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Job Execution Management Services in Grid systems are generally implemented using specific Grid 
middleware, and they are considered very critical for the success of the entire system. In order to better 
manage complexity and criticality, literature suggests the use of robust formal models to describe and 
analyze these services. This paper abstracts strategic services in Grid Systems, proposes an Abstract 
State Machine-based model to design them, and implements them by the coreASM tool. The obtained 
results lead to consider the usage of Abstract State Machine models as a concrete control appliance for 
Grid systems.

Povzetek: Avtorji predlagajo novo orodje coreASM, s katerim upravljajo storitve mreže.

1 Introduction
A Grid system is built to allow researchers in different 
domains to use multiple heterogeneous resources for 
problem solving in high performance computational 
infrastructure. It provides efficient use of multiple 
machines for executing jobs, in particular for parallel 
applications, which can distribute the parallel units of 
their work across the allocated resources through parallel 
execution. To this end, a Grid system is defined as a set 
of independent, distributed and cooperating 
computational units, which are able to achieve a 
particular computational goal in dynamic multi-
institutional Virtual Organizations [1], [2].

Several organizations have proposed standards for 
requirements, architecture, specification and services for 
Grid systems. Among them, the Globus Project (now 
Globus Alliance [3]) proposed the Open Grid Service 
Architecture (OGSA) in 2006: it provides a set of 
important requirements and considers several services 
needed to support Grid systems and applications [4]. In 
particular, the requirements for Execution Management 
Services (EMSs) deal with managing the execution of 
jobs during their lifetimes by searching remote resources 
for scheduling and executing jobs, and by returning 
output to users.

1.1 Motivation
Grid systems represent fundamental assets in large-scale 
scientific and engineering research, but several 
difficulties are encountered in building reliable Grid 
applications, mainly because of the high complexity of 
these systems, [24], [25], and because of the lack of 
proper conceptual framework and supporting tools [26].

These issues are highlighted in [40], where authors 
state the huge gap between the proposed architectures 
usually expressed by informal diagrams, and the existing 
implementations, so concluding that “a good conceptual 
reference model for grid is missing”.

The lack of precise specification heavily impacts 
EMSs that are generally implemented using specific 
middleware. Practically, Grid middleware supports the 
development of service-oriented computing applications 
and provides services with the aim to lead users to access 
remote distributed resources and run jobs on them. 
Different organizations developed different Grid 
middleware, sometimes implementing the same proposal. 
For example, two of the most popular middleware are 
Globus Toolkit [3] and gLite [5], both obtained by OGSA 
proposal and both used in several Grid applications.
Unfortunately, a uniform coordination of different 
software is difficult or impossible across two different 
middleware, so, in the example above jobs originated on 
Globus Toolkit cannot be forwarded to gLite. According 
to [39], the lack of this uniform coordination results in 
different, often incompatibles interface between 
middleware and services, and drives to non-interoperable 
“Grid islands” that cannot share resources.

So, a challenge in realizing efficient Grid systems is 
the development of a specific middleware for the 
management and the execution of jobs in different 
environments. The difficulty increases when different 
Grid architectures are taken into account. According to 
[20], the need to give clear, formal definition of Grid 
systems architecture and services is an urgent task that 
can help in solving these problems.

1.2 Purpose of the work
Our research contributes to execute this “urgent task” by
proposing a formal model of Grid system services.
Similarly to [40], we do not propose a new architecture, 
but a formal executable model that precisely describe 
logical modules in EMSs, with the aim to better 
understand and improve analysis of job EMSs. Thanks to 
the abstraction provided by formalism, the system is 
expressed focusing only the main requirements and not 



296 Informatica 37 (2013) 295–306 A. Bianchi et al. 

considering specific implementation issues. In this way 
the model strictly defines the overall organization and 
specifies the services provided, without imposing formats 
for accessing services. Note that the present paper does 
not face the possible incompatibilities among existing 
resources, but this is one of the future directions of our 
research.

The preliminary study [6] examined the lifetime of a 
job in OGSA Grid architecture and described a simple 
model for its management and execution. The present 
paper moves from that lifetime for formally modeling 
execution management components through an approach 
based upon Abstract State Machine (ASM) [7], [34], and 
for implementing it using the coreASM tool [8], [9].

The coreASM provides an executable language and a 
tool environment for high-level design and experimental 
validation of ASM models by supporting execution of 
ASM specifications. It consists in a platform-independent 
engine implemented as a Java component. Moreover, a 
graphical interactive environment in form of a plug-in for 
Eclipse platform provides interactive visualization and 
control. Finally, the Control State Diagram editor (CSDe, 
another plug-in for Eclipse [38]) provides an abstract 
structure for a first simple design of the system in form 
of diagrams. In this way, our investigation enlarges 
knowledge and experience in formalizing Grid systems 
using ASM, and the obtained results represent a first step 
in the development of a benchmark for formally 
analyzing alternative implementation of Grid services 
and architectures.

Next section overviews the literature concerning 
formal models applied to Grid computing. Section three 
provides the background on ASM-based approach. 
Section four designs and models Grid job EMSs. Section 
five reports on coreASM model implementation and on 
its execution in some typical cases for validating the 
model. Conclusion and future work are discussed in 
Section six.

2 Related work
A rich literature deals with the application of formal 
methods to the design of Grid systems architecture and 
services, to their verification and validation, and to the 
analysis of the most critical properties, which can heavily 
affect the efficiency of provided services. Examples are 
represented by π-calculus [35], used in [36] for formally 
specifying dynamic binding and interactive concurrency 
of Grid services, and by Z notation [28] and Hoare’s 
Communication Sequential Processes - CSP [29], both 
adopted in [27] for modeling an identity management 
architecture for accessing Grid systems. Note that these 
works adopt the formalism for facing just one specific 
issue, and they do not generalize the approach to the 
entire system: they are optimal solutions to specific 
problems, but do not represent a general-purpose model 
for EMSs. Conversely, our research is aimed at providing 
a formal framework for specifying Grid services: in fact, 
in this work we focus on the Job EMS, but the approach 
we adopt can be easily extended form modelling the 
entire system.

Petri nets are adopted in researches with wider 
purposes. For example, composition of applications in a 
Grid is orchestrated into a unique Petri net-based 
workflow in [30]. Even though this paper provides high-
level access to Grid services, it operates only on one 
middleware, and interoperability among different 
middleware is not taken into account.

More general approaches are presented in [31], [32], 
[10], and [40]. Guan and colleagues ([31]) propose the 
design and prototype implementation of a scientific Grid 
infrastructure using a Petri-net-based interface; OGSA 
resource management and task scheduling is extended by 
Liu and colleagues ([32]) using Timed Petri nets for 
allowing services definition; a Colored Petri net-based 
model is depicted by Zhao and colleagues ([10]) for 
studying job scheduling problems; Colored Petri nets are 
also used by van der Aalst and colleagues ([40]) for 
specifying and validating a reference model for Grid 
architectures.

All these examples show that Petri nets are effective 
in designing and analyzing the workflow structure and 
services provided by the Grid and for studying typical 
properties of the system, e.g. liveness. Unfortunately, 
Petri nets present some disadvantages. Storrle and 
Hausmann [11] summarize Petri nets problems in
modeling behavior of exceptions, streaming and traverse-
to-completion, and they discuss problems arising when 
trying to analyses these advanced features. Sarstedt and 
Guttmann [12] underline that Petri nets are not adequate 
and intuitive to describe the semantics of many system 
diagrams, also due to the lack of a unified formalism. 
Moreover, Eshuis and Wieringa [37] show that Petri nets 
are suitable for modeling closed and active systems 
rather than open and reactive/proactive systems, like 
Grid. Analogously, Atlas and colleagues argue that PN-
based approaches are fairly rigid and are not suitable for 
dynamic environments [41].

For these reasons, we consider ASM approach [34] 
more suitable for modeling Grid architecture. This choice 
is justified by different issues. Several similarities exist 
between Petri nets and ASM and [7] shows that the run 
in a Petri net can be expressed by ASM rules, in 
particular it emphasizes the capability of asynchronous 
distributed ASMs in modeling the distributed nature of 
Petri nets. The capability of ASM in describing agent 
based models allows us taking into account the entire 
system in both its static and dynamic aspects, through a 
set of ASMs implementing an asynchronous distributed 
ASM.

Resuming, we applied ASM approach considering 
the advantages it provides under three different points of 
view. When the model expressivity is considered, a rich 
literature (e.g. [9], [11], [13]) agrees that ASMs show 
versatility in modeling complex architectures and they 
have excellent capabilities to capture the behavioral 
semantics of complex, dynamic, open, and reactive 
systems, like Grid, where several different processes 
occur, often with the need to properly model exceptions, 
streaming and traverse-to-completion. Secondly, 
considering software engineering development issues, it 
is worth noting that, starting from the ASM formalism, a 
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development process has been defined and successfully 
applied in several complex domains, e.g. 
telecommunication, programming languages, control 
systems, and so on [7]. Finally, considering the 
implementation point of view, the lack of specific 
environments for translating PN models in executable 
code is overcome by using an ASM-based approach 
thanks to tools like AsmL [33] and coreASM [8], [9], 
[22]. Both AsmL and coreASM are high-level executable 
languages based on ASM: the main difference is that the 
former is integrated with Microsoft .NET platform, the 
latter with the Eclipse platform.

The existing literature, which applies ASM to Grid 
systems, encourages our choice. Several papers use ASM 
to model communication systems behavior and to control 
their management. A general, abstract communication 
model for studying message-based communication 
networks in distributed systems is presented in [14]: the 
model is implemented and tested using asmL
environment.

Lemcke and Friesen propose in [15] a composition 
algorithm of web services defining the execution of 
business processes and orchestrations by providing ASM 
representations for these processes and executing them
with coreASM . Lamch and Wyrzykowski [16] develop a 
software environment in asmL implementing a hybrid 
approach for integration of a formal model and existing 
middleware components: the model-based testing 
approach is useful for investigating properties of 
specification of Grid middleware using ASM. Both these 
papers focus on integration issues, but they do not 
provide a comprehensive view of Grid systems.

In [17], [18], authors propose a semantic model for 
Grid systems and for traditional distributed systems 
describing differences between the two systems. They 
used ASM at a very high level for describing resources 
and users belong to a Virtual Organization (VO) without 
developing any tools for simulation. In a different way, 
[19] analyzes the similarities between distributed and 
Grid systems, the characteristics and the requirements of 
Grid systems and programming models. They develop an 
ASM model and study the validity in Grid environments. 
Finally, in [20] Zou and others propose a general 
framework for Grids and model the virtual organization 
based on ASM, considering quality issues for the user 
requirements. With respect to these papers, our work 
models the system at a lower abstraction level and 
validates its implementation.

In [6], a preliminary, monolithic ASM was built to 
model the standard mechanisms defined in OGSA for job 
EMSs. That paper informally details the general 
description of job EMSs, provides an overview of the 
ASM-based model, and statically analyzes it. The present 
work improves that paper, mainly with respect to two 
issues: firstly, the model is structured in a number of 
agents, each modeled by an ASM, so obtaining a more 
realistic Distributed ASM. Secondly, the model is 
implemented using coreASM, and dynamically validated
in some typical scenarios.

3 Background on ASM
Abstract State Machine, ASM for short, is a powerful 
computational model [34], which has been successfully 
applied in several cases for modeling critical, complex 
systems, both in industry and in academia: wide 
discussion about ASM application is in [7]. It simulates 
every algorithm’s behavior through a step-by-step way: 
each step computes a set of updates with given transition 
rules. After the completion of a step, all updates are 
committed simultaneously.

The concept of abstract state in ASM extends the 
usual notion of state occurring in Finite State Machines: 
it is an arbitrarily simple or complex structure, i.e. a 
collection of domains, with arbitrary functions and 
relations defined on them. On the other hand, rules are 
basically nested if-then-else clauses with a set of 
functions in their bodies. In each state, all conditions 
guarding rules are checked, that is all rules whose 
conditions are evaluated to true are simultaneously 
executed, so determining the state transition. All the 
parameters are stored in a set of so called locations and at 
each time the particular configuration of parameters 
values determines the current state of the ASM.

The transition from one state to another is described 
through a set of formulas, in the form:

{if conditioni then updatesi} i = 1,..,n

where each conditioni (the guard of the i-th rule) is an 
arbitrary first-order formula, whose interpretation can be 
true or false, and each updatesi is a finite set of 
assignments

f(t1,…,tn) = t
whose execution is to be understood as changing the 
value of the function f at the given parameters ti, that 
leads to a new value of the parameter t. The parameters 
are stored in a set of locations and the configuration of 
parameter values at each step determines the current state
of the ASM.

For the unambiguous determination of a next state, it 
is necessary that updates are consistent. An update set is 
consistent if it contains no pair of updates which assign 
different values to the same location; otherwise, the 
update set is inconsistent.  

The concepts related to modeling monolithic systems 
through ASMs can be extended to distributed systems. 
The case of job management in Grid systems is a typical 
case of asynchronous distributed systems. It is 
distributed because its overall behavior is the 
composition of different, independent, remote elements, 
each operating on its own. It is asynchronous because all 
involved logical components operate and communicate 
concurrently, each according to its internal behavior. So, 
job EMSs in Grid can be modeled by a Distributed
Asynchronous ASM - asyncASM [7], [21]. 

Essentially, asyncASMs generalize simple ASMs to 
an arbitrary finite number of independent agents [23], 
each executing an ASM in its own local state. Formally, 
an asyncASM is given by a family of pairs (a, ASM(a)) of 
pairwise different agents, elements of a possibly dynamic 
finite set Agent, each executing its ASM, ASM(a). In this 
sense, each agent a executes its own program, operating 
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on its own states, so determining a partial view of the 
entire system. The relation between global and local 
states is supported by the reserved keyword self, used to 
denote the specific agent executing a rule, and to store 
information relevant to itself. A new agent can be 
introduced into the asyncASM at any time by extending 
the set Agent.

An ASM-based process for developing complex 
systems is presented in [7]: it allows capturing system 
model requirements and refining them through 
intermediate models to any desired level of detail in a 
validated and verifiable code. In the present work, 
modeling and implementation activities have been 
carried out with the support of the coreASM framework 
[8], [9], [22]. It follows mathematical definition of ASMs 
and inherits several typical features of the ASM 
modeling. Its main purpose is to make ASM-based 
models executable. To this end, the framework includes 
some language constructs aimed at making easy the 
development, as, for instance, forAll, which allows 
executing all rules satisfying a given guard condition; 
choose, aimed at expressing non-determinism in the 
choice of a rule to execute when a condition is satisfied; 
seqblock/endseqblock are the delimiters of block, whose 
rules must be executed sequentially; par/endpar are the 
delimiters of block, whose rules must be executed 
concurrently; enqueue/dequeue are the operators for 
adding / removing elements to a queue.

4 Modeling the Grid job EMSs
In order to model the job EMSs, firstly the Grid 
capabilities and features are informally described, then 
they are abstracted and formally defined, finally the 
asyncASM is created in the coreASM environment [8].

4.1 Informal description of a Grid system

4.1.1 Services
The OGSA standard describes requirements 
(interoperability and resource sharing, optimization, 
quality of service, job execution, data services, security, 
scalability and extensibility), and considers six important 
independent services that implement such requirements 
and are needed to support Grid systems and applications 
[4]:
 Execution Management Services manage jobs to 

completion: they concern job submission, description 
instantiating, scheduling, and provisioning resources 
(e.g. RAM, disk, CPU, etc.).

 Data Services focus on the management, access and 
update of data resources (e.g. files, streams, DBMS, 
etc…), and provide remote access facilities, 
replication services and managing of metadata.

 Resource Management Services manage physical 
and logical resources.

 Security Services provide security-related policy, 
and manage access for cross-organizational users.

 Self-Management Services support the reducing of 
the cost and complexity of operating on an IT 

infrastructure. They provide self-configuration and 
self-optimization of system components (e.g. 
computers, networks and storage devices).

 Information Services concern the manipulation of 
information about applications, resources and 
services, support reliability, security, and 
performance in a Grid. They provide registry, 
notification, monitoring, discovering, and logging.
The specific implementation of these services is 

delegated to Grid middleware. Practically, when a job is 
submitted, the middleware creates a job manager process 
for that job. The job manager manages the single job’s 
lifetime, matches job requirements with the needed 
resources, and controls the relative allocation in different 
way for different Grid middleware. The allocation 
consists in assigning and queuing the job to local 
manager in resources. Note that in the following we only 
focus Execution Management Services.

4.1.2 Architecture
We assume a Grid is over three levels, operating on 
distributed heterogeneous resources, namely Grid 
Application level, Middleware level, Resources Pool 
level. Note that, this layered view is an abstraction of 
OGSA proposal, often used in literature, for instance in 
[40], and it fits our purposes.

The Grid Application is a higher-level structure built 
on top of the architecture that for our purposes is only 
aimed at partitioning each user job in jobs to submit to
the lower level. In fact, since it is usually considered that 
a job is the smallest unit managed by a Grid 
environment, we assume a user submits one or more 
User Jobs (say UJ1, UJ2, … ,UJn), each composed by one 
or more jobs (say job11, job12,…, job1k for UJ1; job21, 
job22,…, job2h for UJ2;… jobn1, jobn2, …, jobnm for UJn). 
Note that possible interactions among jobs are managed 
by Grid Application level, but this issue is outside the 
purposes of present work.

The Middleware level implements fundamental 
functionality needed by Grid applications and required 
by OGSA. It interacts with the Application level, 
managing jobs until their completions and returning 
results to users. In this context the EMSs concern 
searching candidate resource and executing and 
managing jobs until end, so users can transparently 
execute their UJ-s on distributed resources. These tasks 
are critical because their incorrect execution can heavily 
affect the quality of provided services [24], so adoption 
of formal method is useful and sometimes mandatory.

The Resources Pool level is characterized by 
distributed and heterogeneous resources of a Grid. For 
the purposes of our work a resource is a logical entity 
with specific features needed to job execution, with its 
local workload and managed by a local resource 
manager.

For sake of simplicity, the architecture is 
summarized in figures 1 to 3: Figure 1 is an overview of 
the three levels: the box labeled “Grid Application Level” 
is outside the purposes of present work, so it is not 
further detailed. The boxes “Grid Middleware Level” and 
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“Grid Resources Level” are detailed in Figure 2 and 
Figure 3, respectively.

The UJ-s submitted by users are processed by the 
Application level and each of them is partitioned into 
composing jobs. Next, each job is sent to the Grid
Middleware level, through a queue called waitingJobs, 
according to a First-In-First-Out (FIFO) policy.
Moreover, the Application level receives the results of 
jobs executions by lower level and it re-composes them 
so that to obtain the results of UJs to send back to users.

A job must be executed on a resource that satisfies 
all its computational constraints. To this end, the EMSs 
chooses the proper resource in a shared pool, according 
to job performance requests, allocates the job on the 
selected resource for execution, and controls the job
lifetime until completion.

In order to achieve these goals, we assume that 
Execution Management module is composed by two 
logical components: a Dispatcher, and a set of Job 
Managers (Figure 2), each accessed in mutual exclusion. 

The former schedules execution of each job to a Job 
Manager. Therefore, the role of the Dispatcher consists 
in the following activities: extracting the job at the top of 
the queue, searching for a free instance of a Job 
Manager, and activating the Job Manager instance on 
the submitted job.

After activation, the Job Manager becomes 
unavailable for other jobs. Then, it searches a suitable 
Resource in the Resource Pool level, matching the 
required job performance. If a resource is found, the Job 
Manager assigns it the job, waiting for control return, and 
it manages the lifetime and the state of the job until 
completion. In case of failure, an error is reported. Each 
Job Manager becomes again available for other jobs only 
after job completion.

A Resource in the Resources pool receives the job by
the Job Manager, enqueues the job in the local queue
and processes it, according to the position in the queue.

The set of resources is assumed to be fixed (from 1
to R), and during execution resources cannot be added or 

Figure 1: Architecture Overview.
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removed. For abstraction purposes, we suppose that a 
Resource computes jobs with a FIFO policy. If no 
resource in the pool is able to satisfy job requirements, 
the job fails due to a lack of available resources. 
Moreover, we assume that a Resource is composed by 
two logical components that work on the same job: a 
ResourceLocalQueue module, devoted to enqueuing the 
incoming jobs, and a ResourceExecutor module, for jobs
execution.

If problems occur in resource during job execution, 
the Job Manager catches errors and stops the 
computation. When the execution completes, either 
successfully or unsuccessfully, middleware sends a 
message to the user application. In Figure 3 a 
representation of Resources pool is presented.

As a final remark, it is worth noting that users can 
cancel their user jobs (UJ-s) before completion; if so, all 
corresponding jobs are removed by the Grid system.

Figure 2: Overview of Grid Middleware Level.

Figure 3: Representation of the Resource pool.
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4.1.3 Abstraction
Informal description above can be abstracted in the 
following set of requirements:
Req.1 A Grid receives requests for UJ-s from clients; 

each UJ is decomposed in a set of atomic jobs, 
and each job is queued waiting for service.

Req.2 A Dispatcher module in middleware loads a job, 
and sends it to a specific Job Manager module.

Req.3 For each job, Job Manager finds the most 
adequate resource satisfying job requirements and 
runs it on that resource.

Req.4 That Resource enqueues and processes the job.
Req.5 If there are no failures, the job is completed with 

success.
Req.6 If errors occur the job is aborted.
Req.7 A user can cancel or remove a User Job, so 

cancelling/removing the corresponding jobs.
Req.8 At the end of the computation Resource is 

released.
Req.9 At the end of the computation the result is 

communicated to the end user.
Moreover, the model of system operations must be 

able to execute the following actions:
Act.1 The Dispatcher takes the first job in the 

waitingJob queue and sends it to the first 
available instance of Job Manager, if the system is 
ready.

Act.2 The system needs to find available resources 
necessary for the computation: if so, resources are 
reserved, else the job is immediately rejected.

Act.3 The job sent to a Resource is enqueued in its local 
queue and when possible the computation starts;

Act.4 The job can complete the computation with 
success and the system traces the result of the 
computation; if problems arise, the execution fails 
and the systems returns to the idle state.

Act.5 At the end of the computation, the system resets 
and returns in a state of inactivity and user is 
noticed about the result.

Act.6 The user can cancel UJ before execution or 
remove it before completion.

4.2 The ASM models
Modeling job management services in a Grid system is 
so reduced to modeling one Dispatcher Agent, a set of 
JobManager Agents and a pool of ResourceExecutor 
Agents, each with a Resource Local Queue Agent.

Note that the ASMs of the agents will be described 
separately, but all of them are a unique Distributed 
Asynchronous ASM - asyncASM. 

In the resulting asyncASM there is one instance of 
the Dispatcher ASM, up to M instances of the Job 
Manager ASM, and R instances for both Resource Local 
Queue and Resource Executor ASMs. In real word, M is 
established by the capability of the middleware, and R 
depends on the actually available resources.

Figures 4 to 7 show the graphical view of the ASMs 
modeling Dispatcher, Job Manager, Resource Local 
Queue and Resource Executor agents, respectively. They 
are screenshots of the graphical representation of the 

ASMs, obtained by the ASM Control State Diagram 
editor (CSDe [38]). According to the usual notation of 
ASMs, circles represent states, diamonds represent 
conditions and boxes represent rules. Moreover, we 
added asterisks “*”, “**”, “***” to the screenshots for 
indicating the logical link between Dispatcher and Job 
Manager, between Job Manager and Resource Local 
Queue, and between Resource Local Queue and 
Resource Executor, respectively. For space reasons, in 
the following each ASM will be described in general and 
only some parts will be detailed.

After activation, Dispatcher ASM (Figure 4) goes in 
“IDLEDISP” state. When one or more jobs are in 
waitingJobs queue, the condition labeled “OneJob” 
evaluates to true, so the “LOAD” rule is activated. As a 
result, the job at the top of waitingJobs queue is loaded 
in Dispatcher. Then the ASM waits for the availability of 
at least one JobManager. The ASM stops waiting when 
the value of the location parameter inactive for a 
JobManager JMi evaluates to true, for some i, i.e., JMi is 
not currently processing, so it is available for executing 
that job.

Then the rule “ACTIVATION” is fired: this results 
in activating JobManager JMi, so changing the value of 
the location parameter inactive to false, the state of the 
Dispatcher ASM evolves to “JOBSUBMITTED”, and 
the Job Manager ASM (Figure 5) can start its execution. 
The computations of both Dispatcher ASM and Job 
Manager ASM then continue asynchronously: Dispatcher 
ASM checks if more jobs are waiting; meanwhile, Job 
Manager ASM processes the job.

After activation, if user does not cancel the job, the 
Job Manager ASM checks whether a proper resource, 
which satisfies job requirements exists in resource pool. 
To this end the condition labeled “exists resource in 
Resource” is evaluated. If the condition is not satisfied, 
then the job is rejected and the run stops, otherwise, 
“ACCEPT” rule is executed. The result of rule is 
assigning job execution to one of the available proper 
resources, selected in a non-deterministic way using the 
“choose” construct of coreASM language, and the 
location parameter submitJobToResource is set to the 
couple <identifier of chosen resource; identifier of job>. 

Figure 4: Representation of the Dispatcher ASM.
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After execution of this rule, the Job Manager ASM 
evolves in “RUNNING” state, and the Resource Local 
Queue ASM (Figure 6) can start its execution, 
asynchronously with respect to Job Manager ASM.

The condition labeled “OneJobAllocated” in 
Resource Local Queue ASM is satisfied when the 
location parameter submitJobToResource establishes the 
relation between the resource and a job. Therefore, after 
activation of Resource Local Queue ASM, this condition 
evaluates to true and the rule “ENQUEUE” fires. This 
rule sets to true location parameter jobAllocated, so the 
condition labeled “OneJobInQueue” in the Resource 
Executor ASM (Figure 7) becomes true, and therefore 
the rule “SCHEDULE” can be executed. Next, Resource 
Local Queue ASM and Resource Executor ASM perform 
their computations asynchronously.

5 Model implementation and 
simulation

According to the ASM-based method for designing
critical systems presented in [7], the modeled behavior is 
validated through simulation. So, after implementation, 
the ASMs shown above have been executed in some 
typical scenarios. Note that simulations are aimed at 
validating the main functionality, without the purpose to
verify the correct behavior of the whole system.

Figure 5: Representation of the Job Manager ASM.

Figure 6: Representation of the Resource Local Queue 
ASM.
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5.1 Implementation
The executable code of the modeled ASMs, have been 
obtained through a 4-steps process. In the first step each 
ASM is edited using the Control State Diagram editor 
(CSDe [38]), an Eclipse plugin for creating and 
modifying ASMs and translating them into coreASM
specifications. The second step is the production of the 
coreASM specification for every ASM. It is 
automatically executed by the CSDe. In the third step the 
four files obtained so far, one for each ASM, are merged 
in a unique coreASM file, which specifies the unique 
asyncASM modeling the system. Finally, the specific 
behavior of the obtained asyncASM is manually 
customized by the programmer by adding instructions for 
rules and conditions.

The entire process was executed in about four days 
by one person, without any previous experience in 
coreASM language. The step that consumed more time 
was the last, which required about three days. Note that 
the few time spent for designing the ASMs during the 
first step is due to the previous study of the model, which 
required much more effort.

The result of the process is one file, about 650 lines
long: about 300 were automatically generated and about 
350 manually produced.

5.2 Simulation setting
After implementation, the model has been simulated in 
five typical scenarios.

Scenario 1 is the standard ideal scenario, in which 
the Grid system is able to process all jobs submitted, all 
resources are available for all submitted jobs, and no user 
stops the submitted UJ. It is expected that each user 
receives the result concerning the computation of the 
submitted job.

In Scenario 2 the system is able to process all jobs
submitted, but constraints for some of them are not 
satisfied by any resource. Moreover, in this scenario the 
users do not stop computation before end. It is expected 
an error message to users that submitted unsatisfied jobs.

Scenario 3 is analogous to the first one, i.e. the 
system is able to process all submitted jobs, and all 
resources are available for all submitted jobs, but one of 
them (say, stopped_job) is stopped by an explicit user 
request, so a message confirming job deletion due to user 
action is expected.

Scenario 4 simulates the behavior of the Grid when 
the number of submitted jobs is greater than the total 
number of available Job Managers. Moreover, in this 
scenario the users do not stop the computations. It is 
expected that some jobs are not dispatched to a Job 
Manager Agent as well as they are submitted, because all 
Job Manager Agents are busy, so their execution must be 
delayed; nevertheless they should be correctly processed 
later.

Scenario 5 is aimed at validating the behavior of the 
Grid when only one resource satisfies the constraints for 
the submitted jobs. So, it is expected that if the users do 
not stop computations, all the submitted jobs are queued 
and they are processed according to arrival order.

Figure 7: Representation of the Resource Executor ASM
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For each scenario, ten simulations have been 
executed, and in all cases the Grid system is composed of 
one instance of Dispatcher ASM, 10 instances of Job 
Manager ASM, and 10 instances of both Resource Local 
Queue ASM and Resource Executor ASM. In scenarios 
1, 2, 3, and 5 the number of jobs queued in the 
waitingJob is variable, but always lower than the total 
number of Job Managers. Instead, in scenario 4 the 
number of jobs is always greater.

5.3 Simulation execution
For each scenario, after setting the initial condition, the 
computation executed by the involved ASMs have been 
observed, looking at both the locations at each step, and 
the output shown in coreASM console. An example of 
the coreASM console output produced during execution 
of scenario 2 is in Figure 8.

For all scenarios, the Dispatcher Agent activates a 
JobManager instance for each submitted job, then the 
JobManager Agent searches for an adequate resource 
matching job constraints. During simulation of scenarios 
1 and 3, all needed resources are found and reserved for 
job execution. Then, in scenario 1, each resource 
processes its job until completion and finally the 
expected message is sent back to each user. Instead, in 
scenario 3 the JobManager associated to the stopped_job
ends its own execution when the guard condition 
abortRunning is encountered. In this case, stopped_job is 
removed by the JobManager Agent, and a message 
confirming deletion is correctly sent to the user.

Execution of scenario 2 shows that due to the lack of 
proper resources for some jobs, they cannot be satisfied. 
In other words, some JobManager Agents fail in finding 
adequate resources, and their jobs are rejected. The final 
messages for these jobs correctly show the failure.

In scenario 4 some jobs correctly wait for Job
Manger availability; when a Job Manager Agent
becomes ready, it accepts the job at the top of the queue. 

The final message sent to users correctly shows the result 
of job execution.

In scenario 5 all submitted jobs are correctly 
enqueued, each waiting for the availability of the 
resource, and they are all correctly executed, according to 
their arrival order.

Therefore, in all cases we executed, the model 
correctly evolves according to the expected behavior,
and, after completion all resource are correctly released, 
so becoming available for processing new jobs, and the 
agents return to the idle state.

6 Conclusion and future work
Grid technology makes available a great extent of 
computational power for solving many application 
problems with acceptable resource consumption. In this 
context, the specific middleware adopted for executing
Users Jobs is a very critical requirement, which can 
affect success of the system. Its high complexity requires 
the use of formal methods for guaranteeing correct 
behavior within required quality of service. This paper is 
part of our research aimed at building a formal 
framework for studying Grid systems. Since ASMs have 
proven their practical benefits for the specification and 
analysis of several complex systems, we apply this 
formalism in Grid systems domain.

Here, we provide a formal description of the job
Execution Management Services in terms of asyncASMs, 
and its implementation into coreASM tool. Job EMS is 
expressed as a composition of interoperable, always 
refineable, building blocks, and the resulting asyncASM
model is an effective choice for defining a precise 
semantic foundation of Grid system. This solution allows 
coordination among different logical components in the 
Grid.

The simulation-based validation of the model 
provides an informal evidence of requirement 
satisfaction, and it makes possible a preliminarily 
analysis of some system properties. For example we can 

Figure 8: Console Output for Scenario 2.
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see that each state can be reached starting from the initial 
idle state, and that all rules can always be fired, so the 
modeled system is deadlock free. Moreover, we can 
observe that it is always possible returning to the initial 
state, so that it is always possible implementing a proper 
recovery procedure in case of failures. Finally, it is worth 
noting that the Dispatcher Agent can be a bottleneck for 
the system, because it has to manage a lot of jobs.

The ASM approach can be seen as a reference model 
for Grids studies: it can help both researchers and 
practitioners to better understand Grid behavior, to 
clarify concepts at the abstract desiderate formal level, to 
improve the efficiency and reduction of development 
costs, and to compare different solutions. In fact, thanks 
to the abstraction process, and to tools like coreASM, it is 
quite easy building an implementation of the model, 
spending few efforts, and different Grid strategies, 
depending on different middleware, can be derived as 
different refinements of the same abstraction. In this 
way, researchers can verify and validate the behavior of 
solutions they propose, and practitioners can easily 
compare the implementation of different proposals.

Future development of research is aimed at a twofold 
goal: on one hand, the model will be completed for 
encompassing proper management of some side aspects, 
for example resource allocation policy, and management 
of a pool of Dispatchers. On the other hand, since ASM-
based approach enables the analysis of the model for 
evaluating computationally interesting properties, the 
obtained models will be analyzed for identifying possible 
weaknesses. In this sense, it can be challenging for 
researchers and practitioners investigating how the ASM 
models can help the interoperability and the 
standardization of Grid systems achieving optimal 
performance and reduction of costs.
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