
 Informatica 37 (2013) 411–418 411

Algorithmic Tools for the Transformation of Petri Nets to DEVS

Mohammed Redjimi and Sofiane Boukelkoul
Université 20 Août 1955, Faculté des sciences, Département d’informatique
21000, Skikda, Algeria
E-mail: redjimimed@yahoo.fr, Bouk.sofiane@yahoo.fr

Keywords: DEVS, Petri nets, coupling models, multi-modeling, modeling and simulation

Received: May 1, 2013

Complex systems are characterized not only by the diversity of their components, but also by the
interconnections and interactions between them. For modeling such systems, we often need several
formalisms and we must concern ourselves with the coexistence of heterogeneous models. This objective
can be achieved by using multi-modeling. The transformation of such models in a pivot model is a
technique in this context. This paper introduces the DEVS 'Discrete Event System Specification' which
model coupling approach is supported by a proposal for transformation of Petri nets in DEVS models.
Petri Nets are universal formalisms which offer mathematical and graphical concepts for modeling the
structure and the behavior of systems. We present mechanisms which can systematically transform the
places and transitions in Petri nets to DEVS models. The coupling of these models generates a DEVS
coupled model capable of running on platforms based on DEVS formalism.

Povzetek: Opisana je transformacija Petri mrež v formalizem DEVS.

1 Introduction
The diversity and the complexity of increasingly growing
systems has forced the scientific community to
implement tools for modeling and simulation [1] [2] [3]
more and more efficient and meet the expressed
requirements and constraints and support the
heterogeneity and especially coupling systems in various
disciplines. Now, it appears essential to use federative
tools which offer extensive possibilities of abstraction
and formalization. The multi-modeling consists of using
several formalisms when one wants to model complex
systems whose components are heterogeneous [4]. The
idea developed in this paper is to determine a powerful
formalism and abstraction that is as universal as possible
to federate a set of concepts for the expression of
different models. Once the formal model described,
verified and validated it comes to transforming it into an
executable form. In this article, we opted for Petri nets
[5] [6] as tools for formal and abstract modeling of
complex systems and DEVS "Discrete Event System
Specification" [7] [8] [9] as universal formalism for the
coupling of several transformation models. We detail in
what follows mechanisms for transforming Petri nets
(PN) in DEVS models [10].It consists of an algorithm
permitting to systematically transform places and
transitions to atomic DEVS models.

This paper begins by introducing the concept of
multi-modeling. Then, we formally define DEVS and PN
specifications. The following section shows the strength
of DEVS as a universal system of multi-modeling
followed by a formal approach to transform PN in DEVS
models. We end this paper with a conclusion and
perspectives.

2 Multi-modelling
Currently, systems can achieve large degrees of
complexities and heterogeneities by combining multiple
aspects which requires the use of several formalisms for
their representation. Multi-modeling is used to represent
these systems by using different formalisms. In this case,
many models based on different formalisms can coexist
in a single model. According to Hans Vangheluwe [2],
the paradigm of multi modeling focuses on three axes:
• Different formalisms describe the coupling and the

transformation of models.
• The relationship between the models at each level of

abstraction is clearly defined.
• The meta-model focuses on the description of the

classes of models (models of models).
In [11] there is a representation of various possible
transformations by using formalism transformation graph
“FTG”.

3 Related works and motivations
In multi-modeling, several researches have focused on
the study of the relationship between PN or other
dynamic formalism and DEVS formalisms, since DEVS
is considered as one of the basic modeling formalisms
based on the unifying framework of general dynamic
modeling formalism. Juan de Lara and al. proposed in
[12] a modeling based multi-paradigm to generate PN
and State-Charts. It consists of modeling at multiple
levels of abstraction implemented in AToM3 (A Tool for
Multi-formalism and Meta-Modeling) [13] [14] [15],
where is presented a graphical abstraction of meta-
models of Sate charts and PNs. The use of CD++ to
develop PN [16] [17] is close to our work. However it

412 Informatica 37 (2013) 411–418 M. Redjimi et al.

only provides tools for generating PN by using library of
predefining models for PN places and transitions.
Therefore, one may be not finding the appropriate model
for a given transition especially when it contains a big
number of ports. Furthermore, in [17] we don’t find a
vital parallelism because firing transitions is scheduled.
That means one never finds more than one transition in
firing state, while the parallelism is one of the
fundamental PN characteristics. Thus the conflict
characteristic of PNs is silently absent, since without
parallelism the problematic of conflict is not considered.
So the value of our work is that is characterized by the
development of algorithms that can automatically
transform the existing PN in DEVS models [10].
Moreover, the most important characteristics of PNs such
as parallelism, concurrency and conflict are well
preserved in our approach.

4 DEVS formalism
DEVS was initially introduced by B. P. Zeigler [7] in
1976 for discrete event systems modeling. In DEVS,
there are two kinds of models: atomic and coupled
models. Atomic model is based on a continuous time
inputs, outputs, states and functions. Coupled models are
constructed by connecting several atomic models.

A DEVS atomic model is described by the following
equation:

AtomicDEVS = (X,Y,S,δint,δext,δcon,λ, ta) (1)

Where:
 X is the set of external inputs. Y is the set of model
outputs. S is the set of states. δint: S → S: represents the
internal transition function that changes the state of the
system autonomously. It depends on the time elapsed in
the current state.
δext: S×X→S: is the external transition function occurs
when model receives an external event. It returns the new
state of the system based on the current state. δcon:
X→SxS: is the transition function of conflict. It occurs if
an external event happens when an internal system status
changes. This feature is only present in a variant of
DEVS: Parallel DEVS [8] [18]. λ: S → Y: is the output
function of the model. It is activated when the elapsed
time in a given state is equal to its life (ta (s) represents
the life of a state "s" of the system if no external event
occurs).

Coupled DEVS formalism describes a system as a
network of components.

CoupledDevs=(Xself,Yself,D,{M d/dЄD},EIC,EOC,IC) (1)

Where Self: is the model itself. Xself is the set of
inputs of the coupled model. Yself is the set of outputs of
the coupled model. D is the set of names associated with
the components of the model, self is not in D. {Md / d Є
D} is the set of components of the coupled model. EIC,
EOC and IC define the coupling structure in the coupled
model. EIC is the set of external input couplings. They
connect the model inputs coupled to those of its own
components. EOC is the external output couplings. They

connect the outputs of the components to those of the
coupled. IC defines internal coupling. It connects the
outputs of components with entries from other
components in the same coupled model.

In DEVS, both of atomic and coupled models can be
represented graphically as illustrated in Fig. 1.

Figure 1: Representation of DEVS (a) atomic and (b)
coupled models.

5 Petri nets (PN)
Petri Nets are a modeling formalism originally developed
by C. A. Petri [5] [6]. They are very suitable for
modeling dynamic systems.

Several types of nets can be used (timed Petri nets,
colored Petri nets …) [19] [20]. We use classical Petri
nets defined by the following 5-tuple:

PN = (P, T, PRE, POST, Mo) (2)

P: is the set of places. T: is the set of transitions. PRE:
the matrix generated by applying P x T → N. PRE [i, j] =
n / n = 0 if the place is not upstream of the transition tj
else n = τ / τ is the weight of the arc from pi to tj. POST:
the matrix generated by applying T x P → N. POST [i, j]
= n / n = 0 if the place pi is not downstream of the
transition tj else n = τ / τ is the weight of the arc from tj
to pi. M0: is the vector of initial marking. M[i] = k / k is
the number of tokens in place pi. Fig. 2, shows a PN in
the left (a) which consists of three places and one
transition modeling action (T1) having two conditions
(P1, P2) to be run. The result is put in place (P3).

6 PN to DEVS Transformation

6.1 Why DEVS?
DEVS provides a modular and hierarchical
representation of dynamic models. Events generated by a
model can take values in different areas and can be used
as stimuli for other models. Also, according to B.P.
Zeigler [7] [8], we can show that there is a DEVS model
corresponding to each discrete event systems. We can go
further, in fact, DEVS can be ‘universal’ [21] and allows
the coupling of models and formalisms described with
heterogeneous paradigms [11].
 The main idea is that the models are considered as black
boxes that have links with the outside world only through
ports of inputs and outputs. Using this abstraction
feature, several models can be coupled while enjoying
the reuse of existing models. It is also possible to

Algorithmic Tools for the Transformation of… Informatica 37 (2013) 411–418 413

perform the formal verification of DEVS models, which
is a valuable aid in the design of systems [22] [23].
Several DEVS-based platforms are available such as
VLE (Virtual Laboratory Environment)[24][25],
DEVSJAVA [26] developed in Java, Cell-DEVS
(Cellular DEVS) which is based on the formalism of
cellular automata [27].
The coupling of models based on DEVS is a typical task.
However, non-DEVS models require an extra effort to be
coupled. Two methods exist to incorporate a non-DEVS
model into a DEVS environment: co-simulation and
transformation [28]. The transformation of non-DEVS
models (PN in our case) in DEVS models requires to
specifying models in a uniform language. In the case of a
co-simulation, the communications between simulators is
considered. Several works such as HLA (High Level
Architecture) [29] take in account this way.

6.2 Mechanisms of PN to DEVS
transformation

The idea of our approach is to have as result a DEVS
coupled model (CDEVS) faithful to the input PN.

6.2.1 Structure of Resulting DEVS Model
The transformation of Petri provides a DEVS coupled
model where places and transitions are replaced by
atomic DEVS models. Fig.3, illustrates the CDEVS
model corresponding to the PN example. The DEVS
model corresponding to the "transition" of PN (TDEVS
for "Transition DEVS") is characterized by an output
port "control" (CT1) able to send events to places
upstream and verify the number of tokens or inform them
about its firing. However, TDEVS receives events from
the models corresponding to places upstream (PDEVS
"Place DEVS") with control ports as much as number of
places (CPiT1).

TDEVS is not linked by its downstream CDEVS
except by output port for each AT1Pi (in black) to inform
them about its crossing. All TDEVS and PDEVS are
provided with an output port OutTi and OutPi (in blue).
These ports are coupled directly with the output ports for
eventual CDEVS output. All PDEVS have an input port
(InitPi) by which they are coupled with CDEVS via an
input port InitP (in green) to initialize the marking of
places. The arcs from place Pi to the transition Tj are
translated into output ports APiTj (PDEVS) and input
ports APiTj (TDEVS) corresponding to T (black). The
creation of the structure of DEVS model corresponding
to the PN is performed by algorithm1 which takes as
input a PN= (P, T, PRE, POST, M0). The result is a
DEVS model. Algorithm1 creates links corresponding to
the arcs that link places by upstream transitions thanks to
PRE matrix. The POST matrix is used for the coupling
between TDEVS (transitions) and PDEVS (places)
downstream of the transition.

Fig. 2 illustrates the elementary transformations of
PN components to their equivalent objects in DEVS.
Where (a) represents a single place with the minimum of
ports it has to possess. (b) Illustrates a single given

transition. (c) and (d) represents the minimum of IC
between a place and a transition. (e) Corresponds to a
graphical representation of IC in case of conflict between
two transitions. Finally (f) represents the IC of typical
transformation with parallelism.

Formally, the transformation is presented as follow:

PN = (P,T,PRE,POST,Mo) →
CDEVS=(X,Y,D,EIC,EOC,IC)
Where:
D = {P ∪ T}
X = {InitP, InitT}
Y = {OutDi / Di is atomic model representing Pi or Ti}
EIC = {(CDEVS.InitP, PDEVS.IntPi) ∪ (CDEVS.initT ,
TDEVS.IntTj)/ i ∈ N+ & i < Number of places, j Є N+ &
j < Number of transitions }
EOC = {(Pi.OutPi, CM.OutPi) , (Tj.OutTj, CM.OutTj)/ i
Є N+ & i<Number of places, jЄN+ & j<Number of
transitions }
IC = {
 {(Pi.APiTj, Tj.APiTj) / PRE[i,j]>0 }
∪ {(Tj.ATjPi, Pi.ATjPi) / POST[i,j]>0 }
∪ { {Tj.CTj} X {Pi.CTjPi} / PRE[i,j]>0 }
∪ { (Pi.C PiTj , Tj.CPiTj} / PRE[i,j]>0 }
/i Є N+ & I < Number of places, j Є N+ & j < Number of
transitions

}

Algorithm 1 : Transformation PN To DEVS

Main_PN_DEVS

Input PN= (P,T,PRE,POST,M0)
Output CDEVS //coupled model
Begin :
Create CDEVS as coupled DEVS model //void model
For all transition i do
 create TDEVSi as atomic DEVS model
end for
for all places j do
 create PDEVSj as atomic DEVS model
end for
for all PDEVSj do

 add ‘InitPj’ as intput port and join it to
CDEVS.IN.InitP //starting tokens
add ‘OutPj’ as output port and join it to
CDEVS.OUT.OutPj //output stream

end for
for all TDEVSi do

add ‘InitTi’ as input port //initialize, stop, pause,
release

 join ‘InitTi’ port to CDEVS.IN. InitT port //coupling
 add ‘OutTi’ as output port and join it to
 CDEVS.OUT.OutTi //output stream
 add ‘CTi’ as output port // control: check, reserve,
 decrement, cancel

414 Informatica 37 (2013) 411–418 M. Redjimi et al.

 for all PDEVSj do

 if (PRE[i,j] > 0) //upstream place

add to PDEVSj ‘CTiPj’ as input port //check, reserve,
decrement, cancel
 join TDEVSi.OUT.CTi to PDEVSj.IN.CTiPj //
coupling
 add to PDEVSj ‘CPjTi’ as output port //ok, busy
,number_of_free_tokens
 add to TDEVSi ‘CPjTi’ as input port //ok, busy
,number_of_free_tokens

 join PDEVSj.OUT.CPjTi to TDEVSi.IN. CPjTi //
 coupling
 add to PDEVSj ‘APjTi’ as output port //arc: value
 = PRE[i,j]
 add to TDEVSi ‘APjTi’ as intput port //arc: value

 = PRE[i,j]
 join PDEVSj.OUT. APjTi to TDEVSi.IN.APjTi //
 coupling
 end if
 if (POST[i,j] > 0) //downstream places
 add to TDEVSi ‘ATiPj’ as output port //arc: value
 = POST[i,j]
 add to PDEVSj ‘ATiPj’ as input port //arc: value
 = POST[i,j]
 join TDEVSi.OUT.ATiPj to PDEVSj.IN.ATiPj //
 coupling
 end if
 end for
end for
end Main_PN_DEVS

Figure 2: Graphical representation of elementary transformations and IC between generated DEVS models

Algorithmic Tools for the Transformation of… Informatica 37 (2013) 411–418 415

Figure 3: PN to coupled DEVS transformation.

6.2.2 Dynamic of Resulting DEVS Model
The dynamic of generated DEVS model is controlled by
the functions of DEVS formalism which are δint, δext
and λ. After initialization of places (PDEVS) by the
initial marking and after launching the evolution of the
model by the event "initialize" received by all transitions
(TDEVS), the latter are in state "checking" (by δext) to
see if the number of tokens in places upstream is
sufficient to achieve a crossing. Event "check" is sent by
λ. After receiving the event, PDEVS transmit the number
of their free tokens (which are not reserved by other
transition) with λ as well. If the number of tokens is
sufficient to validate the transition (TDEVS), the status is
changing from "checking" to "reserving" and the event
"reserve" is sent with λ. The firing does not occur
directly. It must go through a reservation status to avoid
conflicts (if places are upstream of several transitions), as
long as the transitions are in continuous competition. In
this way the properties of PN in terms of dynamics and
competition is faithfully preserved in our transformation
approach.

When PDEVS receives the event "reserve" it returns
"ok" if there is still enough free tokens, otherwise, it
returns "fail". If TDEVS receives at least one "fail", it
returns immediately the signal "cancel" to release the
reserved tokens. It puts its state "Validated" otherwise.
At this point, the transition can pass the crossing and
therefore returns "decrement" to PDEVS which will
destroy the tokens reserved by TDEVS in question. It
sends simultaneously "increment" to PDEVS located
downstream in order to increment the number of tokens
with the value received by the input port (weight of arc).
After firing a TDEVS, it rehabilitates "checking" and so
on.
Functions δext, δint, δcon and λ, characterizing the models
TDEVS, are summarized in Table2. The first two
columns represent the inputs, which are the events and
the current state. The other columns show the outputs of
each function. The table rows are grouped separately for
each current state and models PDEVS. Functions are
shown in Table 2. By convention, if all events have the
same impact, we write "all events". Empty cells indicate
the absence of values, for λ that means the absence of

events and for δext, δint and δcon that the function does not
produce an output state. The "&" symbol indicates that
the events are simultaneous.

Event
Current
state

δext δint δcon λ (current state)

 initialize

all states

checking

Out

pause Paused Out

Stop Stopped Out

release checking Out
 Free tokens

Reserving

reserving

Reserving

reserve Ok
validated,
reserving

validated,
reserving

fail canceling Canceling

all events Validated checking

decrement &
increment & out

 all events Canceling checking cancel

Table 1: The outputs of the TDEVS model functions.

6.2.3 Example of Transformation
Fig. 4 and 5 present an example of transformation of one
of famous case study in PN training field: Producer-
Consumer (Prod_Cons_PN).

The formal definition of this PN is:
Prod_Cons_PN = (P, T, PRE, POST, M0)
P = {P1, P2, P3, P4, P5, P6}
T = {T1, T2, T3, T4}

P1 (Producer is ready to produce), T1 (Begin of
production), P2 (Production is run), T2 (End of
production), P3 (plug containing products, initially, plug
is empty), P4 (Consumer is ready to consume), T3
(Begin of consummation), P5 (Consummation is run), T4
(End of consummation) and P6 (Number of free puts,
initially: all puts in plug are free).

416 Informatica 37 (2013) 411–418 M. Redjimi et al.

Fig.4 represents the coupled model faithful to the PN
modeling Producer-Consumer. Fig.5 illustrates the
corresponding coupled DEVS model. We conserve the
same color signification as shown in Fig. 3: Color green
to initialize places’ tokens number. Color orange to
initialize transitions. Color red: to illustrate control
stream. Color black: to illustrate tokens incrementing or
decrementing and color blue for outputs.

6.2.4 Discussion
Petri nets are formal tools modeling dynamic systems
dealing perfectly with the aspect of competition,
concurrency and parallelism. Therefore, they require
gentle handling during mapping in order to not lose their
specifications. In our approach, competition is preserved
by the creation of temporary state transitions which is the
reserving state. Thus, a token cannot participate at the
same time, in the firing of two transitions in conflict.
However, the transition must immediately release tokens

if it fails to be validated in order to not paralyze other
transitions which are in conflict with it.

In this paper we presented the generalized PN for the
reader to understand the mechanism of transformation.
However, other extensions such as coloured PN can also
be processed. In this case, tokens will no longer be
trivialized. We will need to extend the type of
representation to comprise a list with different colours.
Thus, during the broadcast of the event "check" with a
transition. Places of upstream should check the port
connecting to the transition in order to send only the
number of free tokens with the same colour as specified

Event Current state δext δint δcon λ (current state)
 initialize all states Checking Checking Out
 check

checking

Checking

Checking

Checking

free_ tokens

reserve Reserving Reserving

increment Incrementing Incrementing

decrement Decrementing Decrementing

cancel Checking Checking
 check

reserving

Reserving

Checking

Reserving

ok, fail

reserve Reserving Reserving

increment Incrementing Incrementing

decrement Decrementing Decrementing

cancel Checking Checking
 check

incrementing

Checking

Checking

Checking

Out

reserve Reserving Reserving

increment Incrementing Incrementing

decrement Decrementing Decrementing

cancel Incrementing Incrementing

 check decrementing Checking Checking Checking Out

Table 2: The outputs of the PDEVS model functions.

Figure 4: PN Producer-Consumer.

Figure 5: DEVS coupled models corresponding to

Algorithmic Tools for the Transformation of… Informatica 37 (2013) 411–418 417

at this port.
In addition, the DEVS formalism provides flexibility

in the internal structure of the models [30]. Models may
disappear, others can take over. This aspect of dynamic
structure related to DEVS will simplify the complexity of
PN related to the representation of structural changes in
systems. Therefore one DEVS model can represent
several PNs at a time.

7 Conclusion and perspectives
In this paper we have presented a transformation
approach of Petri nets to DEVS models, where places
and transitions are transformed to atomic models.
Coupling these models generates a coupled DEVS. This
work falls within the framework of multi-modeling and
transformation models based on multi-formalisms. Our
choice of DEVS as focal formalism was based on its
power in unifying and coupling models. Characterized by
its abstraction, implementations independence and its
ability to model complex systems in the form of a
hierarchical model, DEVS is a formalism that can be the
unifier of models.

By the transformation presented in this paper, the PN
can enjoy the simulation on multiple DEVS based
platforms.

Our perspectives focus on the implementation of
such transformations to modelling complex industrial
systems such as petroleum plants.

References
[1] Fishwick, P.A. (1995). Simulation Model Design

and Execution: Building Digital Worlds. Prentice
Hall: Englewood Cliffs, NJ.

[2] Vangheluwe, H. (2008). Foundations of modelling
and simulation of complex systems. Electronic
Communications of the EASST, 10: Graph
Transformation and Visual Modeling Techniques
.http://eceasst.cs.tuBerlin.de/index.php/eceasst/issue
/view/19.

[3] Pidd, M. (2004). Systems Modelling: Theory and
Practice. John Wiley & Sons: Hoboken, NJ.

[4] Fishwick, P.A. (2004). Toward an integrative
multimodeling interface: A human-computer
interface approach to interrelating model
structures. Simulation 80(9): 421.

[5] Murata, T. (1989). Petri Nets: Properties, Analysis
and Applications. Proceedings of the IEEE,
Vol.77,No.4 pp.541-580, April 1989.

[6] Peterson, J.L. (1977) : Petri nets, Computing
Surveys. pp. 223–252

[7] Zeigler, B. P. (1976) : Theory of Modelling and
Simulation, Wiley InterScience.

[8] Zeigler, B. P. Praehofer, H. and Kim, T. G.(2000):
Theory of Modeling and Simulation, Second
edition. Academic Press, ISBN 0127784551

[9] Shafagh, J. and Wainer, G.A. (2011). A
Performance Evaluation of the Conservative DEVS
Protocol in Parallel Simulation of DEVS-based
Models., Proceedings of 2011 Spring Simulation

Conference (SpringSim11), DEVS Symposium, page
103--110 - April 2011

[10] Boukelkoul, S. and Redjimi, M. (2013). Mapping
Between Petri Nets and DEVS Models. Proceeding
of the 3rd International Conference on Information
Technology & e-Service, Sousse, Tunisia

[11] Vangheluwe, H. (2000). DEVS as a common
denominator for multi-formalism hybrid systems
modeling. Conference IEEE International
Symposium on Computer-Aided Control System
Design, Alaska, pp.129-134.

[12] De Lara, J. and Vangheluwe, H. (2002). Computer
Aided Multi-Paradigm Modeling to Process Petri-
Nets and Statecharts. Lecture Notes in Computer
Science, Springer Volume 2505, pp 239-253.

[13] Home page: http://atom3.cs.mcgill.ca/ De Lara, J.,
[14] De Lara, J and Vangheluwe H. (2004). Meta-

Modelling and Graph Grammars for Multi-
Paradigm Modelling in AToM3. Manuel Alfonseca.
Software and Systems Modeling, Vol 3(3), pp.:
194-209. Springer-Verlag. Special Section on
Graph Transformations and Visual Modeling
Techniques.

[15] De Lara, J., Vangheluwe, H. (2005): Model-Based
Development: Meta- Modelling, Transformation
and Verification, The Idea Group Inc, pp. 17
(2005).

[16] Wainer, G.A. and Mosterman, P. (2011) Discrete-
Event Modeling and Simulation: Theory and
Applications. Taylor and Francis.

[17] Jacques, C. J. D. and Wainer, G. A. (2002). Using
the CD++ DEVS Tookit to Develop Petri Nets.
Proceedings of the SCS Summer Computer
Simulation Conference, San Diego, CA. U.S.A

[18] Shafagh, J. and Wainer, G.A.(2011). Conservative
Synchronization Methods for Parallel DEVS and
Cell-DEVS. Proceedings of the 2011 ACM/SCS
Summer Computer Simulation Conference, The
Hague, Netherlands.

[19] Genrich, H. J. and Lautenbach, K. (1981) System
Modelling with High-Level Petri Nets. Theoretical
Computer Science, vol. 13 (1981)

[20] Jensen, K. and Kristensen, L.M. (2009) Coloured
Petri Nets Modelling and Validation of Concurrent
Systems. Springer.

[21] Touraille, L., Traoré, M. K. and Hill, D. R. C.
(2010). SimStudio: une Infrastructure pour la
modélisation, la simulation et l’analyse de systèmes
dynamiques complexes. Research Report
LIMOS/RR-pp.10-13.

[22] Byun, J.H. Choi, C.B. and Kim, T.G. (2009)
Verification of the devs model implementation
using aspect embedded devs. In Proceedings of the
2009 Spring Simulation Multiconference, San
Diego, USA, 2009

[23] Freigassner, R. Praehofer H. and Zeigler, B.
P.(2000). Systems approach to validation of
simulation models. Cybernetics and Systems,
pp.52–57.

[24] Quesnel G. Duboz, R. and Ramat, E. (2009). The
Virtual Laboratory Environment – An operational

418 Informatica 37 (2013) 411–418 M. Redjimi et al.

framework for multi-modeling, simulation and
analysis of complex dynamical systems. Simulation
Modeling Practice and Theory, 17 :641–653.

[25] Quesnel, G. (2006). Approche formelle et
opérationnelle de la multi-modélisation et de la
simulation des systèmes complexes. PHD trésis
Laboratoire d’Informatique du Littoral (LIL). Calais
- France

[26] Sarjoughian, H. and Zeigler, B. P. (1998).
Devsjava: Basis for a DEVS-based collaborative ms
environment. SCS International Conference on
Web-Based Modeling and Simulation, San Diego,
CA, vol. 5, pp. 29-36.

[27] Ilachinski, A. (2001). Cellular Automata, a
Discrete Universe, World Scientific Publishing Co,
ISBN 981-02-4623-4.

[28] Schmidt, D. C (2006) .: Model-Driven Engineering
Guest Editor's Introduction IEEE Computer, Vol.
39, No. 2, pp. 25-31.

[29] IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)-
Framework and Rules, Institute of Electrical and
Electronics Engineers, IEEE (2000) 1516-2000

[30] Baati, L. (2007) : Approche de modélisation DEVS
à structure hiérarchique et dynamique. LSIS UMR-
CNRS 6168, Domaine Universitaire de St Jérôme.

