
 Informatica 37 (2013) 345–353 345

A Load Balancing Strategy for Replica Consistency Maintenance in
Data Grid Systems
Senhadji Sarra, Kateb Amar and Belbachir Hafida
LSSD Laboratory, University of science and Technology, Oran, Algeria
E-mail: senhadji.sarah@gmail.com, kateb_amar@yahoo.fr and h_belbach@yahoo.fr

Keywords: consistency, replication, data grid, load balancing

Received: January 28, 2013

Abstract: In data grid environment, the management of shared data is one of the major scientific
challenges. Data replication is one of the important techniques used in grid systems to increase the
availability, scalability and fault tolerance. However, the update of a replica might bring a critical
problem of replica consistency maintenance. Thus, maintaining the consistency of the replicas is not
trivial because of the instability of the grid system where the nodes can join and leave at any time. In
addition, according to Read/Write access frequency some nodes can be more uploaded than others and
become a bottleneck. In order to handle these problems, we propose a model of consistency based on
quorum protocol. The replica consistency performances are improved by using a dynamic load
balancing strategy in a simulated grid environment.
Povzetek: Članek govori o ohranjanju konsistentnosti kopij podatkov v omrežnem računalništvu in
predlaga nov model, ki temelji na protokolu sklepčnosti.

1 Introduction
Grids [7, 25] are a wide area computing system
geographically dispersed that involves high
computational and storage resources. The grid is
considered as one of the promiscuous technologies for
scientific applications like astronomy, bioinformatics and
earth sciences. In this kind of dynamic and large scale
environment, the management of massive data is still
being one of the important open problems [14, 6].
Different techniques dedicated for intensive data
management are used in several domains. Data
replication is one of the most important techniques
having attracted the researcher community attention.

The replication technique improves data availability,
scalability and fault tolerance. The main research areas
dealing with data replications are the replica placement
and the replica consistency maintenance.

The replicas placement mechanism determines
which data should be replicated? When to create new
copy? And where the new replicas should be placed? For
replica placement, many works and solutions have been
proposed in the literature [17, 18, 22, 23]. The main
objective of these solutions is to store copies (or replicas)
of a data in different sites, so that data can be easily
restored if one copy is lost. Also, by placing replicas
closer to grid users, the access performances are
significantly improved in term of response time,
consumed bandwidth, etc.

However, the update of replica by any grid user
might bring a critical problem of maintaining consistency
among the other replicas of the grid. In fact, when a
replica is modified, a copy must be propagated to the rest
of replicas in order to get identical and consistent copies.

Moreover, according to the frequency access to the
different grid nodes, some nodes are more uploaded then
others. This irregular evolution engenders an unbalance
and many resources can be unexploited. With an efficient
load balancing strategy, the system can reduce the query
response time and avoid failures due to overloaded
nodes. That is why we propose a complementary solution
between replica consistency and load balancing.

For this, we propose a consistency protocol based on
quorum system [5]. The main idea of quorum systems is
to involve a large collection of possible sets of nodes in
the replica consistency management. Nodes holding
replicas of the same data are represented logically into a
tree structure, called Coterie. When a Read/ Write
request is addressed to a grid node, a path from the root
to the leaf tree, called quorum, is selected to achieve the
replica consistency. Complementing to replica
consistency, we define a load balancing strategy, based
on elementary permutation between coterie’s nodes in
order to reduce the load and communication time of R/W
request.

Thus, the main idea of our contribution consists of
ameliorating the replica consistency performances
through a dynamic load balancing strategy in term of
consistency, load balancing and communication cost.

In the next section we give an overview of some
existing works pertaining to replica consistency. Then we
define our approach with the adopted dynamic load
balancing strategy. The evaluation of our approach will
be discussed in experiments section. Finally, we close
this paper with some conclusions.

mailto:senhadji.sarah@gmail.com
mailto:kateb_amar@yahoo.fr

346 Informatica 37 (2013) 345–353 S. Senhadji et al.

2 Related works
Various works have been done on the replica consistency
domain in distributed systems, such as cluster, peer to
peer and grid. Many consistency models exist in the
literature [1] as Strong models and Weak models [9, 24].
Strong consistency models keep data consistent among
all replicas simultaneously, which requires more
resources and expensive protocols than other models. In
weak consistency models the strong consistency
protocols are relaxed in order to tolerate inconsistencies
among replicas for a while to improve access
performances. In consequence, replicas returned to a read
request are not perfectly the latest updated value. For this
reason, replica divergence must be controlled since
maintaining replica freshness becomes more complex as
divergence increases.

In [8] the authors address the problem of shared data
in data grid systems. The consistency of replicated data is
introduced by relaxed read which is an extension of the
entry Consistency model [15]. Unlike the model of entry
consistency, which ensures that data is current as at the
acquisition of its lock, this new type of operation can be
achieved without locking, in parallel with write
operations. However, data freshness constraint is
released and older versions, which however still be
controlled, are accepted. The grid architecture considered
in this work is composed of clients requesting the data,
the data providers and two hierarchical levels: LDG
(Local Data Grid) and GDG (Global Data Grid).Two
types of copies are considered: local copy, hosted by the
LDG and global copy, hosted by the GDG. When a client
accesses the data, a request to acquire the
synchronization object is addressed to the node hosting
the local copy. If the node owns the synchronization
object, the client is served. Otherwise, an acquisition
request is sent to the node hosting the global copy.

To handle the problem of storage data in grids, the
consistency model proposed in [4] improved the storage
space and access time of replicated data. The authors of
this work suggest a topology built hierarchically upon
three types of nodes: Super Node SN, Master Node MN,
and Child Node CN. The source of the replicated data is
kept in the SN; this data can then be modified by users of
the grid, called "original data". When the original data is
added or modified, then it is automatically replicated to
the Master Nodes MN. The replica of the Master Node
MN is called Master Replica. At the node CN, the data is
replicated from the Master Node MN according to two
main factors: the file access frequency and the storage
space capacity. The replicated data is called Child
Replica. Replicas located at MN and CN are read only.

Another similar work to [4] was proposed by [3] by
considering the bandwidth consumed until the Read/
Write operations. Most of existing replication works [2,
10] in data grid systems focuses on consistency
management without taking care of the load imbalance of
the grid nodes which can low significantly the replication
performances.

Some of load balancing solutions have been
proposed in the literature [13, 20].For example in [12]
Quorum systems are used under a simulated environment
[5]. A coterie represents a set of copies of the replicated
data. A Quorum is defined as the minimum set of nodes
owning a replica. Quorum protocols are characterized by
two main properties which are properties of intersection
and minimality [11]. Considering two quorums Q and Q’
of a coterie C, the property Q∩Q'≠∅ is called intersection
property and the property Q⊈Q’ is called the minimality
property. The authors of [12] treated the load balancing
problem, by providing a coterie reconfiguration method,
to improve the read / write accesses. The load of a
quorum Q is the maximum load of the nodes of this
Quorum and the load of a coterie is equivalent to the sum
of loads of its quorums. The nodes are tree structured and
a Quorum is obtained by taking all nodes of any path
from the root to a leaf of the tree. Every read (or write)
operation is performed on a Quorum of the coterie.

An elementary permutation of the coterie is
performed to obtain a new less loaded coterie. For this,
two parent’s nodes are selected to be swapped in the tree
(father and its son) when the son’s load is less than the
father’s load. This has the effect of positioning the node
with the lightest load above the busiest node. An
extension of the atomic read / write service [16] is
proposed, with multiple readers and multiple writers.
Two phases are proposed: query and a propagation
phase. During the request phase, a read-quorum is
contacted and each node returns the recent version which
is consequently propagated to all the nodes of the
quorum. This has the advantage that obsolete copies are
updated even during read operations.

As few works attempted to resolve the load
balancing problem with replica consistency, our
contribution is to propose a dynamic load balancing
strategy to increase replica consistency performances in
terms of load and communication cost.

3 Proposed approach
In the literature, few studies addressed the problem of
load balancing to increase the replica access
performances. In [12] load balancing is adopted by
introducing dynamic node permutations, but regardless
of the problem of communication cost generated during
Read /Write access. In our work, nodes hosting replicas
of the same data are represented into a binary tree, called
Coterie. Indeed, in a R /W access, a Quorum designed
from the root to a leaf node is selected to be red or
written. An intermediate node can participate in different
possible Quorums. These intermediate nodes can
represent a critical point where the cost of
communication may be degraded during exchange
accesses. To handle this problem, when a Read/ write
request is addressed, our load balancing strategy is
invoked and the Coterie is restructured in order to reduce
the load of the coterie and the communication cost of the
quorum when the Read/Write request is achieved.

A Load Balancing Strategy for Replica… Informatica 37 (201313) 345–353 347

3.1 Grid and replicas model
The nodes of the grid are represented into coteries. A
coterie that owns all replicas of the same data is
structured in a binary tree. In order to improve data
availability, for each coterie node we define n versions.
Each version is characterized by three parameters < N, S,
V>, representing respectively, the node that creates or
modifies this version, the stamp which represents the
moment of the creation or the update version of the
replica and finally the value of the replica. An example is
shown in figure 1.

Figure 1: Example of a coterie with versions.

In figure 1, three versions are defined for each node of
the coterie. For example, the node A owns the following
versions <E, 2, val2>, < D, 4, val4>, < G, 6, val6>

3.2 Replica consistency
In order to achieve the consistency protocol, a replica is
updated through a write protocol and requested through a
read protocol. Before presenting the read/write protocol,
we assume that a version can be locked or released. In
addition, a node can take one of these three states: Free
(F), Occupied (O) and Blocked (B). A node is free if all
its versions are released. A node is occupied if it contains
at least one released version. A node is blocked if all its
versions are locked. The possible transitions from a state
to another are illustrated in figure2.

Figure 2: State of a node in a coterie.

Suppose that the initial state of the node is free (F). If a
request (read/ write) is addressed to that node, the
version chosen to perform the operation is locked and the
node passes to occupied state (O). If this node receives
another request then it keeps the same state even it still
has released versions, otherwise it transits to the blocked
state (B). If the node is in a blocked state and a version
has been released, then the node returns to an occupied
state. The node returns to a free state if all the locks of
all versions are released.

3.2.1 Write protocol
The node N requests the write on the data D.

Choose the coterie corresponding to the data D.
If exist free nodes in the chosen coterie
Then
 Begin

Select one of the free nodes that is near root node
If exist quorums containing the selected free node with
 no blocked nodes
Then
Begin
 - Choose one of the existing quorums getting minimal
 occupied nodes and maximal free nodes.

- Write on the selected free node of the chosen quorum.
(See Write quorum algorithm)

End
End If

 End
Else If exist occupied nodes in the chosen coterie // an
occupied node has got at least one released version
Then
 Begin

 Select one of the occupied nodes that is near root node
 If exist quorums containing the selected occupied node with
 no blocked node
 Then
 Begin
 - Choose one of the existing quorums getting minimal
 occupied nodes.
 - Write on the selected occupied node of the chosen
 quorum. (See Write quorum algorithm)
 End
 End If

End
Else Write operation aborted.//since all nodes of the chosen
coterie are blocked
End If
End If

Write quorum algorithm
Write on the oldest version of the selected node (having the
smallest stamp).
// propagate the written version to all nodes of the quorum
For the other nodes of the chosen quorum do

If the latest version is locked in writing
Then abort the propagation
Else Write on the oldest version (having the smallest
stamp).
End If

End For

3.2.2 Read protocol
The node N requests the read on the data D.

Choose the coterie corresponding to the data D.
If exist free nodes in the chosen coterie
Then
 Begin
 Select one of the free nodes that is near root node
 If exist quorums containing the selected free node with no
 Blocked node
 Then Begin

-Choose one of the existing quorums getting minimal
occupied nodes and maximal free nodes

348 Informatica 37 (2013) 345–353 S. Senhadji et al.

-Read on the selected free node of the chosen quorum.
(See Read quorum algorithm)

 End
 End If
 End
Else
If exist occupied nodes in the chosen coterie
Then Begin

Select one of the occupied nodes that is near root node
If exist quorums containing the selected occupied node
with no blocked node
Then Begin

 - Choose one of the existing quorums getting
 minimal occupied nodes.

 - Read on the occupied node of the chosen
 quorum. (See Read quorum algorithm)
 End
 End If
 End

Else Read request aborted.// since all nodes of the chosen
coterie are blocked
End If
End If

Read quorum algorithm

Select the latest version of replicas (having the biggest stamp)
of each node of the chosen quorum.
Read the selected last version.
If there is divergence between replicas of each node of the
quorum
Then //propagate the selected last version to the quorum nodes.
 For each node of the chosen quorum do
 If the latest version is locked in writing
 Then abort the propagation
 Else Write on the oldest version of the selected node (having
 the smallest stamp).
 End If
 End For
End If

In the following examples, a coterie of a data D with 3
versions is represented with 7 nodes A, B, C, D, E, F and
G having respectively the state occupied, free, blocked,
free, blocked, blocked and free. An example of write and
read algorithm on the coterie of data D is illustrated in
the figure 3.

Figure 3: Write/ Read example.

Write: Suppose that at time t = 9, a Node X requests
the write of the data D with the value val9. The
corresponding coterie of the data D is contacted. There
are three free nodes in the corresponding coterie: B, D
and G but the node B is chosen because it is near the root
node. Thus, two possible quorums can be designed from
the node B: {A, B, D} and {A, B, E} and the quorum {A,
B, D} is chosen to be written because it doesn’t get
blocked nodes. The oldest version (E, 2, val2) is locked
to be written. At the end of the write, the lock is released
and the new version (X, 9, val9) is propagated to the
quorum nodes. In the propagation phase, the oldest
version of each node is replaced by the new written
version, for example in the node F the oldest version (D,
4, val4) is replaced by the new version (X, 9, val9).

Read: At time t = 9, a Node X requests the read of

the data D. The coterie corresponding to the data D is
contacted and the quorum {A, B, D} is designed. After,
the latest version is chosen in the designed quorum.
Among the nodes of the chosen quorum, the latest
version is located in the node D (G, 8, val8). The latest
version is locked to perform the reading operation. At the
end of the read, the lock is released and the latest value is
return to the request node. As there is a divergence
between the latest versions of each node of the quorum,
the latest version (G, 8, val8) must be propagated to the
nodes that do not contain it. In the propagation phase, the
oldest version of each node is consequently replaced by
the latest version (G, 8, val8).

A Load Balancing Strategy for Replica… Informatica 37 (201313) 345–353 349

3.3 Load balancing strategy
Before we present our load balancing strategy, we
precise how the load of a coterie is estimated.

In our approach, we define three load states of a
node: under loaded, medium loaded and up loaded. In
addition, we assign a numeric value to each state as
follows:

Under loaded (1): the node is inactive or downloaded.
Medium loaded (2): the node is midway loaded.
Up loaded (3): the node is overloaded.

The load of a node, noted Lnode is calculated by
following the read/write access frequency. The node
access frequency, noted fanode,is incremented at each
read/ write operation and reinitialized periodically. For
this, two thresholds: famin and famax.are defined (The
choice of the values of these thresholds will be defined in
experimentations section).

Lnode = 1, if (fanode< famin)
Lnode = 2, if (famin ≤ fanode< famax)
Lnode = 3, if (fanode ≥ famax)

The load of a Quorum, noted Lquorum, represent the

maximum load of the nodes appertaining to this quorum.

 𝑳𝒒𝒖𝒐𝒓𝒖𝒎 = 𝑴𝒂𝒙𝒏𝒐𝒅𝒆∈𝒒𝒖𝒐𝒓𝒖𝒎{𝑳𝒏𝒐𝒅𝒆}

Finally, the load of a Coterie, noted Lcoterie,
represents the sum of all quorums load of this coterie.

Lcoterie = ∑ Lquorum quorum∈coterie

In the following example, we assume that the nodes

{A, B, C, D and E} have got respectively the following
load values {2, 3, 2, 2, 1}. The quorum load and the
coterie load are demonstrated in the following example.

Figure 4: Example of coterie load.

The load balancing is performed by following a

dynamic reconfiguration of nodes of a coterie. The
purpose of this reconfiguration is to reduce the load of
quorums and the communication cost of Read / Write
queries.

The communication cost represents the exchanged
messages between two nodes of the grid. This cost can
represent the bandwidth, the debit, the latency, etc. In our
work we assume that the value of communication cost

between any two nodes is provided with the file
configuration of the system and it doesn’t need to be
calculated. As we suppose that the cost communication
between grid nodes is brought by the configuration
system file, the consumed communication cost of a
Read/Write request can be evaluated as follow:

Write: When a node i writes a new value of the data

D, a quorum Q of the corresponding coterie is contacted.
We assume that the write cost and the size of the new
value are negligible. The nodes appertaining to this
quorum communicate with each other following a
propagation phase then an acknowledgement phase.

𝒄𝒐𝒎_𝒄𝒐𝒔𝒕 𝑾𝒓𝒊𝒕𝒆_𝑸𝒊 = (𝑵− 𝟏) ×

⎝

⎜
⎛
�𝒑𝒓𝒐𝒑_𝒄𝒐𝒔𝒕𝒊,𝒋
𝒊≠𝒋
𝒋∈𝑸

+ �𝒂𝒄𝒌_𝒄𝒐𝒔𝒕𝒋,𝒊
𝒊≠𝒋
𝒋 ∈𝑸 ⎠

⎟
⎞

Where:
N: number of nodes appertaining to the quorum Q
Com_cost Write_Qi: communication cost of the write
quorum initiated by the node i
Prop_cost i,j: propagation cost of the new value from the
node i to the node j
Ack_cost j,i: acknowledgment cost from the node j to the
node i

Read: When a read request is invoked by a node i, a

quorum Q of the corresponding coterie is selected. Nodes
appertaining to this quorum communicate to each other
following a selection of latest version then the
propagation of the selected last version then the
acknowledgement phase.

𝒄𝒐𝒎_𝒄𝒐𝒔𝒕 𝑹𝒆𝒂𝒅_𝑸𝒊 = (𝑵− 𝟏) ×

⎝

⎜
⎜
⎛
�𝒔𝒍𝒄𝒄𝒐𝒔𝒕𝒋,𝒊
𝒊≠𝒋
𝒋∈𝑸

+ �𝒑𝒓𝒐𝒑𝒄𝒐𝒔𝒕𝒊,𝒋
𝒊≠𝒋
𝒋∈𝑸

+�𝒂𝒄𝒌_𝒄𝒐𝒔𝒕𝒋,𝒊
𝒊≠
𝒋∈𝑸 ⎠

⎟
⎟
⎞

Where:
N: number of node appertaining to the quorum Q
Com_cost Write_Qi : communication cost of the read
quorum initiated by the node i
Slc_cost j,i : selection cost of the latest version to be red
from the node j to the node i
Prop_cost i,j : propagation cost of the new value from the
node i to the node j
Ack_cost j,i : acknowledgment cost from the node j to the
node i

Our load balancing strategy is achieved with a

dynamic reconfiguration of nodes of the coterie from the
root node to the leaf nodes. This reconfiguration is based
on an elementary permutation between a parent node and
its two son nodes so that the load of the father is greater
than the load of its two nodes son getting a minimal
communication cost. The main objective of this
reconfiguration is to involve at least possible the
overloaded nodes in the construction of quorums. In this
way, we get overloaded nodes at the lowest level of the
coterie (leaves level) and this without degrading the
performance of consistency in terms of load and

Load of nodes:

Nodes under loaded= {E}
Nodes medium loaded = {A, C, D}
Nodes up loaded = {B}

Load of quorums:

L {A, B, D} = max {2, 3, 2} = 3
L {A, B, E} = max {2, 3, 1} = 3
L {A, C} = max {2, 2} = 2

Load of coterie:

L {A, B, D} + L {A, B, E} + L {A, C} = 3+3+2= 8

350 Informatica 37 (2013) 345–353 S. Senhadji et al.

communication cost. This reconfiguration is triggered at
each Read/ Write request.

Load balancing strategy
Input: structured coterie, load nodes of each coterie.
Output: restructured coterie.

For each coterie do
 // seek the tree from the root to the leaf nodes
 For each parent node do
 // N1, N2 {child1, child2} and N1≠N2
 If (load parent ≥ max (load N1, load N2)
 Then If ((cost (N1, N2) ≤ cost (parent, N2)) and
 (cost (N1, N2) > cost (parent, N1))
 Then Swap (Parent, N1)
 Else If ((cost (N1, N2) ≤ cost (parent, N1)) and
 (cost (N1, N2) > cost (parent, N2))
 Then Swap (parent, N2)
 End if
 End if
 Else If (load parent ≥ load N1) and
 (cost (N1, N2) ≥ cost (parent, N2))
 Then Swap (Parent, N1)
 Else if ((load parent > load N2) and
 (cost (N1, N2) ≥ cost (parent, N1))
 Then Swap (parent, N2)
 End if
 End if
 End if
 End For
End For

The following example illustrates a coterie composed of
nine nodes (A, B, C, D, E, F, G, H, I). Each node is
represented by its load. The load of the coterie is
calculated from the sum of the quorum’s load. Thus, the
load of the coterie before the reconfiguration is equal to
15.

Figure 5: Load of the coterie before reconfiguration.

The reconfiguration of this coterie is performed from the
root to a leaf node of the coterie, by considering three
nodes: parent node and its two child nodes. Four cases
are distinguished as follow:

Figure 6: Reconfiguration of a coterie.

In Figure 6.1 as the parent node load (node A) is greater
than the child node load (node B) the permutation
between Node A (father) and Node B (son) which brings
a minimal communication cost is illustrated in Figure
6.2.

In Figure 6.3 as the parent load (node A) is less than
its two child loads (node D and E) then no permutation
will be made. In Figure 6.3 the parent load (node C) is
greater than its two child loads (F and G) then the child
node G is permuted with the parent node C which brings
a minimal communication cost, as shown in Figure 6.4.

In Figure 6.5 in spite the parent load (node D) is
greater than the load of its two Childs (node H and I); no
permutation is possible because this will increase the cost
of communication instead of reducing it. The load of the
coterie after reconfiguration became equal to 13.
In addition, to show how the cost of communication is
optimized we suppose that a write request is addressed to
the node F with the value V. So the communication cost
of a write request is estimated as defined in section 3.3.

We conclude that the communication cost is reduced
from 180 to 26 by using our load balancing strategy with
taking care of a minimal communication cost.

We present the simulation results of our proposed
approach in the next section.

A Load Balancing Strategy for Replica… Informatica 37 (201313) 345–353 351

 before reconfiguration after reconfiguration
 com_costwrite =180 com_cost write =26

Figure 7: Communication cost before and after
reconfiguration.

4 Experiments
We evaluate the performances of our consistency
approach by using the grid simulator Gridsim toolkit 4.2
[21] under the operating system Windows XP 7.We
defined different number of grid nodes. We replicate
arbitrary 50 data into 5 versions over each node of the
grid.

In order to estimate the load of a node, we define two
thresholds famin and famax by following the number of
nodes and the number of transactions (Read / Write
requests). After many experiments, we conclude that the
approximation of the famin that gives best results is
calculated as follow:

If (number_transactions >= number_nodes)
Then famin =0
Else famin= number_transactions / number_nodes.

To consider the uploaded state of a node, we
approximate the famax to famin+3.

Data= 50, # Version=5

Experiment # Nodes # Read/ Write Transactions

experiment 1 500 200, 500, 1000, 5000, 10000

experiment 2 1000 500, 1000, 5000, 10000, 50000

experiment 3 5000 1000, 5000, 10000, 50000, 100000

Table 1: Simulation parameters.

In order to study the consistency results, we assume that
a replica is consistent if its latest version corresponds to
the latest written value. Thus, the consistency of a data D
is calculated as below:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐷 =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ℎ𝑜𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 « 𝐷 »
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ℎ𝑜𝑠𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 « 𝐷 »

In figure 8, we note that the consistency is variable,

this is explained by the fact that when there is a lot of
write operations, the updates of replicas becomes more
difficult and consequently inconsistencies occur. That is
why we study the freshness of replicas.

Figure 8: Consistency& Freshness.

Considering a set of replicas of the data D = {R0,
R1… Rn} where: R0 represents the first written replica
and Rn the latest written replica. The freshness margin of
a replica Ri is equal to n-i. A replica is assumed to be
« fresh » if its freshness margin is lower than n/2. The
freshness of a data D is calculated as below:

𝐹𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝐷 =
 number of nodes hosting fresh replicas of the data « D »

total number of nodes hosting the replicas of the data « D »

In fact, the experimentation results show that with
the presence of inconsistent copies, the system still hold
fresh replicas, as shown in figure 8.

Figure 9: Load balancing results 1.

In figure 9, we note that when the number of transactions
is significantly higher than the number of nodes, the
average load of coteries increase, otherwise the load is
variable. Also, the load of coteries is reduced when our
load balancing strategy is used.

0
20
40
60
80

100

%

Transactions

500 Nodes

0
20
40
60
80

100

%

Transactions

1000 Nodes

0
20
40
60
80

%

Transactions

5000 Nodes

Consistency

Freshness

400
500
600
700
800

Lo
ad

Transactions

500 Nodes

950

1150

1350

1550

Lo
ad

Transactions

1000 Nodes

4050
5050
6050
7050
8050

Lo
ad

Transactions

5000 Nodes

Without
load
balancing
With load
balancing

352 Informatica 37 (2013) 345–353 S. Senhadji et al.

In the same time, the communication cost consumed
for R/W accesses is significantly reduced as shown in
figure 10.

Figure 10: Load balancing results 2.

We conclude the main objectives of our work were
gained in term of consistency, load balancing and
communication cost.

The experiments results demonstrate that our
approach guarantee the freshness when replicas are not
strongly consistent. Also, when the load balancing results
are studied, we note that the load of coteries and the
communication cost of R/W queries are significantly
reduced when the load balancing strategy is applied.

5 Conclusion
In this paper we presented our contribution to improve
replica consistency trough a dynamic load balancing
strategy. The use of a structured tree (coterie) allows a
better logical organization of the grid nodes hosting a set
of replicas. The definition of multiple versions of a
replica can serve as many grid users as available versions
and with a certain degree of similarity with the last
update of the replicated data. Quorum structure ensures
the existence at any time of the latest version of the
replicated data. This is explained by the fact that the root
node always has the latest version. Indeed, during a read
/ write operation, the latest version is always propagated
to the quorum nodes designated for reading / writing. As

a quorum is built from the root to a leaf of the tree, then
the root node participates in any designed quorum. The
consistency between replicas is not strong in our work in
order to serve a maximum of read request. Despite this
divergence between copies, the grid still holds fresh
replicas.

 Reconfiguration of the coterie provides better load
balancing to increase access performance. The obtained
results of our approach reveal that the consistency
management of replicas is balanced dynamically
following the state of each node of the coterie. The
obtained results demonstrated the efficiency of our work
in term of consistency, load balancing and
communication cost of Read/ Write queries.

Finally, our work can present many perspectives; we
cite the most interesting ones:
• Study the impact of different replica placement on

the consistency performances
• Assure the fault tolerance of the root node of each

coterie

References
[1] Alan D. Fekete and Krithi Ramamritham, «

Consistency Models for Replicated Data»,
Replication Lecture Notes in Computer Science
Volume 5959, 2010, pp 1-17

[2] Cécile Le Pape and Stéphane Gançarski, « Replica
Refresh Strategies in a Database Cluster ». LIP6,
LNCS 4395, pp. 679–691, 2007.

[3] Changqin Huang, Fuyin Xu, and Xiaoyong
Hu,«Massive Data Oriented Replication Algorithms
for Consistency Maintenance in Data Grids», Part I,
LNCS 3991, pp. 838 – 841, 2006.

[4] Chao-Tung Yang Wen-Chi Tsai Tsui-Ting Chen
Ching-Hsien Hsu, «A One-way File Replica
Consistency Model in Data Grids» Tunghai
University, Taiwan. IEEE Asia-Pacific Services
Computing Conference 2007.

[5] Christian Storm, « Specification of Quorum
Systems », Specification and Analytical Evaluation
of Heterogeneous Dynamic Quorum-Based Data
Replication Schemes, 2012, pp 81-153

[6] Esther Pacitti, Patrick Valduriez, Marta Mattoso,
Grid Data Management: Open Problems and New
Issues, Journal of Grid Computing, September
2007, Volume 5, Issue 3, pp 273-281

[7] Foster, I.: « What is the Grid ? A Three Point
Checklist », Grid Today, 1(6), (2002).

[8] Gabriel Antoniu, Jean François Deverge and
Sébastien Monnet,« How to bring together fault
tolerance and data»,INRIA research report 2005.

[9] H. Guo and al. «Relaxed currency and consistency:
How to say good enough in sql». H. Guo and al. In
ACM SIGMOD int. conf., 2004.

[10] Hartmut Kaiser, Kathrin Kirsch, and Andre erzky,
«Versioning and Consistency in Replica Systems»,
LNCS 4331, pp. 618–627, 2006.

600
620
640
660
680
700

200 500 1000 5000 10000co
m

m
un

ic
at

io
n

co
st

Transactions

500 Nodes

700

720

740

760

780

800

500 1000 5000 10000 50000

co
m

m
un

ic
at

io
n

co
st

Transactions

1000 Nodes

900

950

1000

1050

co
m

m
un

ic
at

io
n

co
st

Transactions

5000 Nodes

Without load
balancing

With load
balancing

http://link.springer.com/search?facet-author=%22Christian+Storm%22
http://link.springer.com/book/10.1007/978-3-8348-2381-6
http://link.springer.com/book/10.1007/978-3-8348-2381-6
http://link.springer.com/book/10.1007/978-3-8348-2381-6

A Load Balancing Strategy for Replica… Informatica 37 (201313) 345–353 353

[11] Hector Garcia-Molina and Daniel Barabara, «How
to assign votes in a distributed system». Journal of
the ACM, 32(4) :841–860, October 1985.

[12] Ivan Frain, Jean-Paul Bahsoun, Abdelaziz
M’zoughi,« dynamic reconfiguration of a coterie
tree-structured »,RNTL ViSaGe project, CDUR
2005

[13] James J. (Jong Hyuk) Park et al. «Data Consistency
for Self-acting Load Balancing of Parallel File
System», ITCS & STA 2012, LNEE 180, pp. 135–
143, DOI: 10.1007/978-94-007-5082-1_18.

[14] Jinchuan Chen, Yueguo Chen, Xiaoyong Du,
Cuiping Li, Jiaheng Lu, Suyun Zhao, Xuan Zhou,
« Big data challenge: a data management
perspective », Frontiers of Computer Science, April
2013, Volume 7, Issue 2, pp 157-164

[15] Liviu Iftode, Jaswinder Pal Singh, and Kai Li.
«Scope consistency: A bridge between release
consistency and entry consistency». In Proceedings
of the 8th ACM Annual Symposium on Parallel
Algorithms and Architectures (SPAA '96), pages
277.287, Padova, Italy, June 1996.

[16] N. A. Lynch and A. A. Shvartsman. «Robust
emulation of shared memory using dynamic
quorum-acknowledged broadcasts». In FTCS ’97 :
Proceedings of the 27th International Symposium
on Fault-Tolerant Computing (FTCS ’97). IEEE
Computer Society,1997.

[17] N. Tziritas et al. «Implementing Replica
Placements: Feasibility and Cost
Minimization»,�in IPDPS 2007

[18] N. Tziritas et al. «Using Multicast Transfers in the
Replica Migration Problem: Formulation and
Scheduling Heuristics», Europar 2009.

[19] Peter Urban, Xavier Défago, and André Schiper.
«Neko: A single environment to simulate and
prototype distributed algorithms». In 15th Int’l
Conference on Information Networking (ICOIN-
15), pages 503–511, 2001.

[20] Quang Hieu Vu, Mihai Lupu, Beng Chin Ooi,
«Load Balancing and Replication», Peer-to-Peer
Computing, 2010, pp 127-156

[21] R. Buyya and M. Murshed., «GridSim: a toolkit for
the modeling and simulation of Distributed resource
management and scheduling for grid computing».
Concurrency computat: pract. Exper., 2002

[22] S. Khan et al. « Robust CDN Replica Placement
Techniques », IPDPS 2009

[23] S. Khan et al. «A Pure Nash Equilibrium-Based
Game Theoretical Method for Data Replication
across Multiple Servers», in TKDE 2009.

[24] Saito, Y., Shapiro, M.:«Optimistic replication.
Comput. Surveys» 37(1), 42–81. 2005

[25] Uroš Čibej, Anthony Sulistio, Rajkumar Buyya, «
Grid Computing», Parallel Computing, 2009, pp
117-145

http://link.springer.com/search?facet-author=%22Quang+Hieu+Vu%22
http://link.springer.com/search?facet-author=%22Mihai+Lupu%22
http://link.springer.com/search?facet-author=%22Beng+Chin+Ooi%22
http://link.springer.com/book/10.1007/978-3-642-03514-2
http://link.springer.com/book/10.1007/978-3-642-03514-2

354 Informatica 37 (2013) 345–353 S. Senhadji et al.

	1 Introduction
	2 Related works
	3 Proposed approach
	3.1 Grid and replicas model
	3.2 Replica consistency
	3.2.1 Write protocol
	Write quorum algorithm
	3.2.2 Read protocol
	Read quorum algorithm

	3.3 Load balancing strategy

	4 Experiments
	5 Conclusion
	References

