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Received: 

Density-based clustering techniques are widely used in data mining on various fields. DBSCAN is one of 

the most popular density-based clustering algorithms, characterized by its ability to discover clusters 

with different shapes and sizes, and to separate noise and outliers. However, two fundamental 

limitations are still encountered that is the required input parameter of Eps distance threshold and its 

inefficiency to cluster datasets with various densities. For overcoming such drawbacks, a statistical 

based technique is proposed in this work. Specifically, the proposed technique utilizes an appropriate k- 

nearest neighbor density, based on which it sorts the dataset in ascending order and, using the statistical 

Chebyshev’s inequality as a suitable means for handling arbitrary distributions, it automatically 

determines different Eps values for clusters of various densities. Experiments conducted on synthetic and 

real datasets have demonstrated its efficiency and accuracy. The results indicate its superiority 

compared with DBSCAN, DPC, and their recently proposed improvements. 

 

Povzetek: Predlagana metoda izboljšuje metodo gručenja DBSCAN z uporabo najbližjih sosedov in 

neenakosti Chebysheva. 

 

1 Introduction 
Clustering is a powerful machine learning tool for 

detecting structures in datasets. Detecting, analyzing, and 

describing natural clusters within a dataset, is of 

fundamental importance to a number of various fields [1- 

4]. Such fields concern bioinformatics to identify similar 

genes, marketing to segment customers to establish 

market research, social sciences, psychology, biology, 

security, computer vision and image processing in 

various areas such as the medical or industrial fields, and 

so on. 

Clustering techniques are generally divided into 

four classes: 1) partitioning [5-7], 2) hierarchical 

[8], 3) model-based [9], and 4) density-based [10-18]. 

Due to their ability to support clusters of arbitrary 

shapes, density-based clustering algorithms are naturally 

widely used. They consider clusters as being dense 

regions separated by less dense or scattered areas. They 

determine the clusters as well as their number, while 

identifying the noise. 

As among the most popular density based clustering 

algorithm, DBSCAN [10] has several key advantages. 

First, it groups data into clusters of arbitrary forms. 

Second, it does not require that the number of clusters be 

given as input. The number of clusters is determined by 

the nature of the data and the values of Eps and minPts. 

Third, it is insensitive to the order of entry of points in 

the dataset. All these strengths are very important for 

any clustering algorithm. 

However, DBSCAN requires the user to provide a 

global separation threshold Eps and the minimum 

number of points for any cluster.  

 

 

 

 

 

DPC (density-based clustering) also requires the user to 

enter the distance threshold dc.  

For these two types of algorithms and their variants, 

the clustering results depend on these input parameters 

which are difficult to determine by the  

user, in the absence of precise rules for their calculation. 

Though they provided important advances in the 

clustering techniques and more and more widely used, 

they are still exhibiting limits to efficiently deal with 

complex datasets having clusters of varying shapes, sizes 

and densities [19-21]. 

In this article, we propose a new density-based 

clustering approach that overcomes these limitations. It is 

based on the main idea of characterizing the data points 

in the datasets with their local densities and using 

Chebyshev’s inequality [22-23] to estimate local Eps for 

every cluster. In doing so, we not only automatically 

determine Eps, but also we efficiently handle clusters 

with various densities and shapes. 

We define the concept of local neighbors of a given 

data point x, from which it determines the local threshold 

Eps for the current cluster. Indeed, for each data point x 

in the dataset, we calculate the local density so that it is 

the smallest in a dense region and the largest in a sparse 

region. Next, we sort the dataset on the density key, in 

descending order. 

In doing so, the first data point with the highest 

density will initiate the construction of the first cluster by 

calculating its local separation threshold Eps using the 

Chebyshev inequality [22] and its distances, applied to 

the k-nearest neighbors. Following which, our algorithm 

extends the cluster initially built from these k-neighbors 

in the same way as DBSCAN. 
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When no new Eps- neighbor is found, the algorithm 

closes the current cluster and repeats the same procedure 

for unclassified data points. It stops when the dataset is 

empty and thus, all the clusters are automatically 

determined, without requiring any distance threshold nor 

number of clusters. In doing so, the local Eps can be 

adapted to a specific cluster density, which is an 

advantage of the proposed method compared to 

DBSCAN and its improvements. 

The rest of the article is organized as follows. 

Section 2 presents the related work. Section 3 Presents 

DBSCAN and DPC algorithms. Section 4 describes our 

approach to cluster datasets with various densities, 

shapes and sizes. Section 5 presents the experimental 

evaluation. Section 6 presents a discussion. Finally, 

section 7 concludes the paper and outlines the future 

work. 

2 Related work 
The literature presents several data clustering techniques, 

such as hierarchical, model-based, and density-based 

algorithms. Partitioning-based clustering algorithms such 

as k-means and the likes [5] specify an initial number of 

clusters at the start and represent each cluster by a 

centroid, and objects close to the same centroid are 

considered to be similar. These algorithms determine all 

the clusters at the same time by aiming for a strong intra- 

group similarity. They require a number of user-defined 

clusters that are often unknown in practice. In addition, 

they build spherical clusters, which are not suitable for 

arbitrarily shaped clusters. 

Hierarchical clustering algorithms [8] are bottom-up 

approaches such that each data point begins in a separate 

cluster, and the pairs of clusters at the bottom are 

merged as we move up the hierarchy. In hierarchical 

clustering algorithms, clustering process handles clusters 

of various shapes well but they are not suitable for 

clusters of varying density. 

Model-based clustering methods [9] estimate a 

model for data by incorporating a measure of probability 

or uncertainty into cluster assignments. Model-based 

clustering attempts to address this concern and provide 

flexible allocation when observations are likely to belong 

to each cluster. In addition, model-based clustering offers 

the added benefit of automatically identifying the optimal 

number of clusters. 

In density-based clustering methods, Rodriguez and 

Laio [16] proposed a new clustering algorithm by 

finding density peaks which are the potential centers 

of the cluster. In this algorithm, each data point can 

obtain its own local density and its distance to the nearest 

neighbor which has a higher density. Depending on 

the density and distance of the points, the result of the 

grouping can be obtained in a single step without further 

iteration. Since clustering methods based on the search 

for density peaks produce clusters of arbitrary shapes, the 

notion of "center" is somewhat misleading [17-18]. 

These clustering algorithms based on density peaks 

have a deficiency in the allocation process, which is 

likely to trigger a domino effect. They require a user-

defined parameter (cut-off distance) and visual 

judgment to estimate cluster centers based on the 

decision diagram. In addition, they cannot process 

certain non-spherical data sets such as Spiral. 

DBSCAN [10] is probably the most popular density- 

based clustering algorithm for building clusters of 

arbitrary shape. A cluster is created if there is a minPts of 

objects in a dense region with an Eps (distance 

threshold); minPts (minimum cluster size), which are 

user defined. DBSCAN starts with an arbitrary starting 

point. The Eps-neighborhood of this point is retrieved 

and a cluster is created, if it contains a sufficient number 

of points. Otherwise, the point is considered as noise. 

The selected point and its accessible points are 

considered as a cluster. The cluster will increase several 

times by adding other points which are in the distance 

Eps of the accessible points as new accessible points. 

The algorithm continues until all the points have either a 

cluster label or there are less minPts points around them 

and they are therefore considered as noises. 

Table 1 summarizes the comparison between ones of the 

most notable works on density-based clustering. 

Method Key features limitation reference 

DBSCAN Users need to define two parameters: What 

distance Eps to determine for each observation the 

Eps-neighborhood? What is the minimum number 

of neighbor’s minPts necessary to consider that an 
observation is a core observation? 

DBSCAN fails to discover 

clusters of varying densities and 

requires two user-defined input 

parameters Eps and minPts. 

[10] 

DPC User needs to select cluster centers from a 

decision graph to identify clusters 

Sensitive to user input and 

results are dependent on the 
center selected by user 

[16] 

GMDBSCAN uses a space division technique and considers each 

grid as a separate part, then it estimates the 

independent minPts for each grid according to its 
density 

applies several DBSCANs on 

every grid and finally, it uses a 

distance-based method to 
improve the boundaries 

[11] 

DPCSA User needs to select cluster centers from a 
decision graph to identify clusters in two stages 

Sensitive to user input [27] 

Table 1: Comparison using key features and limitations 
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DBSCAN and its aforementioned variants [9-

10][12-15] have significant advantages: i) discovering 

clusters with various shapes, sizes and noises, ii) 

robust with outliers, iii) no need to specify the 

number of clusters in the data, iv) insensitive to the 

order of the points. However, these algorithms fail to 

discover clusters of varying densities and require two 

user-defined input parameters Eps and minPts. 

The GMDBSCAN method [11] uses a space 

division technique and considers each grid as a 

separate part, then it estimates the independent minPts 

for each grid according to its density, after which it 

applies several DBSCANs on every grid and finally, it 

uses a distance-based method to improve the 

boundaries. 

Hou et al. proposed a clustering algorithm 

without parameters based on the combination of 

DSets (dominant sets) and DBSCAN algorithms [10]. 

In the AGED algorithm [15], the value of the Eps as 

defined in DBSCAN is determined according to local 

densities. Wang et al. proposed a modified DBSCAN 

algorithm to automatically determine the Eps values 

for different data distributions [13]. 

In [24], the author introduced a method which 

estimates the local density - for each point of the 

dataset - as the sum of the distances to the k-nearest 

neighbors. By arranging the data points in ascending 

order according to the local density, the proposed 

algorithm determines clusters of various densities. 

However, the density threshold associated with the 

cluster initiator sample lacks precise definition, which 

leads to clustering failures in certain situations. 

In [27], the authors proposed the DPCSA 

algorithm as an improvement of DPC [16], however, 

users are still need to select cluster centers from a 

decision graph to identify clusters in two stages.  

3 Density–based clustering 
A clustering process partitions a dataset into groups 

of data points according to their proximity to each 

other. It takes as input a set of data points and a 

measure of similarity between them, and produces as 

output a set of partitions describing the general 

structure of the dataset. Density-based clustering 

techniques are one of the most popular unsupervised 

learning techniques used in machine learning 

algorithms. They proceed by detecting areas where 

data points are concentrated and where they are 

separated by areas that are sparse or empty. Points 

that do not belong to any cluster are labeled as noise. 

Density-based clustering analysis is well known 

and widely appreciated for two desirable features. 

First, it does not require a predefined number of 

clusters as an input parameter, and is robust to noise. 

Second, it can discover clusters with arbitrary shapes, 

and not just ball-shaped clusters. Density based 

clustering algorithm has played a vital role in finding 

non linear shapes structure based on the density. 

Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) is the most widely used 

density-based algorithm. It uses the concept of density 

reachability and density connectivity. 

DBSCAN is a simple algorithm that defines 

clusters using local density estimation. It can be 

divided into 4 steps: 

Step 1: For each observation, we look at the number of 

points at most a distance Eps from it. This area is 

called the Eps -neighborhood of the observation. 

Step 2: If an observation has at least a number of 

neighbors including itself, it is considered a 

core observation. A high-density observation was 

then detected. 

Step 3: All observations in the vicinity of a core 

observation belong to the same cluster. There may 

be core observations close to each other. 

Consequently, step by step, we obtain a long 

sequence of core observations which constitutes a 

single cluster. 

Step 4: Any observation that is not a core observation 

and that does not include a core observation in its 

vicinity is considered an anomaly.  

 

Therefore, to apply DBSCAN, users need to 

define two parameters: What distance Eps to 

determine for each observation the Eps-

neighborhood? What is the minimum number of 

neighbor’s minPts necessary to consider that an 

observation is a core observation? These two 

parameters are provided freely by the user. 

Unlike the k-means algorithm or hierarchical 

ascending classification, there is no need to define the 

number of clusters, which makes the algorithm less 

rigid. Another advantage of DBSCAN is that it also 

allows to manage outliers or anomalies.  

On the other hand, the concept of distance and 

choice of Eps and minPts are critical for the clustering 

quality. In this algorithm two points are fundamental: 

What is the metric used to evaluate the distance 

between an observation and its neighbors? What is the 

ideal Eps?  

In the DBSCAN we generally use the Euclidean 

distance, let 𝑝 =  (𝑝1, … . , 𝑝𝑛) and 𝑞 =  (𝑞1, … . , 𝑞𝑛): 

 
At each observation, to count the number of 

neighbors at a distance Eps at most, we calculate the 

Euclidean distance between the neighbor and the 

observation and check if it is less than Eps.  

4 Proposed method 

In this section, we present our method to address the 

abovementioned problems in clustering datasets with 

various densities. The main idea is to use local density 

concept and the statistical Chebyshev’s inequality 

[22- 23] to automatically determine a separation 

threshold for every density class in a dataset, and we 

build every cluster with its associated distance 

threshold, leading to clusters with various densities 

and shapes. Our algorithm we call MDC (Multi-
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Density Clustering) uses the K-nearest-neighbors’ 

information to define a local density of every data 

point as follows: 

 

           𝜌𝑖 = ∑ exp (−𝑑𝑖𝑗)𝑗∈𝐾𝑁𝑁(𝑖)           (1) 

 

Where 𝜌𝑖 is the local density of a data point i, and 

𝑑𝑖𝑗  is the distance between data point i and a 

neighboring data point j in the neighborhood 𝐾𝑁𝑁(𝑖). 

In doing so, the density value is reduced from the 

global density to the local density of the k neighbors 

closest to the data point, and the greater the distance 

between a data point and its neighborhood k, the 

smaller is the local density. This finding will better 

reflect the local information in the dataset.  

4.1. Chebyshev’s inequality 

Chebyshev's inequality is adequate for completely 

arbitrary distributions [22]. It constitutes an efficient 

estimation technique facilitating the calculation of the 

probability solely on the basis of the mathematical 

expectation and the variance, without requiring 

information on the distribution. Chebyshev's inequality 

is highly useful in that it can be applied to completely 

arbitrary distributions [2].  

Chebyshev’s inequality holds in the case when 𝑥 

(random variable) with: 

a mean (𝑀(𝑥)  =  𝜇 <  ∞) and a variance (𝑉(𝑥)  =
 𝜎2 <  ∞). 

 

Figure 1: Interval of  μx 

 

This inequality is expressed as follows: 

        P{|x − μ| ≥ kσ} ≤
1

k2          (2) 

and it is valid for any 𝑘 >  1. 

 

We can express a variant of Chebyshev’s 

inequality as the following expression: 

       P{|x − μ| < 𝑘𝜎} > 1 −
1

k2         (3) 

and we reformulate in the following inequality (Figure 

1) : 

      𝑃(𝜇𝑥 − 𝑘𝜎𝑥 < 𝑋 < 𝜇𝑥 + 𝑘𝜎𝑥) ≥ 1 −
1

𝑘2         (4) 

 

 

 

 

 

It means that “greater than (1 −
1

𝑘2) of population 

falls within 𝑘 (𝑘 > 1) standard deviations (i.e. 𝑘𝜎) 

from the population mean 𝜇”. In other words, it states 

that for a distribution, the percentage of observations 

that lie within 𝑘 standard deviations is at least: 

1 −
1

𝑘2  (Figure 1). 

4.2. The proposed algorithm 

In the clustering step, the proposed clustering 

algorithm is used to extract spatial clusters from the 

dataset. Finally, the outputs are evaluated and 

visualized. Algorithm 1 takes as input a dataset and 

produces clusters with different shapes and various 

densities. 

It takes the point of the highest density as a 

cluster initiator 𝐶𝐼 that absorbs its 𝑘 nearest 

neighbors {𝑣1, 𝑣2, … , 𝑣𝑘} to build a new cluster. 

Thus the current initiated cluster is composed of data 

points 𝐶 = {𝐶𝐼, 𝑣1, 𝑣2, … , 𝑣𝑘}. At this step, we use 

Chebyshev’s inequality to estimate the local Eps of 

the cluster. We calculate pairwise distances of C as 

distances between every two data points in C to have 

𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚}. Eps is estimated as the bound 

of D. To estimate the maximum extending of the 

current cluster, we consider the collection of distances 

D and we apply the following Chebyshev’s formula: 

 

            𝐸𝑝𝑠 = 𝑚𝑒𝑎𝑛 + 3.5 × 𝑠𝑡𝑑         (5) 

Where mean is the mean of D and std is the standard 

deviation of D. Afterward, we remove the classified 

data points from the dataset. We initiate a new cluster 

by taking out a new initiator and proceed in the same 

manner, while removing the classified data points from 

the dataset, while using minPts to control the 

minimum density allowed within a cluster, and so on 

till obtaining an empty dataset. In doing so, an Eps 

value is estimated for every new cluster, leading to a 

set of clusters with various densities. 

 

P(  − k 
x x 

X  + k )  1 − 
1
 

x x k2 

 − k 
x x 

 
x 

 + k 
x x 
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Algorithm 1: multi-density datasets clustering 

(MDC) 

Input: dataset X, k (for the k-nearest neighbors) and 

minPts (may be 4 or 5) 
Output: a set of multi-density clusters 

Step 1: Calculate the density of every data point in 

the dataset X using equation (1), store the result 

in the vector RO and create an empty list 

Clusters. 

Step 2: Sort RO in decreasing order of densities. 

Step 3: Take out the first data point p1 in RO as a 

cluster initiator. 

Step 4: Construct a new cluster C = {p1,v1,…,vk}, 

where v1,…,vk are the k-neighbors of p1, and 

remove these data points from RO. 

Step 5: From C, construct D = {d1,d2,…,}, pairwise 

distances between every two data points in D. 

Step 6: From D, calculate the local Eps, using 

formula (5). 

Step 7: Using RO, expand C using the local Eps and 

k, while controlling the size of the cluster using 

minPts. 

Step 8: Append C to Clusters, and remove from RO 

all the data points in C. 

Step 9: If RO is not empty, repeat from step3 to step 

9. 

Step 10: Output Clusters. 
 

In step 1, for every data point in the dataset, it 

calculates its distances from the 𝑘 neighboring data 

points, calculates the local density according to 

equation (1) for every data point, stores the result in 

RO and creates an empty list Clusters. In step 2, it 

sorts RO in decreasing order of their local densities. In 

step 3, it takes out the first data point p1 (it has the 

highest density) as a new cluster initiator. In step 4, 

algorithm 1 builds a new cluster C = {p1,v1,.., vk}, 

where v1,v2,…,vk are the k-neighbors of p1, and 

removes these points from RO. 

 

 

To be able to search the remaining members of 

the cluster from RO, we need to estimate a local Eps 

for this cluster. To this end, at step 5, algorithm 1 

constructs an initial set of pairwise distances, 

(between every two data points in the current cluster) 

and stores the result in 𝐷. In step 6, it applies 

Chebyshev’s inequality on D to determine the local 

𝐸𝑝𝑠 of the current cluster using equation (5). 

In step 7, it expands the current cluster 𝐶 by 

searching reachable data points using the calculated 

𝐸𝑝𝑠 in the same manner as in DBSCAN, while 

removing from the dataset all the data points that 

compose the current cluster. Moreover, 𝑚𝑖𝑛𝑃𝑡𝑠 is 

utilized to control the minimum size of the cluster. 

𝑚𝑖𝑛𝑃𝑡𝑠 value may be 4 or 5. 

In step 8, it appends 𝐶 to Clusters and removes all 

new classified data points from RO. In step 9, it 

checks the datasets, if it is empty it stops clustering 

and execute step 10 to output clusters, otherwise, it 

initiates a new cluster in the same manner and so on. 

5 Experimental results 
In order to validate the efficiency of the proposed 

MDC algorithm, we conducted dataset clustering 

experiments not only on synthetic datasets, but also on 

real data, with clusters of various densities, shapes and 

sizes [25-26], while comparing the results with those 

obtained by DBSCAN and DPC. The algorithms are 

implemented in the Integrated Development 

Environment of Python (Python IDE version 3.7.5). 

For DBSCAN, we used the scikit-learn library in 

Python. 

In DPC the required dc is calculated using 

percentage value 2% as advised in [16]. We looked 

for the optimal parameter value of 0.7 to 3.0 with a 

step of 0.3. In order to simplify the implementation of 

DPC, we select M points with the first values of 𝜌 ×
𝛿, directly as cluster centers. The Eps value varies in 

the range of 0.5 to 3.0 with the step is 0.3. The minPts 

values vary from 4 to 20.

  
Dataset DBSCAN DPC MDC (proposed) 

 ARI F1 ARI F1 ARI F1 

Flame 0.968 0.987 0.99 1.00 1.00 1.00 

Jain 1.00 1.00 0.722 0.923 1.00 1.00 

Compound 0.932 0.939 0.630 0.777 1.00 1.00 

Aggregation 0.908 0.938 1.00 1.00 0.991 0.996 

Table 2: Comparison using ARI and F-measure metrics 

 

Table 2 shows the quality measures of the 

algorithms, when applied to the datasets in Figure 2. 

By using two cluster validity indexes, F-measure with 

𝛼 =  1 (F1) and adjusted rand index (ARI), we 

evaluate and discuss the performances of these three 

methods. F-measure is the weighted average (or 

harmonic mean) of Precision and Recall. Using F1 

score as a metric, we are sure that if the F1 score is 

high, both precision and recall of the classifier 

indicate good results. ARI has the maximum value 1, 

and its expected value is 0 in the case of random 

clusters. A larger adjusted rand index means a higher 

agreement between two partitions. ARI is 

recommended for measuring agreement even when 

the partitions compared have different numbers of 

clusters. 

Below we show through Figure 2, the results of 

clustering produced by different algorithms. Flame 



166   Informatica 47 (2023) 161–168     A. Bouchemal et al.  

dataset has two components with similar densities but 

different shapes. And, they are very close to each 

other. MDC and DPC clustered it correctly, but 

DBSCAN identified seven outliers as noise (Figure 

2). Jain is divided in two components with different 

densities. DBSCAN, DPC, and MDC correctly 

identified the two components. 

It is difficult to correctly distinguish the 

components in Compound, composed of six 

components with varying densities and shapes, with 

complex spatial relationships. We see in the upper left 

corner, two contiguous components. A small disc-like 

component is surrounded by a ring-like component. 

They are located at the bottom left. On the right, an 

irregularly shaped component is surrounded by a set 

of scattered, spatially overlapping points. 

As shown in Figure 2, MDC correctly identified 

the six clusters of the compound dataset. Unlike 

DBSCAN and DPC where the first detected only five 

clusters, and a number of points considered as noise, 

while the second divided the ring component into two 

parts and merged the scattered component with the 

dense one. In the aggregation dataset, there are seven 

components with various sizes and shapes. Except the 

two slightly connected component pairs, the other 

components are independent of each other. DBSCAN 

groups each of these two pairs in one cluster. MDC 

and DPC produced correct results. 

6 Discussion 

Density-based clustering proceeds by calculating 

the density of each sample point. DBSCAN and DPC 

algorithms [16] are ones of the most emerging density 

based clustering algorithms. However, these 

clustering algorithms have certain defects. 

In DBSCAN, required Eps and minPts are 

difficult to be determined and only global values of 

such parameters are used, leading to inaccurate 

clustering result of multi-density datasets. 

In DPC algorithm, subjective selection of cluster 

centers using a decision graph, and the dc parameter 

with only a unique value does not handle the multi-

density data. Aiming at the problem of the selection 

of the parameter dc of the DPC algorithm, in [27] the 

authors proposed the use of the parameters optimized 

according to the local distance of data points. 

However, with multi-density data, this cannot obtain 

stable clustering effect. To tackle these limitations, 

our method addresses the abovementioned problems 

in clustering datasets with various densities. Thanks 

to the Chebyshev’s inequality, our approach allows to 

automatically determine a separation threshold for 

every density class in a dataset, and we build every 

cluster with its associated distance threshold. 

 

 

Original DBSCAN DPC MDC 
 

 
a) flame 

 

 
Eps=2.5 , minPts=4 

 

 
dc=2 

 

 
k=5, minPts=4 

 

 
b) jain 

 

 
Eps=1.5 , minPts=4 

 

 
dc=1.4 

 

 
k=5, minPts=4 

 

 
c) compound 

 

 
Eps=1.4 , minPts=4 

 

 
dc=2 

 

 
k=5, minPts=4 

 

 
d) aggregation 

 

 
Eps=1.2 , minPts=4 

 

 
dc=1.5 

 

 
k=7, minPts=4 

Figure 2: Clustering results of DBSCAN, DPC and MDC through a) flame, b) jain, c) 

compound, and d) aggregation 
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7 Conclusion and future work 

This paper shows how to automatically cluster data 

into groups with multiple densities and shapes through 

determining multiple set of parameters Eps and 

minPts. To execute DBSCAN, users need to introduce 

Eps and minPts that are difficult to be determined. 

Moreover, DBSCAN simply uses the global Eps and 

minPts so that the clustering result of multi-density 

data is inaccurate. 

To tackle such shortcomings, a new dataset 

clustering technique to efficiently handle clusters with 

various densities and shapes is presented in this paper. 

It introduced simple modification on DBSCAN. The 

main idea lies on the definition of local density of 

data points in the dataset and the use of Chebyshev’s 

inequality to define a local threshold separation at the 

initiating step of each cluster, while using minPts to 

control the minimum density allowed within a cluster. 

The experiments conducted on synthetic and real-

world datasets showed that the proposed algorithm 

provides important enhancements of clustering 

techniques on datasets with various density levels 

and shapes. As a future work, we plan to focus on 

applying MDC to solving practical problems in digital 

image processing such as segmentation and edge 

detection. 
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