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Artificial Immune Recognition System (AIRS) offers a promising meta-heuristic approach inspired by the 

human immune system for classification tasks. However, limitations such as reliance on single-antigen 

activation and retention of untested memory cells can lead to inaccuracies. This paper proposes the 

Optimized Artificial Immune Recognition System (O-AIRS) to mitigate these issues. O-AIRS leverages 

Homogeneous Antigen Groups (HAGs) for refined memory cell activation, ensuring a precise threat 

response. Furthermore, O-AIRS incorporates a robust maturity mechanism to retain only validated 

memory cells, enhancing classification accuracy. The effectiveness of O-AIRS was assessed using 

established medical datasets: Liver Disorders (LD) and Haberman Surgery Survival (HSS). Experimental 

evaluation on both LD and HSS datasets establishes O-AIRS's superiority over AIRS and AIRS2 across 

various performance metrics. Notably, O-AIRS achieves this enhanced performance while utilizing 

approximately 50% fewer memory cells during classification due to its optimized activation mechanism. 

Importantly, O-AIRS guarantees the maturity of all memory cells, ensuring effective threat recognition. 

Povzetek: Predstavljen je sistem za umetno prepoznavanje imunosti (O-AIRS) izboljšuje natančnost 

klasifikacije z uporabo homogenih antigenskih skupin (HAG) in mehanizma zrelosti za shranjevanje 

preverjenih spominskih celic, kar je dokazano učinkovitejše od AIRS in AIRS2 na medicinskih podatkovnih 

nizih, hkrati pa uporablja približno 50 % manj spominskih celic. 

Povzetek: Predstavljen je sistem za umetno prepoznavanje imunosti (O-AIRS), ki izboljšuje klasifikacije z 

uporabo homogenih antigenskih skupin (HAG) in mehanizma zrelosti za shranjevanje preverjenih 

spominskih celic, kar je dokazano učinkovitejše od AIRS in AIRS2 na medicinskih podatkovnih nizih. 

 

1 Introduction 
 

The ability to learn and adapt is fundamental to human 

intelligence. It allows individuals to improve through 

experience, remember past decisions, and make better 

choices in similar situations. This concept underpins much 

of modern Artificial Intelligence (AI) research, which 

focuses on developing systems capable of learning and 

decision-making akin to human cognition. 

Inspired by biological systems such as the human 

brain, neurons, and genetic processes, researchers develop 

bio-inspired approaches to AI. These methods seek to 

replicate the efficiency and adaptability observed in 

natural systems, paving the way for advancements in 

machine learning algorithms. 

Among these bio-inspired approaches, Artificial 

Immune Systems (AIS) stand out for their emulation of 

the human immune system's ability to recognize and 

respond to threats. Originally conceived in the 1950s, AIS 

models have evolved to tackle complex computational  

 

challenges, including pattern recognition, anomaly 

detection, and optimization tasks. 

Within the realm of AIS, the Artificial Immune 

Recognition System (AIRS) [1] and its successor, AIRS2 

[2], have garnered significant attention for their 

effectiveness in supervised learning tasks. These  

algorithms are known for their good classification 

capabilities and strong capacities to support decision 

makers and resolve real-world issues [3]. 

While AIRS and AIRS2 have demonstrated success, 

their effectiveness can be hampered by inherent 

limitations. These limitations include dependence on 

single antigens for memory cell activation and the 

potential use of untested memory cells during 

classification. 

This paper addresses these limitations by introducing 

a novel AIS algorithm: the Optimized Artificial Immune 

Recognition System (O-AIRS). O-AIRS leverages 

innovative methodologies like Homogeneous Antigen 

Groups (HAGs) and a refined memory cell activation 

mechanism to overcome these shortcomings. HAGs 
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enhance pattern recognition, and the refined activation 

mechanism ensures robust and reliable classifications. 

These advancements aim to improve classification 

accuracy and computational efficiency for diverse 

datasets. 

To comprehensively evaluate O-AIRS's 

effectiveness, the authors conducted a series of rigorous 

experiments utilizing established benchmark datasets. 

These datasets, Liver Disorders (LD) and Haberman 

Surgery Survival (HSS), represent real-world scenarios 

commonly encountered in the medical domain. By 

employing a diverse range of metrics to assess O-AIRS's 

performance, the experiments provide a robust and 

generalizable understanding of its capabilities. 

This paper is structured as follows: Section 2 

discusses existing research relevant to Artificial Immune 

Systems. Section 3 provides a detailed explanation of the 

Artificial Immune Recognition System (AIRS). Section 4 

explores the advancements made in AIRS2. Section 5 

highlights the key innovations introduced in O-AIRS 

compared to AIRS/AIRS2. Section 6 presents the 

experimental study, including the use of the Haberman 

Surgery Survival (HSS) and Liver Disorder (LD) datasets, 

and summarizes the overall findings. Finally, Section 7 

concludes the paper by summarizing the research findings 

and outlining future research directions. 

2 Related works 
Artificial Immune Systems (AIS) have been extensively 

researched, resulting in a variety of algorithms. These 

algorithms mainly fall into four categories: negative 

selection, immune network, danger theory, and clonal 

selection [4]. 

Negative selection algorithms, originating from the 

seminal work of Forrest et al. [5], emulate how the 

immune system identifies and eliminates antibodies that 

mistakenly recognize 'self' components as antigens. This 

process is crucial in data security contexts, where 'self' 

corresponds to the data to be protected and 'non-self' 

denotes potentially harmful data. Subsequent studies, such 

as [6], [7], and [8], have further refined and extended these 

mechanisms, leading to enhanced efficacy of self-nonself 

discrimination. 

The concept of an immune network, a self-regulating 

system that distinguishes "self" from "non-self" without 

direct contact with antigens, was introduced by Jerne in 

1974 [9]. This foundational idea laid the groundwork for 

Artificial Immune Networks (AINs). Building on this 

work, Varela and Coutinho [10] developed a second-

generation model focused on enhancing adaptability and 

response dynamics within the network and De Castro and 

Von Zuben [11] proposed aiNet. These networks offer 

advantages similar to the human immune system, such as 

the ability to adapt to new threats. Recent research like 

[12], [13] and [14] continues to explore and optimize AIN 

frameworks for diverse applications, including pattern 

recognition and optimization problems. 

The danger theory, proposed by Matzinger [15], 

suggests that immune responses are initiated not only 

through direct interactions between antibodies and 

antigens, but also by signals released during cellular 

damage or stress. This concept has played a crucial role in 

the evolution of Intrusion Detection Systems (IDSs), 

enabling the detection of potential threats while allowing 

harmless antibodies and antigens to coexist in the absence 

of danger signals. This approach has been successfully 

implemented and further developed in practical Intrusion 

Detection systems, exemplified by notable works such as 

those referenced in [16], [17] and [18]. 

The clonal selection principle, initially formulated by 

Burnet and refined through computational models, 

describes how antibodies proliferate upon encountering 

antigens, followed by mutations to enhance affinity [19]. 

Seminal contributions in this area include CLONALG 

(CLONal selection ALGorithm) [20] and AIRS (Artificial 

Immune Recognition System) [1]. CLONALG introduced 

fundamental concepts of clonal selection in computational 

models [21], laying the groundwork for subsequent 

advancements. Ongoing research [22], [2], [23] and [24] 

continues to explore and refine clonal selection 

mechanisms, with the aim of enhancing adaptability and 

efficiency across various problem domains. AIRS [1] and 

its successor AIRS2 [2] have gained recognition for their 

robust classification capabilities and practical application 

in decision support systems [3]. Table 1 provides a 

comprehensive overview of the key references discussed 

in this section.

Table 1: Summary of relevant literature. 

 Algorithm Dataset 
Application 

area 

Performance 

metric 
Strengths Limitations Remarks 

N
eg

a
tiv

e
 S

electio
n

 

Self-Nonself 

Discrimina-

tion [5] 

Experi-

mental data 

Virus detec-

tion 

 Probability of 

detection 

 Computational 

cost 

Protects anti bodies 

from modification 

to conform to 

altered self 

High compu-

tational cost for 

generating the 

initial "self" 

repertoire 

First negative 

selection 

algorithm 
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Improved 

Negative 

Selection 

Algorithm 

(Improved-

NSA) [6] 

Sensor 

data: three-

tank sys-

tem 

Fault detection 

 Coverage Rate 

 Overlap Rate 

 Detection Rate 

 False Alarm 

Rate 

 Automatic adjust-

ment of detector 

radius for optimal 

coverage 

 Reduces overlap 

between detectors 

 Requires pre-

defined "self" 

data for 

training 

 May not be 

suitable for 

complex 

anomaly 

patterns 

Custom da-

tasets for 

three-tank 

system (not 

public) 

Antigen 

Density 

Clustering - 

Negative 

Selection 

Algorithm 

(ADC-NSA) 

[7] 

 Breast 

Cancer 

Wiscon-

sin 

(BCW) 

 Knowled

ge Dis-

covery 

and Data 

Mining 

Cup 99 

(KDD-

Cup99) 

Anomaly de-

tection: 

 Medical di-

agnosis 

 Network in-

trusion de-

tection 

 Spam de-

tection 

 Detection Rate 

 False Positive 

Rate 

 Addresses uneven 

antigen distribu-

tion 

 Improves 

detection 

efficiency 

 Reduces random-

ness in detector 

generation 

 Requires 

tuning cutoff 

distance for 

clustering 

 Needs further 

research on 

identifying 

"loopholes" 

(undetected 

data) 

- 

Improved 

Negative 

Selection 

Algorithm 

(INSA) [8] 

Normal 

state sam-

ple library 

of distri-

bution 

network 

dataset 

High re-

sistance fault 

identification 

in distribution 

network 

 Detection Rate 

 Classification 

 Accuracy 

Requires small 

number of samples 

for training 

Vulnerable to 

black holes 

(cannot classify 

when there are 

many types of 

abnormal 

states) 

Custom da-

taset (not 

public) 

A
rtificia

l Im
m

u
n

e N
etw

o
rk

s 

Artificial 

Immune 

Networks 

(AINet) [11] 

Unlabeled 

numerical 

datasets 

Data clustering 

and filtering 

 Compression 

Rate 

 Classification 

Accuracy 

 Reduction of 

Redundancy 

 Reduces data re-

dundancy 

 Identifies groups 

and subgroups in 

the data 

 Determines the 

number of 

clusters and their 

structure 

 Offers good com-

pression rates 

 High number 

of user-

defined pa-

rameters 

 Computa-

tionally ex-

pensive 

(O(p³)) 

 Sensitive to 

suppression 

threshold 

50-sample 

classification 

(5 classes) 

and the two-

donut 

problem 

Adaptive 

Artificial 

Immune 

Networks 

[12] 

 KDD'99 

 CAIDA'0

7 

 CAIDA'0

8 

Network se-

curity, specif-

ically Denial-

of-Service 

(DoS) flooding 

attack de-

tection and 

mitigation 

 True Positive 

Rate 

 False Positive 

Rate 

 Hit Rate 

 Entropy 

 Adapts thresholds 

for anomaly 

detection 

 Implements 

quarantine zones 

to isolate threats 

 Requires 

careful tuning 

of parameters 

for optimal 

performance 

 May have 

computational 

overhead 

Other data 

generated for 

this study by 

the DDoSIM 

tool were 

used in sim-

ulations 

COVID-opt-

aiNet [14] 

 COVID‐

19 CT 

dataset 

 COVID‐

19 Radi-

ography 

dataset 

 Chest X‐

ray da-

taset 

 

COVID-19 de-

tection 

 Precision 

 Recall 

 F1‐Score 

 Accuracy 

 Improved 

accuracy 

compared to 

standalone 

DL/ML methods 

 Reduced training 

time 

 Requires large 

datasets for 

training 

 Performance 

might be de-

pendent on 

specific da-

tasets 

Hybrid ap-

proach using 

AINet with 

DL/ML 

techniques 
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D
a

n
g

er
 T

h
eo

ry
 

Deep Den-

dritic Cell 

Algorithm 

(DeepDCA) 

[16] 

IoT-Bot 

dataset 

IoT intrusion 

detection 

 Accuracy 

 Precision 

 Recall 

 F1-Score 

 False Alarm 

Rate 

 Detects various 

IoT attacks (DoS, 

DDoS, in-

formation 

gathering, theft) 

 High accuracy 

(over 98.73%) 

 Low False 

Positive Rate 

Requires large 

datasets for 

training 

- 

Multi-Level 

Intrusion 

Detection 

System 

Based on 

Immune 

Theory [17] 

Custom 

data gen-

erated by 

cooja sim-

ulator 

Intrusion de-

tection in 

Wireless Sen-

sor Networks 

(WSNs) 

 Detection Rate 

 Packet Overhead 

 Energy 

Overhead 

Distributed and 

lightweight ap-

proach 

Detection 

probability 

varies for dif-

ferent attacks. 

- 

Danger 

Theory - 

Dendritic 

Cell Algo-

rithm (DT-

DCA) [18] 

Custom 

data gen-

erated by 

simulation 

and from 

real 

Wireless 

Sensor 

Network 

(WSN) 

Wireless Sen-

sor Networks 

(WSNs) 

 True Positive 

(TP) 

 False Negative 

(FN) 

 True Negative 

(TN) 

 False Positive 

(FP) 

 Low FP Rate 

 Low Energy Con-

sumption 

Lower TP rates 

compared to 

some other 

methods 

Simulated 

and real-

world WSN 

platform 

implemen-

tation 

C
lo

n
a

l S
electio

n
 

CLONALG 

[20] 

Custom 

character 

set 

30-city in-

stance of 

the travel-

ling sales-

man 

problem 

 

 Pattern 

recognition 

 Optimization 

 Accuracy 

(Pattern 

Recognition) 

 Fitness Function 

Value 

(Optimization) 

 Efficient for 

multimodal 

problems 

 Good con-

vergence speed 

 Sensitive to 

parameters 

 May require 

significant 

memory for 

large datasets 

- 

Improved 

Clonal Se-

lection Al-

gorithm with 

K-Nearest 

Neighbor 

(ICSAT-

KNN) [22] 

 Brain Tu-

mor da-

taset 

 Leukemia 

dataset 

 Prostate 

Tumor 

dataset 

Cancer classi-

fication 

Classification 

Accuracy 

Competitive accu-

racy (96.36% av-

erage) 

Relies on a 

small subset of 

genes (16% 

average) 

Requires pa-

rameter tuning 

(Gsize, K) for 

optimal 

performance 

- 

CLONALG-

M [23] 

Custom 

generated 

data 

Wireless Sen-

sor Networks 

(WSNs) 

 First Node Dies 

(FNA) 

 Half of the 

Nodes Alive 

(HNA) 

 Total Remaining 

Energy (TRE) 

Improved perfor-

mance of fuzzy 

clustering algo-

rithms 

 Computa-

tionally ex-

pensive 

 Only approx-

imates opti-

mal solution 

- 



O-AIRS: Optimized Artificial Immune Recognition System                                                       Informatica 48 (2024) 345–358   349                                                                                                                             

 

Artificial 

Immune 

Recognition 

System 

(AIRS) [1] 

 Two da-

tasets of 

points in 

10x 10 

space 

 The 

Fisher Iris 

dataset 

 Pima di-

abetes 

dataset 

 The So-

nar da-

taset 

 Iono-

sphere 

dataset 

Classification 

 Accuracy 

 Final memory 

cells number 

 Good clas-

sification 

capabilities 

 Strong capacities 

to support 

decision makers 

and resolve real-

world issues 

 Memory cells 

activation 

mechanism 

solicited by a 

single antigen 

 Retention of 

memory cells 

even if they 

have never 

been into 

contact with 

antigens 

 The first 

two datasets 

are 

randomly 

generated 

 Data space 

in the first 

dataset is 

linearly 

separable 

 In the sec-

ond dataset 

data space 

is not line-

arly sepa-

rable 

 

Artificial 

Immune 

Recognition 

System 2 

(AIRS2) [2] 

 The 

Fisher Iris 

dataset 

 Pima di-

abetes 

dataset 

 Iono-

sphere 

dataset 

 The So-

nar da-

taset 

 Signal pro-

cessing 

 Medical di-

agnosis 

 Biology 

 Accuracy 

 Final memory 

cells number 

 Good clas-

sification 

capabilities 

 Refinement of 

AIRS 

 Memory cells 

activation 

mechanism 

solicited by a 

single antigen 

 Retention of 

memory cells 

even if they 

have never 

been into 

contact with 

antigens 

- 

Constant 

Length 

Multi-ob-

jective 

Clonal Se-

lection Op-

timization 

Algorithm 

(CL-

MCSOA) 

[24] 

 Yeast 

Sporula-

tion 

 Yeast 

Cell Cy-

cle 

 Ara-

bidopsis 

Thaliana 

 Human 

Fibro-

blasts 

Serum 

 Rat CNS 

 Colon 

Tumor 

Gene expres-

sion clustering 

 Silhouette width 

index 

 Deviation 

 Connectivity 

 Dunn-index 

 Execution time 

 Multi-objective 

 Robust 

 Faster conver-

gence 

 Complex de-

sign 

 User needs to 

define final 

clustering 

All 6 datasets 

used to 

evaluate the 

algorithm are 

publicly 

available 

In summary, previous studies, such as those on AIRS 

[1] and AIRS2 [2], have extensively explored immune-

inspired algorithms. However, optimizing their 

classification capabilities and practical applications 

remains challenging. This study introduces O-AIRS, an 

Optimized AIRS algorithm, which refines the clonal 

selection metaphor to enhance classification performance. 

3 Artificial immune recognition 

system (AIRS) 
“The artificial immune systems are computational models 

inspired by the biological immune system” [25]. This 

section presents AIRS, a widely used AIS algorithm that 

describes how memory cells recognize antigens [26].  

AIRS is divided into two phases: a learning phase for 

generating memory cells and a classification phase that 

utilizes these cells. 

3.1 The learning phase 

3.1.1 Initialization step 

The first step of initialization involves normalizing the 

data such that the Euclidean distance between any two 

vectors (antigens) falls within the interval [0, 1]. 

Following normalization, the initial set of memory cells 
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(MC) and the set (P) of Artificial Recognition Balls 

(ARBs), which represent lymphocytes with attributes of 

vector, resource, and class, are randomly created from the 

training dataset.  

Subsequently, the affinity_threshold parameter is 

computed to represent the average affinity between all 

pairs of antigens using formula 1. 

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
∑ ∑ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑎𝑔𝑖,𝑎𝑔𝑗)𝑛

𝑗=𝑖+1
𝑛
𝑖=1

𝑛(𝑛−1)

2

 (1) 

Where: 

• n is the number of antigens. 

• agi, agj are the ith and jth antigens. 

• affinity(X,Y) represents the Euclidean 

distance between two vectors X and Y. 

3.1.2 Learning by antigens 

After initialization is complete, each element of the 

training set (each antigen) is presented to the AIRS 

algorithm to learn from its characteristics. For each 

antigen ag, a sequence of steps is repeated: 

1. Selection of the mcmatch cell: this is the closest cell 

to the antigen ag in the shape space. mcmatch and ag belong 

to the same class (see formula 2). 

mcmatch = argmaxmcMCag.c stimulation (ag,mc) (2) 
Where: 

• 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) =

{
1 − 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑥, 𝑦) 𝑖𝑓 𝑥. 𝑐  𝑦. 𝑐

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 (𝑥, 𝑦) 𝑒𝑙𝑠𝑒
 

• MCc represent MC set cells of the class c. 

• ag.c is the class of ag. 

The number of clones generated from mcmatch depends 

on its affinity with the antigen (ag) (see formula 3) 

nb_clones = hyper_clonal_rate*clonal_rate*stim (3) 

Where: 

• nb_clones is the number of clones produced. 

• hyper_clonal_rate is the maximum cloning 

rate. 

• clonal_rate is the average cloning rate. 

• stim = stimulation(mcmatch,ag). 

2. Mutation of ARBs: each ARB generated by 

mcmatch goes through a mutation function detailed in [27]. 

If the result is positive (mutation performed) the ARB is 

added to the set (P). 

3. Calculation of resources for ARBs: resources are 

calculated for each element of (𝑃), the cells closest to ag 

will experience higher stress and consequently receive 

more resources. 

4. Clonage and mutation of ARBs: ARBs in this 

step are selected based on their affinity with the antigen 

ag. 

5. Stimulation_threshold verification: the algorithm 

verifies that while the average stimulation of each group 

of ARBs of the same class is lower than a given value of 

"stimulation_threshold," it resumes from step (3). 

6. Choice of the candidate cell: the candidate cell is 

selected from the set (P) based on its closest similarity to 

the antigen ag. This candidate cell is added to the set of 

memory cells (MC) only if its stimulation value with ag is 

higher than the stimulation value of mcmatch. 

The above steps are repeated for each antigen until the 

entire training set has been exhausted. 

3.2 The classification phase 

After the learning phase, the memory cells are ready to be 

used in the classification phase, which employs the K-

Nearest Neighbors (KNN) algorithm. Each memory cell is 

presented to the data vector for stimulation. The 

classification system determines the vector's class based 

on the classes of its k-nearest memory cells. 

4 AIRS2 
AIRS2 is a refinements of AIRS developed in [2]. The 

changes made are: 

• The initialization of the set of ARBs (P) is no 

longer necessary. 

• Mutations now only concern data vectors and 

not classes. 

• For the clonal selection and the criterion for 

stopping learning, only ARBs of the same class 

as ag are considered. 

5 O-AIRS: an improvement of 

AIRS/AIRS2 
In this section, we present O-AIRS, an innovative 

approach designed to refine Artificial Immune Systems 

(AIS) by addressing inherent limitations observed in 

traditional algorithms such as AIRS and AIRS2. Central 

to its improvements are two key concepts: Homogeneous 

Antigen Groups (HAGs) and a refined memory cell 

maturation mechanism. 

AIRS algorithms faced two major hurdles: firstly, 

learning from individual antigens could lead to overfitting, 

where the system becomes overly influenced by random 

fluctuations in single data points. This skewed the 

development of memory cells, ultimately impacting 

classification accuracy. Secondly, not all memory cells 

were thoroughly evaluated during iterations. This results 

in a population of immature cells that couldn't handle 

diverse antigens, hindering classification performance. 

5.1 Homogeneous antigen group 

O-AIRS tackles the first issue by introducing HAGs. 

These represent groups of similar antigens belonging to 

the same class and residing close together within the data 

feature space. Unlike AIRS that dealt with single antigen 

one-at-a-time which may present noisy data [28], O-AIRS 

utilizes the collective information within HAGs during 

learning cycles. 

This strategic shift reduces the impact of noise from 

isolated data points. By focusing on the average affinity 

between an antibody and an entire HAG, O-AIRS aims to 

make more robust and reliable classification decisions. 

Formula 4 presents the average affinity between an 

antibody and a HAG. 

𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑎𝑐, 𝐺𝐴𝐻) =
∑ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑎𝑐,𝑎𝑔𝑖)𝑛

𝑖=1

𝑛
 (4) 

Where: 
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• agi is the ith antigen in the group. 

• n is the number of antigens in the group. 

• ac is the antibody. 

A parameter called GS (Group Scalar) controls the 

size and number of HAGs formed in O-AIRS. By 

adjusting GS, the system optimizes space allocation 

within the data space, ensuring cohesive HAGs with high 

internal similarity. This optimization aims to enhance 

classification accuracy by guaranteeing each HAG 

effectively represents a distinct antigenic subset. 

Below, we propose a pseudo-code implementation 

(Algorithm1) for handling HAGs in O-AIRS. 

 

Algorithm 1: Homogeneous Antigen Group Handling.

5.1.1 Initialization 

Before constructing HAGs, O-AIRS lays the foundation 

by initializing two key parameters: 

• Affinity Threshold: this parameter defines the 

minimum affinity required between antigens for 

them to be grouped together into a HAG. 

• Group Scalar (GS): GS acts as a pivotal factor 

influencing the formation of HAGs. A higher 

GS value typically results in fewer, larger 

HAGs, whereas a lower GS value tends to 

produce more, smaller HAGs. 

Additionally, the function all_antigen_group (0) is 

employed to initially assign all antigens in the dataset to 

an ungrouped state, represented by the value 0. 

5.1.2 Identifying neighbors 

Next, O-AIRS examines each antigen and identifies its 

closest "neighbor" within the entire dataset using a 

function called best_affinity.  This neighbor is the antigen 

with the highest affinity, essentially the most similar one. 

5.1.3 Building communities 

The algorithm then evaluates the affinity between the 

antigen and its nearest neighbor using Euclidean distance. 

This measure constitutes a critical parameter for artificial 

immune system algorithms [29]. 

Here is where the affinity_threshold and GS come into 

play: 

High affinity (lower distance): if the affinity 

(Euclidean Distance) between the antigen and its neighbor 

is lower than the threshold defined by affinity_threshold * 

GS, they are considered "close enough" and grouped 

together into the same HAG. This indicates a high degree 

of similarity. 

Low affinity (higher distance): if the affinity value 

exceeds the threshold, it suggests a lack of sufficient 

similarity. In this case, the current antigen becomes the 

founding member of a new HAG. This indicates a lower 

degree of similarity.  

This process continues for all antigens in the dataset.   

1: initialize_param (affinity_threshold, GS); 

2: all_antigen_group (0); 

3: AGSet  all_antigen (); 

4: group  1;  

5: foreach (antigen_ag ∈ AGSet) do 

6:  if (antigen_ag.group = 0) then 

7:   nearest_ag  best_affinity (ag, AGSet); 

8:   if (affinity (ag, nearest_ag) < affinity_threshold * GS) then 

9:    ag.group  group;        

10:    group  group + 1;   

11:    go_to_next_ag (); 

12:   end if 

13:   if (nearest_ag.group=0 ) then 

14:    ag.group  group;  

15:    nearest_ag.group  group;  

16:    group  group + 1;   

17:   else 

18:    ag.group  nearest_ag.group; 

19:   endif 

20:  endif 

21: done 
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5.2 Ensuring memory cell maturity 

O-AIRS goes beyond HAGs for classification. It 

implements a memory cell maturity mechanism to address 

the issue of incomplete testing in AIRS/AIRS2. The 

process involves two stages. 

5.2.1 Initial selection with K-Nearest 

Neighbors (KNN) 

O-AIRS utilizes the KNN algorithm to refine the data into 

a memory cell set (MC). This identifies memory cells with 

the closest affinity to incoming antigens, paving the way 

for accurate classification. 

5.2.2 Interaction and maturation testing with 

HAGs 

O-AIRS tracks memory cell interaction with HAGs. After 

antigen interaction, memory cells that haven't engaged 

with any HAG are categorized: 

• Mature cells: these cells demonstrate sufficient 

HAG interaction and remain in the MC for 

future classification tasks. 

• Learning set: memory cells lacking adequate 

HAG interaction are placed in a dedicated set for 

further training with updated antigenic data. 

This iterative learning process refines the 

classification capabilities of these immature 

cells. 

The process of maturity test is presented in the 

flowchart in Figure 1. 

 

 

Figure 1: O-AIRS memory cell maturity Flowchart.

By leveraging HAGs and a refined memory cell 

maturity mechanism, O-AIRS aims to: 

• Reduce memory footprint: by selectively 

retaining mature memory cells, O-AIRS 

optimizes memory usage, enhancing overall 

system efficiency. 

• Enhance classification accuracy: through 

iterative interaction with HAGs and 

comprehensive memory cell testing, O-AIRS 

aims to achieve superior classification accuracy, 

even in noisy or complex datasets. 

• Ensure comprehensive cell maturity: O-AIRS 

ensures all memory cells undergo rigorous 

testing and maturation, enhancing the system's 

resilience and adaptability in complex data 

environments. 

6 Experimental study 
This section presents an experimental comparison to 

evaluate O-AIRS, the improved version of AIRS and 

AIRS2. We implemented all three algorithms and tested 

their performance on two commonly used classification 

datasets: Haberman Surgery Survival (HSS) and Liver 

Disorders (LD). 

Untested_MC ∈ MC 
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6.1 Haberman surgery survival (HSS) 

HSS is one of the hardest datasets for classification [30]. 

It contains case studies conducted between 1958 and 1970 

at the University of Chicago Billings Hospital 

investigating the survival of patients who had undergone 

surgery for breast cancer. Characteristics of HSS dataset 

are depicted in Table 2. 

Table 2: Characteristics of HSS dataset. 

Number of 

attributes 

Number 

of records 

Number 

of positive 

records 

Number of 

negative 

records 

3 306 225 81 

 

HSS dataset attributes are: 

• Age of the patient during surgery 

• Year of the surgery 

• Number of axillary lymph nodes detected 

HSS dataset class labels are: 

• 1: Patient survived for 5 years or more 

• 2: Patient died before 5 years 

6.2 Liver disorder's (LD) 

The Liver Disorders (LD) dataset contains 345 records of 

patients diagnosed with either confirmed liver disorders or 

no disorders. The characteristics of the LD dataset are 

presented in Table 3. 

Table 3: Characteristics of LD dataset. 

Number of 

attributes 

Number 

of records 

Number 

of positive 

records 

Number of 

negative 

records 

6 345 145 200 

 

LD dataset attributes are: 

• Mean Corpuscular Volume (MCV) 

• Alkaline Phosphatase (ALP) 

• Alanine Aminotransferase (ALT) 

• Aspartate Aminotransferase (AST) 

• Gamma-Glutamyl Transferase (GGT) 

• Number of Alcoholic Drinks per Day 

 

LD dataset class labels are: 

• 1: Liver disorders 

• 2: No liver disorders 

6.3 Learning parameters 

The initial learning phase involves creating memory cells 

(MC) and antigen recognition bodies (ARBs). The number 

of cells in these initial sets is determined randomly. 

Subsequent learning steps utilize specific parameters 

defined in Table 4. These parameters influence the 

algorithm's behavior during the learning process.

Table 4: Learning parameters. 

Parameter Meaning 
Domain of 

values 

Chosen 

value 

Hyper_clonal_rate 
Maximum cloning 

rate 
N 30 

Clonal_rate 
Average cloning 

rate 
N 20 

Mutate_rate 
Mutation 

probability 
[0,1] 0.1 

Group_Scalar (GS) 

Scale of distance 

between antigens in 

a HAG (O-AIRS 

parameter) 

[0,1] 0.9 

6.4 Results and discussion 

Next, we evaluate O-AIRS against established algorithms 

on benchmark datasets (Liver Disorders and Haberman 

Surgery Survival) to assess its effectiveness in 

classification. 

6.4.1 Experimental results with LD dataset 

To compare the performance of AIRS, AIRS2, and O-

AIRS, we used the LD dataset as input with unified 

common parameters. We assess the performance of the 

three algorithms using various metrics such as Accuracy, 

Precision, Recall, and F1-Score. These evaluation metrics 

are derived from confusion matrices, as shown in Tables 

5, 6, and 7. The performance comparison of algorithms on 

the LD dataset is summarized in Table 8.

Table 5: Confusion matrix – AIRS/LD. 

  Predicted 

  Liver disorders No liver disorders 

True 
Liver disorders 47 (TP) 6 (FN) 

No liver disorders 27 (FP) 7 (TN) 
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Table 6: Confusion matrix – AIRS2/LD. 

  Predicted 

  Liver disorders No liver disorders 

True 
Liver disorders 50 (TP) 3 (FN) 

No liver disorders 25 (FP) 9 (TN) 

 

Table 7: Confusion matrix – O-AIRS/LD. 

  Predicted 

  Liver disorders No liver disorders 

True 
Liver disorders 50 (TP) 3 (FN) 

No liver disorders 20 (FP) 14 (TN) 

Table 8: Performance comparison of AIRS, AIRS2, and O-AIRS on the LD Dataset. 

Algorithm Accuracy Precision Recall F1-Score 

Number of 

memory cells 

used for 

classification 

Percentage of 

tested memory 

cells 

AIRS 62,07% 63.51% 88.67% 74.01% 100 68% 

AIRS2 67,82% 66.66% 94.33% 78.12% 100 70% 

O-AIRS 73,56% 71.42% 94.33% 81.30% 50 100% 

The experimental evaluation on the Liver Disorders 

(LD) dataset revealed compelling insights into the 

performance of AIRS, AIRS2, and O-AIRS in 

classification tasks. 8 summarizes the key metrics 

obtained from the experiments, focusing on Accuracy, 

Precision, Recall, F1-Score, the number of memory cells 

used for classification, and the percentage of tested 

memory cells. 

Accuracy and classification performance: O-AIRS 

demonstrated a significant improvement in Accuracy 

compared to AIRS and AIRS2, achieving 73.56% 

Accuracy. In contrast, AIRS and AIRS2 achieved 62.07% 

and 67.82% Accuracy, respectively. This enhancement 

underscores O-AIRS's capability to more effectively 

classify instances within the LD dataset, highlighting its 

refined learning and activation mechanisms. 

Precision, Recall, and F1-Score: Precision measures 

the proportion of correctly identified positive instances 

among all instances predicted as positive. O-AIRS 

exhibited a Precision of 71.42%, while AIRS and AIRS2 

showed 63.51% and 66.66%, respectively. This indicates 

O-AIRS's ability to minimize False Positives more 

effectively. Similarly, O-AIRS achieved a Recall of 

94.33%, outperforming AIRS (88.67%) and comparable 

to AIRS2 (94.33%). The F1-Score, which balances 

Precision and Recall, was highest for O-AIRS at 81.30%, 

compared to 74.01% for AIRS and 78.12% for AIRS2. 

These results demonstrate that O-AIRS not only enhances 

Precision but also maintains a high Recall rate, 

contributing to its superior F1-Score. 

Memory cells utilization: a critical observation lies 

in the number of memory cells utilized for classification. 

O-AIRS effectively reduced the number of memory cells 

to 50, half that used by AIRS and AIRS2 (100 memory 

cells each). This reduction optimizes computational 

resources and enhances the efficiency of the classification 

process in O-AIRS, reflecting its streamlined and selective 

memory cell activation mechanism. 

Tested memory cells: importantly, O-AIRS ensures 

that all memory cells retained for classification have been 

rigorously tested by antigens, achieving 100% activation 

fidelity. In contrast, AIRS and AIRS2 activated a lower 

percentage of memory cells (68% and 70%, respectively), 

potentially leading to less reliable classifications due to 

the presence of untested cells. 

6.4.2 Experimental results with HSS dataset 

To validate the findings from the LD dataset, the same 

evaluation process was conducted on the Haberman 

Surgery Survival (HSS) dataset. The algorithms (AIRS, 

AIRS2, and O-AIRS) were again evaluated using 

performance metrics like Accuracy, Precision, Recall, and 

F1-Score.  Similar to the LD dataset analysis, these 

metrics are derived from confusion matrices (presented in 

Tables 9, 10, and 11). Table 12 presents a comprehensive 

comparison of the algorithms' performance metrics on the 

HSS dataset
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Table 9: Confusion matrix – AIRS/HSS. 

  Predicted 

  
Patient died before 

5 years. 

Patient survived for 

5 years or more 

True 

Patient died before 5 

years. 
60 (TP) 3 (FN) 

Patient survived for 

5 years or more 
10 (FP) 4 (TN) 

Table 10: Confusion matrix – AIRS2/HSS. 

  Predicted 

  
Patient died before 

5 years. 

Patient survived for 

5 years or more 

True 

Patient died before 5 

years. 
62 (TP) 1 (FN) 

Patient survived for 

5 years or more 
10 (FP) 4 (TN) 

Table 11: Confusion matrix – O-AIRS/HSS. 

  Predicted 

  
Patient died before 

5 years. 

Patient survived for 

5 years or more 

True 

Patient died before 5 

years. 
63 (TP) 1 (FN) 

Patient survived for 

5 years or more 
9 (FP) 4 (TN) 

Table 12: Performance comparison of AIRS, AIRS2, and O-AIRS on the HSS Dataset. 

Algorithm Accuracy Precision Recall F1-Score 

Number of 

memory cells 

used for 

classification 

Percentage of 

tested memory 

cells 

AIRS 77,92% 85.71% 95.23% 90.22% 100 58% 

AIRS2 85,71% 86.11% 98.41% 91.85% 115 54,78% 

O-AIRS 87,01% 87.50% 98.43% 92.64% 41 100% 

Turning to the HSS dataset, Table 12 outlines the 

comparative performance of AIRS, AIRS2, and O-AIRS 

in terms of accuracy, precision, recall, F1-Score, the 

number of memory cells used for classification, and the 

percentage of tested memory cells. 

Accuracy and classification performance: O-AIRS 

demonstrated robust classification Accuracy at 87.01%, 

surpassing both AIRS (77.92%) and AIRS2 (85.71%). 

This improvement underscores O-AIRS's efficacy in 

accurately predicting patient survival based on surgical 

outcomes in the HSS dataset. 

Precision, Recall, and F1-Score: analyzing 

Precision, O-AIRS achieved 87.50%, outperforming 

AIRS (85.71%) and AIRS2 (86.11%). This higher 

Precision indicates O-AIRS's superior ability to identify 

true positive cases among all predicted positives. 

Moreover, O-AIRS maintained a commendable Recall of 

98.43%, higher than AIRS (95.23%) and comparable to 

AIRS2 (98.41%). The F1-Score for O-AIRS stood at 

92.64%, highlighting its balanced performance in 

Precision and Recall, essential for accurate classification 

in medical datasets. 

Memory cells utilization: similar to its performance 

on the LD dataset, O-AIRS significantly reduced the 

number of memory cells utilized for classification in the 

HSS dataset to 41, compared to 100 for AIRS and 115 for 

AIRS2. This reduction not only optimizes computational 

efficiency but also enhances the interpretability and 

reliability of classification results in O-AIRS. 

Tested memory cells: all memory cells retained for 

classification in O-AIRS were rigorously tested by 

antigens, ensuring 100% activation fidelity. In contrast, a 

substantial percentage of memory cells remained untested 

in AIRS (58%) and AIRS2 (54.78%), potentially leading 

to less reliable classifications and inconsistent 

performance. 

6.4.3 Discussion and comparison 

The experimental evaluation on both LD and HSS datasets 

establishes O-AIRS's superiority over AIRS and AIRS2. 

This is achieved through two key innovations: 

Homogeneous Antigen Groups (HAGs) and optimized 

memory cell utilization. 

HAGs enhance pattern recognition by organizing 

antigens into groups based on similarity. This strategic 
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grouping minimizes redundancy and improves 

classification accuracy by concentrating memory cell 

activations on pertinent antigenic features. Consequently, 

O-AIRS achieves superior performance while 

simultaneously reducing computational complexity. 

Moreover, O-AIRS introduces a rigorous testing 

protocol for memory cells, ensuring that each retained cell 

undergoes thorough validation by antigens. This 

meticulous testing process contrasts sharply with 

traditional methods where many memory cells remain 

untested, potentially compromising the reliability of 

classifications. By attaining 100% activation fidelity 

through tested memory cells, O-AIRS enhances the 

robustness of its classifications and elevates overall 

detection rates in diverse datasets. 

O-AIRS transcends its role as a mere enhancement 

over AIRS and AIRS2, positioning itself as a formidable 

and versatile competitor in the expansive field of 

classification. By leveraging its innovative mechanisms, 

O-AIRS effectively competes with other AINs. 

Traditional Artificial Immune Networks (AINs), such as 

AINet [11] and Adaptive Artificial Immune Networks 

(AAIN) [12], excel in tasks such as data clustering and 

classification but face challenges like computational 

intensity and sensitivity to parameter settings. Similarly, 

conventional Negative Selection Algorithms (NSAs) like 

Self-Nonself Discrimination [5], INSA [6], and ADC-

NSA [7] demonstrate proficiency in specific tasks but 

encounter issues such as high computational costs and the 

need for precise parameter tuning. Algorithms grounded 

in Danger Theory, such as DeepDCA [16] and Multi-

Level Intrusion Detection System [17], prioritize specific 

domains and achieve high accuracy rates but are often 

limited by dataset size and varying detection probabilities. 

Clonal Selection Algorithms (CSAs), represented by 

CLONALG [20] and CLONALG-M [23], excel in pattern 

recognition and optimization tasks but can be sensitive to 

parameter settings and computational overhead. 

O-AIRS leverages Homogeneous Antigen Groups 

(HAGs) alongside a refined maturity mechanism to 

significantly boost data classification efficiency. By 

organizing antigens into coherent groups based on 

similarity, HAGs streamline the identification of complex 

data structures without the need for extensive parameter 

adjustments. This strategic approach not only enhances 

computational efficiency but also improves result 

accuracy by mitigating challenges such as uneven antigen 

distributions and the randomness inherent in detector 

generation. Consequently, O-AIRS emerges as a robust 

solution for applications in immune-inspired algorithms. 

Moreover, O-AIRS dynamically adapts to evolving data 

environments, thereby enhancing adaptability and 

robustness. The refined maturity mechanism, coupled 

with the effective implementation of HAGs, ensures 

optimal solutions are achieved efficiently. This capability 

is particularly advantageous in scenarios requiring rapid 

decision-making and resource efficiency, underscoring O-

AIRS's versatility and practical utility across various 

domains. 

7 Conclusion 
In conclusion, while current Artificial Immune Systems 

(AIS) algorithms such as AIRS and AIRS2 offer a 

distinctive approach to machine learning, their limitations 

compromise their efficacy. These include reliance on 

single antigen activation and the retention of untested 

memory cells, resulting in inaccurate classifications. 

This paper introduces the Optimized Artificial 

Immune Recognition System (O-AIRS), a novel solution 

aimed at addressing these shortcomings. O-AIRS 

integrates advanced functionalities such as Homogeneous 

Antigen Groups (HAGs) and a refined memory cell 

activation mechanism to enhance its classification 

capabilities. By leveraging HAGs, which delineate 

specific subsets within a class, O-AIRS optimizes memory 

cell activation tailored to precise threat recognition. 

Moreover, O-AIRS selectively engages validated memory 

cells during classification, mitigating concerns about 

untested recruits and facilitating more precise 

classifications. 

O-AIRS's effectiveness was rigorously evaluated 

using established benchmark datasets. Comparative 

analyses against its predecessors, AIRS and AIRS2, across 

multiple metrics including accuracy, precision, and recall 

consistently demonstrated O-AIRS's superior 

classification performance. Additionally, O-AIRS 

exhibited robust adaptability to diverse datasets while 

maintaining computational efficiency, affirming its utility 

in complex real-world applications. 

This efficiency is further underscored by O-AIRS's 

optimized activation mechanism, ensuring activation of 

only pertinent memory cells during classification and 

reducing the required number of cells by approximately 

50% compared to original algorithms. Critically, all 

memory cells retained in O-AIRS are validated, enhancing 

their contribution to accurate classification outcomes. 

Looking ahead, O-AIRS presents promising avenues 

for future research. One compelling direction involves 

exploring O-AIRS's dynamic adaptation of HAGs during 

classification, enhancing its ability to detect evolving 

threats in real-time. Such adaptive strategies hold 

particular promise in dynamic domains like cybersecurity 

and financial anomaly detection. 

Furthermore, expanding O-AIRS's applicability 

beyond current datasets would provide insights into its 

generalizability and suitability for broader deployment. 

Exploring diverse distance metrics for antigen 

comparisons within HAGs could also yield additional 

performance enhancements. Additionally, investigating 

alternative memory cell types or hybrid approaches within 

O-AIRS offers potential for further augmenting its 

efficacy in handling intricate classification tasks. 
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