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Complex systems are characterized not only by the diversity of their components, but also by the 
interconnections and interactions between them. For modeling such systems, we often need several 
formalisms and we must concern ourselves with the coexistence of heterogeneous models. This objective 
can be achieved by using multi-modeling. The transformation of such models in a pivot model is a 
technique in this context. This paper introduces the DEVS 'Discrete Event System Specification' which 
model coupling approach is supported by a proposal for transformation of Petri nets in DEVS models. 
Petri Nets are universal formalisms which offer mathematical and graphical concepts for modeling the 
structure and the behavior of systems. We present mechanisms which can systematically transform the 
places and transitions in Petri nets to DEVS models. The coupling of these models generates a DEVS 
coupled model capable of running on platforms based on DEVS formalism. 

Povzetek: Opisana je transformacija Petri mrež v formalizem DEVS. 

1 Introduction 
The diversity and the complexity of increasingly growing 
systems has forced the scientific community to 
implement tools for modeling and simulation [1] [2] [3] 
more and more efficient and meet the expressed 
requirements and constraints and support the 
heterogeneity and especially coupling systems in various 
disciplines. Now, it appears essential to use federative 
tools which offer extensive possibilities of abstraction 
and formalization. The multi-modeling consists of using 
several formalisms when one wants to model complex 
systems whose components are heterogeneous [4]. The 
idea developed in this paper is to determine a powerful 
formalism and abstraction that is as universal as possible 
to federate a set of concepts for the expression of 
different models. Once the formal model described, 
verified and validated it comes to transforming it into an 
executable form. In this article, we opted for Petri nets 
[5] [6] as tools for formal and abstract modeling of 
complex systems and DEVS "Discrete Event System 
Specification" [7] [8] [9] as universal formalism for the 
coupling of several transformation models. We detail in 
what follows mechanisms for transforming Petri nets 
(PN) in DEVS models [10].It consists of an algorithm 
permitting to systematically transform places and 
transitions to atomic DEVS models.  

This paper begins by introducing the concept of 
multi-modeling. Then, we formally define DEVS and PN 
specifications. The following section shows the strength 
of DEVS as a universal system of multi-modeling 
followed by a formal approach to transform PN in DEVS 
models. We end this paper with a conclusion and 
perspectives. 

2 Multi-modelling 
Currently, systems can achieve large degrees of 
complexities and heterogeneities by combining multiple 
aspects which requires the use of several formalisms for 
their representation. Multi-modeling is used to represent 
these systems by using different formalisms. In this case, 
many models based on different formalisms can coexist 
in a single model. According to Hans Vangheluwe [2], 
the paradigm of multi modeling focuses on three axes: 
• Different formalisms describe the coupling and the 

transformation of models. 
• The relationship between the models at each level of 

abstraction is clearly defined. 
• The meta-model focuses on the description of the 

classes of models (models of models). 
In [11] there is a representation of various possible 
transformations by using formalism transformation graph 
“FTG”.  

3 Related works and motivations 
In multi-modeling, several researches have focused on 
the study of the relationship between PN or other 
dynamic formalism and DEVS formalisms, since DEVS 
is considered as one of the basic modeling formalisms 
based on the unifying framework of general dynamic 
modeling formalism. Juan de Lara and al. proposed in 
[12] a modeling based multi-paradigm to generate PN 
and State-Charts. It consists of modeling at multiple 
levels of abstraction implemented in AToM3 (A Tool for 
Multi-formalism and Meta-Modeling) [13] [14] [15], 
where is presented a graphical abstraction of meta-
models of Sate charts and PNs. The use of CD++ to 
develop PN [16] [17] is close to our work. However it 



412 Informatica 37 (2013) 411–418 M. Redjimi et al.  
 

only provides tools for generating PN by using library of 
predefining models for PN places and transitions. 
Therefore, one may be not finding the appropriate model 
for a given transition especially when it contains a big 
number of ports. Furthermore, in [17] we don’t find a 
vital parallelism because firing transitions is scheduled. 
That means one never finds more than one transition in 
firing state, while the parallelism is one of the 
fundamental PN characteristics. Thus the conflict 
characteristic of PNs is silently absent, since without 
parallelism the problematic of conflict is not considered. 
So the value of our work is that is characterized by the 
development of algorithms that can automatically 
transform the existing PN in DEVS models [10]. 
Moreover, the most important characteristics of PNs such 
as parallelism, concurrency and conflict are well 
preserved in our approach. 

4 DEVS formalism 
DEVS was initially introduced by B. P. Zeigler [7] in 
1976 for discrete event systems modeling. In DEVS, 
there are two kinds of models: atomic and coupled 
models. Atomic model is based on a continuous time 
inputs, outputs, states and functions. Coupled models are 
constructed by connecting several atomic models. 

A DEVS atomic model is described by the following 
equation: 

AtomicDEVS = (X,Y,S,δint,δext,δcon,λ, ta)                 (1) 

Where: 
 X is the set of external inputs. Y is the set of model 
outputs. S is the set of states. δint: S → S: represents  the 
internal transition function that changes the state of the 
system autonomously. It depends on the time elapsed in 
the current state.  
δext: S×X→S: is the external transition function occurs 
when model receives an external event. It returns the new 
state of the system based on the current state. δcon: 
X→SxS: is the transition function of conflict. It occurs if 
an external event happens when an internal system status 
changes. This feature is only present in a variant of 
DEVS: Parallel DEVS [8] [18]. λ: S → Y: is the output 
function of the model. It is activated when the elapsed 
time in a given state is equal to its life (ta (s) represents 
the life of a state "s" of the system if no external event 
occurs). 

Coupled DEVS formalism describes a system as a 
network of components.  

CoupledDevs=(Xself,Yself,D,{M d/dЄD},EIC,EOC,IC)   (1) 

Where Self: is the model itself. Xself is the set of 
inputs of the coupled model. Yself is the set of outputs of 
the coupled model. D is the set of names associated with 
the components of the model, self is not in D. {Md / d Є 
D} is the set of components of the coupled model. EIC, 
EOC and IC define the coupling structure in the coupled 
model. EIC is the set of external input couplings. They 
connect the model inputs coupled to those of its own 
components. EOC is the external output couplings. They 

connect the outputs of the components to those of the 
coupled. IC defines internal coupling. It connects the 
outputs of components with entries from other 
components in the same coupled model. 

In DEVS, both of atomic and coupled models can be 
represented graphically as illustrated in Fig. 1. 

 

Figure 1: Representation of DEVS (a) atomic and (b) 
coupled models. 

5 Petri nets (PN) 
Petri Nets are a modeling formalism originally developed 
by C. A. Petri [5] [6]. They are very suitable for 
modeling dynamic systems. 

Several types of nets can be used (timed Petri nets, 
colored Petri nets …) [19] [20]. We use classical Petri 
nets defined by the following 5-tuple:  

PN = (P, T, PRE, POST, Mo) (2) 

P: is the set of places. T: is the set of transitions. PRE: 
the matrix generated by applying P x T → N. PRE [i, j] = 
n / n = 0 if the place is not upstream of the transition tj 
else n = τ / τ is the weight of the arc from pi to tj. POST: 
the matrix generated by applying T x P → N. POST [i, j] 
= n / n = 0 if the place pi is not downstream of the 
transition tj else n = τ / τ is the weight of the arc from tj 
to pi. M0: is the vector of initial marking. M[i] = k / k is 
the number of tokens in place pi. Fig. 2, shows a PN in 
the left (a) which consists of three places and one 
transition modeling action (T1) having two conditions 
(P1, P2) to be run. The result is put in place (P3). 

6 PN to DEVS Transformation 

6.1 Why DEVS? 
DEVS provides a modular and hierarchical 
representation of dynamic models. Events generated by a 
model can take values in different areas and can be used 
as stimuli for other models. Also, according to B.P. 
Zeigler [7] [8], we can show that there is a DEVS model 
corresponding to each discrete event systems. We can go 
further, in fact, DEVS can be ‘universal’ [21] and allows 
the coupling of models and formalisms described with 
heterogeneous paradigms [11]. 
 The main idea is that the models are considered as black 
boxes that have links with the outside world only through 
ports of inputs and outputs. Using this abstraction 
feature, several models can be coupled while enjoying 
the reuse of existing models. It is also possible to 
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perform the formal verification of DEVS models, which 
is a valuable aid in the design of systems [22] [23]. 
Several DEVS-based platforms are available such as 
VLE (Virtual Laboratory Environment)[24][25], 
DEVSJAVA [26] developed in Java, Cell-DEVS 
(Cellular DEVS) which is based on the formalism of 
cellular automata [27]. 
The coupling of models based on DEVS is a typical task. 
However, non-DEVS models require an extra effort to be 
coupled. Two methods exist to incorporate a non-DEVS 
model into a DEVS environment: co-simulation and 
transformation [28]. The transformation of non-DEVS 
models (PN in our case) in DEVS models requires to 
specifying models in a uniform language. In the case of a 
co-simulation, the communications between simulators is 
considered. Several works such as HLA (High Level 
Architecture) [29] take in account this way. 

6.2 Mechanisms of PN to DEVS 
transformation 

The idea of our approach is to have as result a DEVS 
coupled model (CDEVS) faithful to the input PN.  

6.2.1 Structure of Resulting DEVS Model 
The transformation of Petri provides a DEVS coupled 
model where places and transitions are replaced by 
atomic DEVS models. Fig.3, illustrates the CDEVS 
model corresponding to the PN example. The DEVS 
model corresponding to the "transition" of PN (TDEVS 
for "Transition DEVS") is characterized by an output 
port "control" (CT1) able to send events to places 
upstream and verify the number of tokens or inform them 
about its firing. However, TDEVS receives events from 
the models corresponding to places upstream (PDEVS 
"Place DEVS") with control ports as much as number of 
places (CPiT1). 

TDEVS is not linked by its downstream CDEVS 
except by output port for each AT1Pi (in black) to inform 
them about its crossing. All TDEVS and PDEVS are 
provided with an output port OutTi and OutPi  (in blue). 
These ports are coupled directly with the output ports for 
eventual CDEVS output. All PDEVS have an input port 
(InitPi) by which they are coupled with CDEVS via an 
input port InitP (in green) to initialize the marking of 
places. The arcs from place Pi to the transition Tj are 
translated into output ports APiTj  (PDEVS) and input 
ports APiTj  (TDEVS) corresponding to T (black). The 
creation of the structure of DEVS model corresponding 
to the PN is performed by algorithm1 which takes as 
input a PN= (P, T, PRE, POST, M0). The result is a 
DEVS model. Algorithm1 creates links corresponding to 
the arcs that link places by upstream transitions thanks to 
PRE matrix. The POST matrix is used for the coupling 
between TDEVS (transitions) and PDEVS (places) 
downstream of the transition. 

Fig. 2 illustrates the elementary transformations of 
PN components to their equivalent objects in DEVS. 
Where (a) represents a single place with the minimum of 
ports it has to possess. (b) Illustrates a single given 

transition. (c) and (d) represents the minimum of IC 
between a place and a transition. (e) Corresponds to a 
graphical representation of IC in case of conflict between 
two transitions. Finally (f) represents the IC of typical 
transformation with parallelism.  

Formally, the transformation is presented as follow: 

PN = (P,T,PRE,POST,Mo)    →    
CDEVS=(X,Y,D,EIC,EOC,IC) 
Where: 
D = {P ∪ T} 
X = {InitP, InitT} 
Y = {OutDi  / Di is atomic model representing Pi or Ti} 
EIC = {(CDEVS.InitP, PDEVS.IntPi) ∪  (CDEVS.initT , 
TDEVS.IntTj)/ i ∈ N+ & i < Number of places, j Є N+ & 
j < Number of transitions } 
EOC = {(Pi.OutPi, CM.OutPi) , (Tj.OutTj, CM.OutTj)/ i 
Є N+ & i<Number of places, jЄN+ & j<Number of 
transitions } 
IC = {   
 {(Pi.APiTj, Tj.APiTj) / PRE[i,j]>0 }  
∪ {(Tj.ATjPi, Pi.ATjPi) / POST[i,j]>0 }  
∪ { {Tj.CTj} X {Pi.CTjPi} / PRE[i,j]>0 } 
∪ { (Pi.C PiTj , Tj.CPiTj} / PRE[i,j]>0 }  
/i Є N+ & I < Number of places, j Є N+ & j < Number of 
transitions  
 
} 

Algorithm 1 : Transformation PN To DEVS 

Main_PN_DEVS 
 
Input PN= (P,T,PRE,POST,M0) 
Output CDEVS //coupled model 
Begin : 
Create CDEVS as coupled DEVS model //void model 
For all transition i do 
  create TDEVSi as atomic DEVS model   
end for 
for all places j do 
 create PDEVSj as atomic DEVS model  
end for 
for all PDEVSj do  

 add ‘InitPj’ as intput port and join it to 
CDEVS.IN.InitP  //starting tokens 
add ‘OutPj’ as output port and join it to 
CDEVS.OUT.OutPj  //output stream 

end for 
for all TDEVSi do 

add ‘InitTi’ as input port //initialize, stop, pause, 
release 

    join ‘InitTi’ port to CDEVS.IN. InitT port //coupling 
   add ‘OutTi’ as output port and join it to     
   CDEVS.OUT.OutTi  //output stream 
    add ‘CTi’ as output port // control: check, reserve,   
    decrement, cancel 
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    for all PDEVSj do 
  
     if (PRE[i,j] > 0)  //upstream place 

add to PDEVSj ‘CTiPj’ as input port //check, reserve, 
decrement, cancel 
 join TDEVSi.OUT.CTi to PDEVSj.IN.CTiPj // 
coupling 
 add to PDEVSj ‘CPjTi’ as output port //ok, busy 
,number_of_free_tokens 
 add to TDEVSi ‘CPjTi’ as input port //ok, busy 
,number_of_free_tokens 

     join PDEVSj.OUT.CPjTi to TDEVSi.IN. CPjTi //    
     coupling             
      add to PDEVSj ‘APjTi’ as output port  //arc: value    
      = PRE[i,j]  
      add to TDEVSi ‘APjTi’ as intput port  //arc: value   

      = PRE[i,j] 
       join PDEVSj.OUT. APjTi to TDEVSi.IN.APjTi //   
      coupling 
       end if 
       if (POST[i,j] > 0)   //downstream places    
       add to TDEVSi ‘ATiPj’ as output port  //arc: value  
       = POST[i,j] 
       add to PDEVSj ‘ATiPj’ as input port  //arc: value  
       = POST[i,j] 
       join TDEVSi.OUT.ATiPj to PDEVSj.IN.ATiPj //  
        coupling 
       end if  
    end for 
end for         
end  Main_PN_DEVS 

 
Figure 2: Graphical representation of elementary transformations and IC between generated DEVS models 



Algorithmic Tools for the Transformation of…  Informatica 37 (2013) 411–418 415 

 
Figure 3: PN to coupled DEVS transformation.

6.2.2 Dynamic of Resulting DEVS Model 
The dynamic of generated DEVS model is controlled by 
the functions of DEVS formalism which are δint, δext 
and λ. After initialization of places (PDEVS) by the 
initial marking and after launching the evolution of the 
model by the event "initialize" received by all transitions 
(TDEVS), the latter are in state "checking" (by δext) to 
see if the number of tokens in places upstream is 
sufficient to achieve a crossing. Event "check" is sent by 
λ. After receiving the event, PDEVS transmit the number 
of their free tokens (which are not reserved by other 
transition) with λ as well. If the number of tokens is 
sufficient to validate the transition (TDEVS), the status is 
changing from "checking" to "reserving" and the event 
"reserve" is sent with λ. The firing does not occur 
directly. It must go through a reservation status to avoid 
conflicts (if places are upstream of several transitions), as 
long as the transitions are in continuous competition. In 
this way the properties of PN in terms of dynamics and 
competition is faithfully preserved in our transformation 
approach. 

When PDEVS receives the event "reserve" it returns 
"ok" if there is still enough free tokens, otherwise, it 
returns "fail". If TDEVS receives   at least one "fail", it 
returns immediately the signal "cancel" to release the 
reserved tokens. It puts its state "Validated" otherwise. 
At this point, the transition can pass the crossing and 
therefore returns "decrement" to PDEVS which will 
destroy the tokens reserved by TDEVS in question. It 
sends simultaneously "increment" to PDEVS located 
downstream in order to increment the number of tokens 
with the value received by the input port (weight of arc). 
After firing a TDEVS, it rehabilitates "checking" and so 
on. 
Functions δext, δint, δcon and λ, characterizing the models 
TDEVS, are summarized in Table2. The first two 
columns represent the inputs, which are the events and 
the current state. The other columns show the outputs of 
each function. The table rows are grouped separately for 
each current state and models PDEVS. Functions are 
shown in Table 2. By convention, if all events have the 
same impact, we write "all events". Empty cells indicate 
the absence of values, for λ that means the absence of 

events and for δext, δint and δcon that the function does not 
produce an output state. The "&" symbol indicates that 
the events are simultaneous. 

Event 
Current 
state  

δext δint δcon λ (current state) 

      initialize 

all states 

checking 

  

Out 

pause Paused Out 

Stop Stopped Out 

release checking Out 
      Free tokens 

Reserving 

 

reserving 

Reserving 

reserve Ok 
validated, 
reserving 

validated, 
reserving 

fail canceling Canceling 
      
all events Validated  checking  

decrement & 
increment & out 

      all events Canceling  checking  cancel 

Table 1: The outputs of the TDEVS model functions. 

6.2.3 Example of Transformation 
Fig. 4 and 5 present an example of transformation of one 
of famous case study in PN training field: Producer-
Consumer (Prod_Cons_PN).  

The formal definition of this PN is: 
Prod_Cons_PN = (P, T, PRE, POST, M0)                        
P = {P1, P2, P3, P4, P5, P6} 
T = {T1, T2, T3, T4} 

 

P1 (Producer is ready to produce), T1 (Begin of 
production), P2 (Production is run), T2 (End of 
production), P3 (plug containing products, initially, plug 
is empty), P4 (Consumer is ready to consume), T3 
(Begin of consummation), P5 (Consummation is run), T4 
(End of consummation) and P6 (Number of free puts, 
initially:  all puts in plug are free).  
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Fig.4 represents the coupled model faithful to the PN 
modeling Producer-Consumer. Fig.5 illustrates the 
corresponding coupled DEVS model. We conserve the 
same color signification as shown in Fig. 3: Color green 
to initialize places’ tokens number. Color orange to 
initialize transitions. Color red: to illustrate control 
stream. Color black: to illustrate tokens incrementing or 
decrementing and color blue for outputs. 

6.2.4 Discussion 
Petri nets are formal tools modeling dynamic systems 
dealing perfectly with the aspect of competition, 
concurrency and parallelism. Therefore, they require 
gentle handling during mapping in order to not lose their 
specifications. In our approach, competition is preserved 
by the creation of temporary state transitions which is the 
reserving state. Thus, a token cannot participate at the 
same time, in the firing of two transitions in conflict. 
However, the transition must immediately release tokens 

if it fails to be validated in order to not paralyze other 
transitions which are in conflict with it. 

In this paper we presented the generalized PN for the 
reader to understand the mechanism of transformation. 
However, other extensions such as coloured PN can also 
be processed. In this case, tokens will no longer be 
trivialized. We will need to extend the type of 
representation to comprise a list with different colours. 
Thus, during the broadcast of the event "check" with a 
transition. Places of upstream should check the port 
connecting to the transition in order to send only the 
number of free tokens with the same colour as specified 

Event Current state  δext δint δcon λ (current state) 
      initialize all states Checking  Checking Out 
      check 

checking 

Checking 

Checking 

Checking 

free_ tokens 
 

reserve Reserving Reserving 

increment Incrementing Incrementing 

decrement Decrementing Decrementing 

cancel Checking Checking 
      check 

reserving 

Reserving 

Checking 

Reserving 

ok, fail 
 

reserve Reserving Reserving 
 
 

  

increment Incrementing Incrementing 

decrement Decrementing Decrementing 

cancel Checking Checking 
      check 

incrementing 

Checking 

Checking 

Checking 

Out 

reserve Reserving Reserving 

increment Incrementing Incrementing 

decrement Decrementing Decrementing 

cancel Incrementing Incrementing 
 
 

     
      check decrementing Checking Checking Checking Out 

Table 2:   The outputs of the PDEVS model functions. 

 
Figure 4: PN Producer-Consumer. 

 
Figure 5: DEVS coupled models corresponding to 
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at this port.  
In addition, the DEVS formalism provides flexibility 

in the internal structure of the models [30]. Models may 
disappear, others can take over. This aspect of dynamic 
structure related to DEVS will simplify the complexity of 
PN related to the representation of structural changes in 
systems. Therefore one DEVS model can represent 
several PNs at a time. 

7 Conclusion and perspectives 
In this paper we have presented a transformation 
approach of Petri nets to DEVS models, where places 
and transitions are transformed to atomic models. 
Coupling these models generates a coupled DEVS. This 
work falls within the framework of multi-modeling and 
transformation models based on multi-formalisms. Our 
choice of DEVS as focal formalism was based on its 
power in unifying and coupling models. Characterized by 
its abstraction, implementations independence and its 
ability to model complex systems in the form of a 
hierarchical model, DEVS is a formalism that can be the 
unifier of models. 

By the transformation presented in this paper, the PN 
can enjoy the simulation on multiple DEVS based 
platforms. 

Our perspectives focus on the implementation of 
such transformations to modelling complex industrial 
systems such as petroleum plants.  
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