For Engineering, Civil-
Comp Press, Ajaccio, France, Paper 84, April 2011

[7] E. Börger, R. Stärk, Abstract State Machine,
Springer, 2003.

[8] www.coreasm.org
[9] R. Farahbod, V. Gervasi, and U. Glaesser,

"CoreASM: An extensible ASM execution engine",
Fundamenta Informaticae, vol. 77, no.1-2, pp. 71-
103, 2007.

[10] X. Zhao, B. Wang, L. Xu, “Grid Application
Scheduling Model Based on Petri Net with
Changeable Structure”, Proceedings of the 6th
International Conference on Grid and Cooperative
Computing, Los Alamitos, CA, pp.733-736, 2007.

[11] H. Storrle, J. Hausmann, “Towards a formal
semantics of UML 2.0 activities”, in Software
Engineering, Lecture Notes in Informatics vol. P-
64, P. Liggesmeyer, K. Pohl, M. Goedicke, Eds.,
pp. 117-128, 2005.

[12] S. Sarstedt, and W. Guttmann, "An ASM Semantics
of Token Flow in UML 2 Activity Diagrams",
Proceedings of the 6th International Andrei Ershov
memorial conference on Perspectives of systems
informatics, I. Virbitskaite and A. Voronkov Eds.,
LNCS 4378, pp. 349-362, 2007.

[13] W. Reisig, "The Expressive Power of Abstract State
Machines", Computing and Informatics, vol. 22,
no.3-4, pp. 1-10, 2003.

[14] U. Glässer, Y. Gurevich, M. Veanes, “Abstract
Communication Model for Distributed Systems”,
IEEE Transactions on Software Engineering,
vol.30, no.7, pp. 458-472, 2004.

[15] J. Lemcke, and A. Friesen, “Composing Web-
service-like abstract state machines (ASMs)”,
Proceedings of the IEEE Congress on Services, Salt
Lake City, Utah, pp. 262–269, July 2007

[16] D. Lamch, R. Wyrzykowski, “Specification,
analysis and testing of Grid environments using
Abstract State Machines”, Proceedings of the
International Conference on Parallel Computing in
Electrical Engineering, Bialystok, Poland, pp. 116-
120, September 2006.

[17] Z.Nemeth, V. Sunderam, “Characterizing Grids:
Attributes, Definitions and Formalism”, Journal of
Grid Computing, Vol. 1, no.1, pp. 9-23, 2003.

[18] Z.Nemeth, V. Sunderam, “A Formal Framework for
Defining Grid Systems”, Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid, Berlin, pp. 202-211, May
2002.

306 Informatica 37 (2013) 295–306 A. Bianchi et al.

[19] M.Parashar, J.C. Browne, “Conceptual and
implementation models for the Grid”, Proceedings
of the IEEE, vol.93, no 3, pp.653-668, 2005.

[20] D. Zou, W. Qiang, Z. Shi, “A Formal General
Framework and Service Access Model for Service
Grid”, Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer
Systems, Shanghai, China, pp. 349-356, June 2005.

[21] A. Blass, Y. Gurevich, “Abstract State Machines
Capture Parallel Algorithms”, ACM Transactions
on Computational Logic, Vol. 4 no. 4, pp.578-651,
2003.

[22] R. Farahbod, and U. Glasser, “The CoreASM
modeling framework”, Software – Practice and
Experience, 41, no.2, pp. 167–178, 2011.

[23] G.M.P. O'Hare, N.R. Jennings, Foundations of
Distributed Artificial Intelligence, John Wiley &
Sons, 1996.

[24] J. Yu, R. Buyya, “A taxonomy of scientific
workflow management systems for grid
computing”, ACM SIGMOD Record, Vol. 34, no.3,
pp. 44-49, 2005.

[25] J. Montes, A. Sánchez, J.J. Valdés, M.S. Pérez, P.
Herrero, “Finding order in Chaos: A behavior
model of the whole grid”, Concurrency and
Computation: Practice & Experience, Vol.22 no.
11, pp.1386-1415, 2010.

[26] D. Gannon, R. Bramley, G. Fox, S. Smallen, A.
Rossi, R. Ananthakrishnan, F. Bertrand, K. Chiu,
M. Farrellee, M. Govindaraju, S. Krishnan, L.
Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma,
C. Olariu, and N. Rey-Cenvaz, “Programming the
Grid: Distributed Software Components, P2P and
Grid Web Services for Scientific Applications”,
Cluster Computing, Vol.5, no3, pp.325-336, 2002.

[27] A.N. Haidar, P. V. Coveney, A.E. Abdallah, P. Y.
A. Ryan, B. Beckles, J. M. Brooke and M.A.S.
Jones “Formal Modelling of a Usable Identity
Management Solution for Virtual Organisations”,
Proceedings of the 2nd Workshop on Formal
Aspects of Virtual Organisations, Electronic
Proceedings in Theoretical Computer Science -
EPTCS 16, pp. 41-50, 2010.

[28] J. Woodcock, and J. Davies, Using Z Specification,
Refinement, and Proof. C.A.R Hoare series editor,
Prentice Hall International, 1996.

[29] C. A. R. Hoare. Communicating Sequential
Processes. Prentice Hall, 1985.

[30] F. Neubauer, A. Hoheisel, J. Geiler, "Workflow-
based Grid applications", Future Generation
Computer Systems, Vol.22, no.1-2, pp.6–15, 2006.

[31] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A.
Skjellum, V. Velusamy, Y. Liu, "Grid-Flow: a
Grid-enabled scientific workflow system with a
Petri-net-based interface", Concurrency and
Computation: Practice and Experience, Vol. 18, no.
10, pp. 1115–1140, 2006.

[32] W.D. Liu, J.X. Song, C. Lin, "Modeling and
Analysis of Grid Computing Application Based
Price Timed Petri Net", Acta Electronica Sinica,
2005-08.

[33] Y. Gurevich, B. Rossman, W. Schulte, "Semantic
essence of AsmL", Theoretical Computer Science,
Vol.343, no.3, pp.370 – 412, 2005.

[34] Y. Gurevich, “Sequential Abstract State Machines
capture Sequential Algorithms”, ACM Transactions
on Computational Logic, Vol.1, no.1, pp. 77-111,
2000.

[35] R. Milner, Communicating and Mobile Systems: the π-calculus, Cambridge University Press, 1999.
[36] J. Zhou, G. Zeng, "Describing and reasoning on the

composition of grid services using pi-calculus",
Proceedings of the 6th IEEE International
Conference on Computer and Information
Technology, Seoul, Korea, pp.48-53, September
2006.

[37] R. Eshuis, R. Wieringa, “Comparing Petri Net and
Activity Diagram Variants for Workflow Modelling
– A Quest for Reactive Petri Nets”, Petri Net
Technology for Communication Based Systems,
LNCS vol.2472, Springer, 2003, pp 321-351.

[38] R. Farahbod, V. Gervasi, U. Glässer, "Executable
formal specifications of complex distributed
systems with CoreASM", Science of Computer
Programming, 2012.

[39] P. Andreetto, S. Andreozzi, A. Ghiselli, M.
Marzolla, V. Venturi, L. Zangrando, “Standards-
based Job Management in Grid Systems”, Journal
of Grid Computing, Vol.8, no.1, pp.19-45, 2010.

[40] W. van der Aalst, C. Bratosin, N. Sidorova, and N.
Trcka, “A Reference model for Grid Architectures
and its Validation”, Concurrency and Computation:
Practice and Experience, Vol.22, no.11, pp. 1365-
1385, 2010.

[41] J. Atlas, M. Swany, K.S. Decker, “Flexible Grid
Workflows Using TAEMS”, Proceedings of the
Workshop on Exploring Planning and Scheduling
for Web Services, Grid and Autonomic Computing,
at AAAI05, Pittsburgh, Pennsylvania, pp. 24-31,
July2005.

