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Holonomic brain theory provides an understandingnefural system behaviour. It is argued that
recognition of objects in mammalian brain followssparse representation of responses to bar-like
structures. We considered different scales andntaitons of Gabor wavelets to form a dictionary.
While previous works in the literature used greedysuit based methods for sparse coding, this work
takes advantage of a locally competitive algoritfhCA) which calculates more regular sparse
coefficients by combining the interactions of &i#l neurons. Moreover the proposed learning
algorithm can be implemented in parallel processivgch makes it efficient for real-time application

A complex-valued synergetic neural network is tdimsing a quantum particle swarm optimization to
perform a classification test. Finally, we provida experimental real application for biological
implementation of sparse dictionary learning toagoize emotion using body expression. Classifinatio
results are promising and quite comparable to theognition rate by human response.

Povzetek: Z zgledovanjem po bioloSkih sistemilngdgtavijena je metoda‘anja vizualnih vzorcev.

1 Introduction

Neural structure has been one of the inspiratiohs cepresentation is generated in which selected fesitu
machine learning. However, the concept of axonaatisfy the orthogonality assumption.

discharge is misunderstood. Pribram’s holonomidnbra  This paper applies a locally competitive algorithm
theory, proposes the term neuromodulator rathen th@LCA) [2] to extract the sparse coded definitionvigual
neurotransmitter to refer to the electrical gafuimctions patterns. A synergetic neural network (SNN) is used
(axodendritic and dendo-dendritic) caused by chalmiclearn the visual features of a class of objectdNNS
synapses. Accordingly arrival patterns of a nempulse parameters are optimized with a quantum particlersw
are described as sinusoidal fluctuating hyperpoddions approach.

(-) and depolarizations (+) which are inadequataige

to make a nerve impulse discharge instantly [1]pMaf 1.1 Holonomic brain theory

these hyper and polarizations are called recefiiigs.
These receptive fields of visual cortex contain tipld
bands of excitatory and inhibitory areas whichactine
detectors. Thus neurons are tuned to a limited il

The fact that for a harmonic oscillation we carheit
specify frequency or time (i.e. Heisenberg’s priteiof
indeterminacy) has linked psychophysics and quantum

. : . . mechanics. Gabor function is described as the
of frequencies to provide harmonic features; Ineoth : _— ) :
modulation product of an oscillation with a given

words neurons behave like active filters sensitige ; .
: . frequency (carrier) and an envelope in the form of
oriented lines, movements and colours rather than LN ; . . X
. . o normal distribution function. A biologically-plaude
Euclidean-based geometric features. A specific asha

e : Phodel for the visual pathway (retina, LGN, striate
could be represented as a combination of filtepaases cortex) is described as a triple of convolutionkede
(2-D convolution integrals). A set of filters islieal a P X

- . - ttriple convolutional preprocessing provides maximal
dictionary, since elements of a dictionary are not' . : . ) . -
C(%dmg of information. Biological Infomax visual

orthogonal to each other, there are many redundaft .~ )
. ognition models such as independent component
features to represent an image (overcomplef:e

I L analysis (ICA) [3] and sparseness-maximization [Agt
approximation). A more sparse representation iaiobtl . e
; . .have better performance than classical Principal
by selecting the best features among those witth hi

: . omponent Analysis (PCA) or Hebbian models[5].
correlation with each other. And remove other - o

. . : elations between sparseness-maximization net and
Following an iterative strategy, the sparse code

endritic fields describes a dendritic implememtatof
sparseness-maximization net [6]; Though the ddndrit
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implementation is limited by infomax process whichyhere a. and GW. are Gabor coefficient and
could be originated from top down lateral inhibitio : J

Olshausen and Field formulate the reconstruction
stimuli in receptive fields of simple cell usingaspe

&lementary Gabor function corresponding to the J
element in the dictionary. The superposition of @ab

coding [4, 7]. Advantages of combining Gabor re fields is in analogy to dictionary learning thapresent

: O . the equation in similar form [4, 7, 9]. Thereforthe
asin [4, 7] over ICA-like shapes af?-Q??95'??‘?®y selection of Gabor coefficients can be performedaby

sparse coding algorithm such as LCA so that an énisig
represented with minimum subset of Gabor elementary
functions.

Output of V1 is projected to peri-striate cortex2jVv
where probably retinal images are reconstructeiphléFr
stage convolution in visual pathway has inspired
convolutional neural networks acting as a coursén
process; though the research has focused mostly on
magnitude data [11]. Some of the works includedspha
information to form an associative memory netwdrR][
Table 1 compares some of basic approaches of
holonomic phase-magnitude encoding approaches.

Here we proposed a recognition algorithm based on
_ ) _ ) ~the holonomic brain theory. Experimental resultg ar
Figure 1: Microstructure of synaptic domains incompared to the state of the art algorithms. Funtoee,
cortex[1]. Overlapping line detectors (vertical andye applied the algorithm to recognize emotions tase
horizontal circles ) combined to represent a shisifA)  phody expression data which is inspired by the actio
and interacting polarizations producing the defwrit hased behavior in psychology. Classification resatte
fields (B). compared to those of human recognitions.

Since then sparse coding is improved by many
researchers. Though, most of them used gree Sparse Coding
approaches to compute a sparse representation].[8-
Accordingly, Biological realization of sparsificati was
unknown. However, in the recent work [2] a locall
competitive algorithm (LCA) is proposed which isskd
on biological inhibition in neural circuits.

(0 5
y

PR ’Q’-,\
R
lﬂﬂg%?

'I!,? f
i

4

!
.é[‘ﬁa'

&
ROV

7>

KN,
)

&

llgepresenting an image with a few elementary funstio
is widely used in image processing and computeowis
yDetermining image component is useful to remove the
noise. Also decomposition is used for compressign b
simplifying image representation.

Table 1: Comparison of basic holonomic approaches[1 In computer vision decomposition is a tool for

Quantum o feature extraction. An elementary function is chltesis
o ie ; ; i~
HNeT | Associative ICA computing and set of bases functions is a dictionary. Inyeaddels

Net choice of dictionary elements was subject to

A general . o .
model with orthogonality condition. A complete representatioh
Effectiveness | €Y  |Effective | Very Effective| POl | image is a linear combination of bases in the oy,
Effective very effective| . . . . .
“Sub- derived by projection of image into bases. Howegenr

_ __| branches” quality of representation in complete solutionsutesl in
biological | FundamentalFundaments bg’u't”;f’;igfgf’;e fundamental  relaxation of orthogonality condition and applying
plausibilty | levelonly | levelonly | ™ o5 | 'evelonly | gyercomplete dictionaries. Due to useful matherahtic

indirect . artially characteristics obtained by orthogonality (e.g. potimg
similar core | direct | notyetknown Tt decomposition coefficients with projection),

as QAN overcomplete dictionaries are still meant to betigly
_ limited to orthogonal. A common approach is to use an orthalgon
a mixture of . L. . .
natural and|  @ssoc. | unknownbio | Jo subset of a large dictionary containing all possibl
artificial mepn;(t)t;y"?n Implen;/em‘r’lb'"tsstiII missing elements.
features | recognition Early works applied gradient descent to train the
dictionary. Bayesian approaches also have been tosed
The striate cortex (V1) is the area of consciousuai represent an image based on the MAP estimatioheof t
perception in brain. Experimental results from fimwal dictionary components[13].

magnetic resonance imaging (fMRI) supported thiztoef Textons are developed as a mathematical
of the visual cortex in V1 in response to a stinmalh be representation of basic image objects[14]. Firsages
estimated by a 2D Gabor function. A Gabor field the are coded by a dictionary of Gabor and Laplacian of
superposition of different Gabor functions’ respesis Gaussian elements; Responses to the dictionaryeatsm

WM is Combined by transformed component analysis.
| = ijlajGNj @) Furthermore, sparse approximation helps to findoaem
general object models in terms of scale and pd4tbfe

Possible quantum
implementation

Main weakness
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Active basis model [16] provides a deformable teatepl
using Gabor wavelets as dictionary elements. They a . . . . . . . .
proposed a shared sketch algorithm (SSA) inspined b

AdaBoost. - - -

2.1 Gabor wavelets

Biological models in object recognition are basedtie = Il

findings of functional magnetic resonance imaging

(fMRI) of mammalian brain. process of images in N

receptive fields (V1) is more sensitive on bar-like = . II
structures [17]. Responses of V1 are combined heget

by extrastriate visual areas and passed to infenmbeal = n

cortex (IT) for recognition tasks. Research in Fi 2 A dicti f Gab let
computational neuroscience argued that recognitibn lgure 2. Ictionary of abor wavelets.

objects in mammalian brain follows a sparse

representation of responses to bar-like structj#e&8]. . . "
Gabor wavelets are widely used as biologically iresp 2-2 Sparse coding using locally competitive

basis to model information encoding in receptivads. algorithm
2D Gabor function cantered ab{xo) is: Response to a dictionary of Gabor wavelets is an
| 0e%)?, (y-¥0)? overcomplete representation. Sparse coding is the
G(x, y) = 1 e o. o, ei[éoxwoy] (2) method of selecting a proper subset of responses to
24 250 .0 represent the image (signal). In addition to bialab

Xy . . . . .
motivations, sparse codlng IS necessary to avoid

. . . . redundant information. Having a fixed number of
where((,t,)is optimal spatial frequency. Using Waveletfeatures redundancy may cause loss of essential

translated. General form of Gabor wavelet funcigon levels (Fig.4).
o
W~ @kcoPrysigP+(Cxsingrycod)?) _—— < =
GWX Y, wl) =——e & o= AP A
v 27K o ‘1::‘ ! r i '_: a

2
wvtcosrysig) _e—% Figure 3: Edge detection using Gabor wavelets, A.

Original image[1], B. edge detected image with @da

number of features without sparsity, C. edge detkct

image with a small number of features where spaisit
where o is the radial frequency an@ is the wavelet enforced.

orientation. ¥ is a constant representing bandwidth A : . . N :
ssuming an image Jjl its sparse approximation | is

frequency [19]. Approximation o= 77and K = 25 derived according to (1). Optimal sparse codingsttio
are common for 1 and 1.5 octave bandwidfg) minimize the number of nonzero coefficieats which

respectively. Generally is: is an NP-hard optimization problem.
27 +1 We applied a locally competitive algorithm (LCA)
K=+2In2 T (4) [2] to enforce local sparsity. Unlike classical mgEa
-1 coding algorithms, LCA uses a parallel neural stres

A dictionary of Gabor wavelets (as shown in Fig.2)inspired by biological model. LCA is applied to
including n orientations and m scales is in thanf@f: minimize the mean square error combined with a cost

GW,(8,w), j=1,...mxn, where function in the local neighbourhood:
krr _1 —1I?
9:{—,k:l...,n—1}, (5) E(t) = 2|||(t) 'o” +)IZC(aj (t))- (6)
n i
NG Thresholds are useful to generate coefficients eithct
and w:i,i =1..m. zero value.
I For a threshold function, ,,,(.) , cost function C is:
_(-a)°/
Clay(@) =7+ alay], (M
u —al
Ty (U)) = — ®)

1+ e—V(U,- -A)
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f L-|m|t of T as %/_>hoo d|s CaILe(:Id!dealfthre.sholdmg(;j C, :<GV\/J., |j> (9)

unctlon.. Town()is -ar tres. olding function an (Sett=0and,(0)=0, forj=1,..,n).

Tiww () Is sOft tresholding function. 2. Determine the active nodes by activity
In previous works, there is no real applicatibat has thresholding.

been applied using LCA, although some simulation 3. For each pixel calculate internal state of
results are shown. Here an empirical experimenedas element j

real application of body expression recognition, is
proposed to provide an evidence for the practititityu . :1 CH-um-So  alt
of Holonomic Brain Model as dictionary learning imed % T 000 ; iy () (10)
by LCA.
N >, = <vaj .ka> (11)
= uy(t) [ aill) g
i 4. Compute sparse coefficients (t) foru, (1) .
— uz(t) e a2(t) aj(t+1):Tﬂ(uj(t)) (12)
\
I -l G . \ u, —ai
r . - T U)=——a=n 13)
. "‘, 2(E) P2, (a,y,/l)( ]) 1+e y(u;=4)
> un(t) ! o an(t) 5. If a(t-1)-a (t)y>dthent — t+land go to

step 2, otherwise finish.

Figure 4: LCA structure [4]. . . )

Original SNN used pixel-wised features to represamt
LCA structure acts as a set of integrate and f@erons. object which is not robust in case objects arevariable
response to a dictionary of filter charges therimaéstate shapes (e.g. different body emotions of human)his
of the neurons and leads to the activity of theroeu case, we construct a template model as a collectfon
Neurons with higher charge (internal state) becomgabor wavelet features included in the dictionahjclv
active and fire signals to inhibit other neuronsfirig represents the general characteristics of all hmxbture
signal keeps other neurons that are highly corelaiéh  classes. Test images are convolved with the conmisne
the coresponding active neuron from being active hyf the template model. Sparsity is then enforcedatich
defusing their charge in an unidirectional inhitpiti the best fit over the specific posture. LCA thrddhmy
strategy enables us to remove redundancies efégtiv

WW +)J; . (producing sparse coefficients with exactly zertuga).
Vin(t) um (t / am(t) =Ta(um(t))  Number of output Gabor wavelets are fixed in oraer

—/I\ | - make the comparison with trained prototype of each
2Y0) class. Features are selected based on their highest
Figure 5: integration (charge up) and fire in arago response to the training images; furthermore, each
circuit [2]. feature is allowed to perturb slightly in termsla¢ation

and orientation. In this aspect our template cowcstn
is a modification of shared sketch algorithm [1Bpr

3 LOC&“Y _ Competitive active basis each imagei feature value; corresponded to the
recognition selected Gabor wavelet j, is determined as theviafig:

We applled_ a SL_Jpe:\rwsed algorlthm.to recognize two v :in”_ —Iog(Z(yi)) (14)
types of objects in images; First a pixel-wise apgh
for aligned objects which combines the learned sasnp
of objects in each class to form a prototype ambse a
feature based approach for non-aligned objectshictw
Gabor wavelets are localized to represent a patent
match between specific scale and orientation arge®d §¥
of objects. Both approaches are fed into a synierge
neural network to perform a classification task.

Images are scaled to have the exact same size. E
image is convolved with all the elements in thg
dictionary. Then sparse coding is enforced to mizgm
the representing elements for each pixel. Finall
remaining parts are reconstructed to generate ghses
superposition of the image. For pixel values inlteal Figure 6: Gabor wavelet features detecting the edge
area LCA has the following steps: pattern of different body postures.

1. Compute the response (convolution) fofwith
all the elements in the dictionary.

where y; is derived by maximum likelihood estimation
and Z is the partition function. Therefore, bounesrof
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object are segmented out before the result is gteen space into the partitions, several generatorstsaineost
SNN. precisely the same point in the space. CVT oversome
the poor and non-uniform distribution of some Vaybn

3.1 Complex-valued synergetic neural cells by choosing the generators at cenf2é-27]

networ k Assuming/, . as the maximum potential attention
Synergetic neural network (SNN) developed by HakeRarameter search spgce is defined as:
[20] describes the pattern recognition processha t 0<A <Aoi=L..m (21)
human brain which tries to achieve the learned modgiven a set of Voronoi regios(¢ =1,....Z)in the
with fast learning and no false state rather thaditional m I . . .
neural networks [21, 22] [20]. spaceR [0 R™, each initial positionp, is the Centroid of

A common approach to combine learned samples ifs region.
averaging the feature values. One way to deal with ={XDQ x= nl=| x= foF=1.. = &# }
inflexibility is to use learning object in the sam@w ¢ | F%| ‘ Q‘ c=l.=e#e (22)
which will restrict the classification task. A mely
algorithm is proposed by [23] to combine objects in

deferent poses. Suppose a learned sample oﬂAject

consists of n pixel valuesl is reshaped to a column
vector vand normalized so that:
n (15)

ZVu =0 Figure 7: Centroidal Voronoi tessellation dividiray
j=1 square into 10 regions[28].
: 2

v.| =1 . .. .
;| ”| (16) 33 Quantum particle swarm optimization

(QPSO )

A prototypeV'is the Hermitian conjugate &f nitial attentl . wned Usi ORSO
b ATy -1y . nitial attention parameters are tuned using a
ViE(VIV)VE Ay '§ y _(17) order to minimizpe the overall classificationgerliurthe
A test samples g corresponding to a test image {gst set. Each particle position X, is updated dasethe
normalized and compared to the prototype of eaabscl moyement framework in the quantum mechanics.[29]
using the order parameters. For each prototypedkror giate of the particle is described by a wave famcti
parameterse, is initialized as: M

1o
& =vl.q, k=1..m (18) ¥(Y) N - (23)
where v is the k row in the Hermitian conjugat¥”. Y=X-p (24)
Order parameters are updated derived iterativetly thie h?
synergetic dynamics: L= m_y (25)
.1
& =B(Ak —D+Begg)E+E, (19)  wherey is called intensity of the potential well at pomt
B ) m is the particle mass and h is a constant. FKinér
D= (B+C)Z€k (20) particle i, jr» element of the positiow/ can be updated
k LA
whered; is the attention parameter for class k; B, C ar@®:
constants [24]. Attention parameters could be dmrsid , _ Li 1
balance (equal and mostly unit) or unbalance. X oz pJ + ="l =, (26)
Attention parameters in the model are trained using Lt n 2 uijn
guantum particle swarm optimization in order to '
minimize the overall classification error in thstiset. i
uiJ,n+1 =U (0,1), (27)
3.2 Centroidal Voronoi Tessdllation (CVT)
As mentioned in section 3.1 unbalance attention |_.j = 2a‘x.j —Cj , (28)
parameters should be tuned. We applied a CVT ierord b o n
to cover the whole feasible space in the initiatesof the i_ 1 M i 29
random search. A set of generators are consideses a nT M D pi,n' (29)

group of points in the space forming a Tessellation i _ o
Generators are associated with subsets and poiats where C  is the average of all particle positiomss a
nearer to its corresponding generators rather #mynof  positive real number which could be constant omgea

other generators according to the distance funq®om, gynamically in total N iteration as:
thelpnorm). Note that the generators are not quite gvenl

distributed throughout the space. Dividing the ilglas
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* -
a:0'5 (,\l|\| n)+0_5

To improve the accuracy an

function [30] is added to the overall error:

Z= f(/\)+ijvj
i=1

k= f)
ARG
A=)

Figure 8 shows an overview of the recognition mdtho
tune

QPSO is used to iteratively

parameterd, ,i =1,...k where k is the number of classes.

A. Memariani et al.

Facial expression has been combined with upper body
gestures to recognize emotions [34]. Movements of
hands are detected using color segmentation and
Yepresented by centroid of the area; face compensnt
also detected using skin detection techniques. aFaci
features (eyebrows, mouth, chin, etc.) are thenbooed

(30)

adaptive penalt

(31) with hand movements to set up the features. similar
works has consider body feature along with facial
features for fear detection [35] and anger detac8s,

CONEY

Body gestures are also merged with speech based

(33) features derived by acoustic analysis. Togetheth wit

facial expressions [38] developed a framework iriciwh
face and body data was recorded with different
resolutions and synchronized with subjects’ speech
fhteraction. They applied a Bayesian classifier to
recognize the emotions.

Kleinsmith et al [39] argued that emotions can be

the attentio

Filter with
dictionary of
GWs

Learn the sparse
coded features

[ ]

QPSO (tune the attention
parameters)

Synergetic neural
network

J

I}

recognized by humans from body postures when their
face is removed. They also developed a recognition
model to recognize the affection of faceless agatar
computer games.

Generated
neural model

[ test images H H

Classification
result

]

Figure 8: Scheme of proposed visual recognitionehod Figure 9: Extracted features for four classes obtions top

4 Emotion recognition using body

expression and results

down as, anger, fear, happiness, sadness.

Human actions caused by emotions could be
detected using point-light animations [40]. Rossakt

Even though most of the works in the area of emotigperform a test to compare recognition ability afdgnts
recognition has been focused on facial express&mmse in primary and secondary schools and adults [4ageB
of psychological theories considered emotionadf the test subjects were covered and recognitask t
appraisals that are not facially expressive [31-88that performed on both full-light display and a poirgHt
sense, emotions are described based on the stattiari display where only main parts of the body postuaes
readiness that they cause in the whole body (eithéhown in a black and white format. Their result\sbo
impulsive or intentional)[31]. Intentional actiomsight that adults have a better ability of bodily emotion
differ person to person though impulsive actiongy on recognition and display full-light is more expregsthan
depend of the nature of their action readiness. in point-light for the task.

Accordingly, impulsive actions can be used to
recognize emotions considering the body expressions
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Table 2: Classification Accuracies for different §Ps.

_ Anger (%) Fear (%) | Happiness (%) Sadness (%) &@error (%)
QPSO1 92.31 68.97 72.0 93.10 18.35
QPSO2 36.54 93.10 62.0 93.10 27.52
QPS03 92.31 72.41 74.0 93.10 16.97
QPSO4 36.54 93.1 64.0 93.10 27.06
QPSO5 92.31 86.21 60.0 93.10 16.51
QPSO6 92.31 68.97 72.0 93.10 18.35
QPSO7 36.54 94.83 64.0 93.10 26.61
QPSO8 82.69 89.66 66.0 93.10 16.51

(Hum;EQggmtion) 93.6 93.9 85.4 97.8 _

In order to validate the perception of body expiass 8. Dynamic QPSO as (29), initialized with CVT
tests have been developed and validated by human and penalized with (30).
recognition. Atkinson et al developed a datasetbfmth Classification accuracies of different trained SNafe
static and dynamic body expressions; The datasevmpared with results of human recognition (tablé®)
contains 10 subjects (5 female) and covers fivetiem® some cases happiness and anger are misclassiffedras
(anger, disgust, fear, happiness and sadness)[4#. this happened more frequently in static learning.
bodily expressive action stimulus test (BEAST) [43However regardless of the learning scenario, hagsin
provides a dataset for recognizing four types ob#mms turns to be the most difficult one to detect arel rsason
(anger, fear, happiness, sadness) which is comsttucis not clear for the authors.
using non-professional actors (15 male, 31fem&elly Figures 10 and 11 show the learning rate for each
expressions are validated with a human recognigen scenarios during the learning iterations. CVT has
We applied a supervised approach to recognize twmproved the accuracy with Dynamic learning scemari
types of objects in images; First a pixel-wise aagh
for aligned objects which combines the learned dasnp o4 ‘ ‘ i ——
of objects in each class to form a prototype armbisé a ~—~ Dynamic

feature based approach for non-aligned objectshiciw 4%:3;3:;0@0
Gabor wavelets are localized to represent a patent ©°3% o CVT+Dynamic+Mel ]
Static+Melt

match between specific scale and orientation amggesd
of objects (figure 9). Both approaches are fed iato
synergetic neural network to perform a classifaati
task.

We applied the BEAST data $eib classify four
classes of basic emotions. Gabor wavelets are geuker
in a (20, 20) matrix and images are resized to @
pixels in row and relatively scaled pixels in colum
Images are divided into train and test sets fohedass
10 images are selected randomly to form the traita d
and the rest are included for test. Different scesaare

Overall Error

Considered tO train the model- 0 50 160 15;0 260# fIZéO 360 SéO 460 4%0 500
- of lterations
1. Static QPSO witlw=0.75and randomly Figure 10: Average learning rates for different QRS
initialized.
2. Static QPSO with synergetic melting prototype
[44].

3. Dynamic QPSO wherer changes according to
(29) and randomly initialized.

4. Static QPSO witlw =0.75and initialized with
CVT.

5. Dynamic QPSO as (29) and initialized with
CVT.

6. Dynamic QPSO as (29), initialized with CVT
and a synergetic melt prototype.

7. Static QPSO witlw =0.75, initialized with
CVT and penalized with (30).

! http:/imww.beatricedegelder.com/beast.html
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