
https://doi.org/10.31449/inf.v47i3.4736 Informatica 47 (2023) 303–314 303

Lightweight Multi-Objective and Many-Objective Problem Formulations for
Evolutionary Neural Architecture Search with the Training-Free Performance
Metric Synaptic Flow

An Vo, Tan Ngoc Pham, Van Bich Nguyen and Ngoc Hoang Luong
University of Information Technology, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
E-mail: 19520007@gm.uit.edu.vn, 19520925@gm.uit.edu.vn, vannb@uit.edu.vn, hoangln@uit.edu.vn

Keywords: neural architecture search, evolutionary algorithms, multi-objective optimization

Received:March 11, 2023

Neural architecture search (NAS) with naïve problem formulations and applications of conventional search
algorithms often incur prohibitive search costs due to the evaluations of many candidate architectures. For
each architecture, its accuracy performance can be properly evaluated after hundreds (or thousands) of
computationally expensive training epochs are performed to achieve proper network weights. A so-called
zero-cost metric, Synaptic Flow, computed based on random network weight values at initialization, is
found to exhibit certain correlations with the neural network test accuracy and can thus be used as an
efficient proxy performance metric during the search. Besides, NAS in practice often involves not only
optimizing for network accuracy performance but also optimizing for network complexity, such as model
size, number of floating point operations, or latency, as well. In this article, we study various NAS problem
formulations in which multiple aspects of deep neural networks are treated as multiple optimization ob-
jectives. We employ a widely-used multi-objective evolutionary algorithm, i.e., the non-dominated sorting
genetic algorithm II (NSGA-II), to approximate the optimal Pareto-optimal fronts for these NAS problem
formulations. Experimental results on the NAS benchmark NATS-Bench show the advantages and disad-
vantages of each formulation.

Povzetek: Uporabljen je algoritem NSGA-II za analizo NAS problemov, tj. za iskanje primerne nevronske
arhitekture.

1 Introduction

The goal of Neural Architecture Search (NAS) is to acceler-
ate the design process of high-performing deep neural net-
work architectures by exploring the vast space of possible
network configurations and selecting the most promising
ones. This process typically involves searching over a large
number of potential architectures, evaluating their perfor-
mance, and iteratively refining the algorithm to converge
on the best-performing architectures [12]. However, many
state-of-the-art NAS methods require substantial computa-
tional resources. For example, Zoph et al. [30] employed
800 GPUs over 28 days to solve NAS using a reinforcement
earning algorithm, whereas Real et al. [27] proposed an
evolution-based technique (AmoebaNet-A) that took 7 days
to execute on 450 K40 GPUs. To reduce such heavy com-
putation costs, current NAS efficiency research proposes
the adoption of training-free performance metrics [1] as a
performance objective rather than network accuracy. These
metrics can be computed using network weights at initial-
ization and do not require any training epochs, thus primar-
ily involving network designs. Several such training-free
metrics have been shown to be correlated with actual net-
work accuracy to some extent [1]. Hence, optimizing these

metrics potentially leads to promising architectures.
While most studies focus on optimizing network archi-

tectures for a single objective, such as network accuracy,
real-world neural network deployments frequently neces-
sitate the consideration of other important factors, such as
FLOPs, number of parameters, and latency. NAS archi-
tectures that are optimized just for accuracy may be too
cumbersome for resource-constrained embedded devices.
Moreover, by solving multi-objective problems, a trade-off
front between performance and complexity can be obtained,
which provides decision-makers with the necessary infor-
mation to select an appropriate network. Several research
has presented multi-objective NAS (MONAS) formula-
tions that take into consideration important aspects. For
example, Lu et al. [20] presented NSGA-Net, which used
the non-dominated sorting genetic algorithm II (NSGA-
II) [6] to solve an MONAS problem with two conflicting
objectives, i.e., the classification error and the number of
floating-point operations (FLOPs). In another work [19],
NSGA-II was also used to solve a many-objective prob-
lem formulation with five optimization objectives, includ-
ing ImageNet accuracy, number of parameters, number of
multiply-add operations, CPU and GPU latency.
Lu et al. [19] also developed a surrogate model to fore-
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cast the accuracy of candidate architectures and the predic-
tor was refined during the search process to enhance the
performance of NSGA-II in solving MONAS. To build the
predictor, a limited number of architectures were sampled
from the search space at first. Following that, NSGA-II
was used to search for architectures, treating the accuracy
predictor as an objective alongside other complexity objec-
tives. Despite the fact that they employed a surrogate model
as an objective for NSGA-II to discover architectures, they
still trained these architectures and used them as training
samples to refine the accuracy predictor. Using complex-
ity metrics and training-free performance metric Synaptic
Flow (synflow) simultaneously, Phan et al. [25] randomly
choose a wide variety of architectures and evaluate their
complexity and performance. Non-dominated architectures
with high performance and low complexity are then utilized
to initialize the population for a bi-objective evolutionary
NAS process where network accuracy is used as the pri-
mary performance metric. The training-free synflow met-
ric is only employed during the warm-up phase. During the
search phase, candidate architectures still need to be trained
and evaluated for their performance. It’s also possible to
use synflow metric to enhance the performance of NSGA-
II in solving multi-objective NAS problems as in [26], by
developing a training-free multi-objective local search. In
each generation, a subset of potential architectures under-
goes a local search process that uses synflow for improve-
ment checks, eliminating the need for training epochs. In
contrast to these works, our approach does not rely on any
training process. Instead, we use the training-free perfor-
mance metric synflow to evaluate all candidate architec-
tures during the search. This eliminates the need for train-
ing and allows us to search for high-quality architectures
more efficiently. Do et al. [7] also propose a completely
training-free multi-objective evolutionary NAS framework
that employs the number of linear regionsRN and the con-
dition number of the neural tangent kernel κN to evaluate
candidate architectures, which are data-dependent metrics
computed using mini-batches from a training dataset. In
our work, we use the data-agnostic metric synflow as our
performance objective. The resulting architectures are thus
potentially applicable to a wider range of tasks and datasets.

This article extends our SoICT 2022 conference paper
on training-free multi-objective and many-objective evo-
lutionary NAS [29]. In [29], we discussed several multi-
objective and many-objective NAS problem formulations
and employed the well-known multi-objective evolution-
ary algorithm NSGA-II to solve these formulations. More-
over, we exclusively used the data-agnostic training-free
metric synflow to evaluate candidate architecture perfor-
mance without any training. In this article, we extend the
analysis in our preliminary work by adding the hypervol-
ume performance indicator results instead of only Inverted
Generational Distance (IGD). While IGD exhibits the con-
vergence behavior of a multi-objective algorithm, it cannot
be used in real-world situations due to its requirement of
the Pareto-optimal front (see Sections 2.1 and 4.2.1). The

hypervolume, which requires only a reference nadir point,
is a more practical performance indicator for evaluating
and comparing multi-objective NAS approaches (see Sec-
tion 4.2.2). Employing both IGD and hypervolume thus
yields more detailed investigations into the effectiveness
of different NAS problem formulations. We present the
IGD and hypervolume results in terms of GPU hours rather
than the number of generations, which allows us to better
assess the efficiency of our approaches. Our experimen-
tal results demonstrate that Training-Free Many-Objective
Evolutionary NAS (TF-MaOENAS) provides several ad-
vantages when achieving competitive results while taking
only 3 GPU hours.

2 Backgrounds

2.1 Multi-objective neural architecture
search

Multi-Objective NAS (MONAS) [20, 26] can be formu-
lated as searching for high-quality architectures in a search
space Ω where m different aspects (e.g., error rate, model
size, or latency) are optimized simultaneously. Each
aspect is modeled as a separate objective fi(x), i ∈
{1, . . . ,m}, and each candidate architecture x ∈ Ω thus
has a corresponding vector of objective values f(x) =
(f1(x), . . . , fm(x)). All objectives, without loss of gen-
erality, are assumed to be minimized.
An architecturex dominates another architecturey if and

only if x strictly outperforms y in at least one aspect and x
is never outperformed by y in any aspects:

x ≺ y ⇐⇒ ∀i, fi(x) ≤ fi(y) ∧ ∃i, fi(x) < fi(y)

If some objectives conflict with each other, e.g., network
prediction accuracy versus network complexity, there will
not exist an ideal architecture optimizing all those compet-
ing objectives. Instead, there exists a Pareto set PS of ar-
chitectures, in which all can be considered Pareto-optimal
because they are not dominated by any other architectures:

PS = {x ∈ Ω | ∄x′ ∈ Ω,x′ ≺ x}

The images of all Pareto-optimal architectures in PS to-
gether form a Pareto-optimal front PF in the objective
space [5, 23]:

PF = {f(x) ∈ Rm | x ∈ PS}

Each point on PF denotes the vector of objective values
f(x) of a Pareto-optimal architecture x, which exhibits an
optimal trade-off among the competing objectives. For ex-
ample, from a Pareto-optimal architecture z, if we modify
z to improve network performance (e.g., prediction accu-
racy), network complexity (e.g., model size or FLOPs)must
be increased as well. In other words, there exists no means
in the search space Ω to alter z in order to increase accu-
racy performance without incurring additional computation
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cost. A Pareto-optimal front PF thus exhibits insightful in-
formation for decision-makers, e.g., which Pareto-optimal
architecture on PF exhibits the most desirable trade-off be-
tween network latency and accuracy.

The optimal solution of MONAS is not a single ideal
architecture but the Pareto set PS . However, achieving
the entire PS is prohibitively costly (if there are many
Pareto-optimal architectures) and unnecessary (if choosing
between architectures close to each other on the Pareto-
optimal front PF does not make considerable differences).
It is often more practical to find an approximation set S that
yields a good approximation front f(S) well approximat-
ing the Pareto-optimal front PF in terms of both proximity
and diversity [6, 21].

2.2 Non-dominated sorting genetic
algorithm II

Evolutionary Algorithms (EAs) are often employed for
handling multi-objective optimization problems because
their intrinsic population-based operations are well-suited
for the goal of finding multiple non-dominated solutions to
approximate Pareto-optimal fronts [5, 15, 23]. In this arti-
cle, we consider the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) [6] as the optimization algorithm.
NSGA-II has also been widely used for solving different
MONAS problem instances as well [19, 20]. In the follow-
ing paragraph, we provide a brief description of NSGA-II,
and further details can be found in [6].

The NSGA-II population P is initialized withN individ-
uals, where each individual corresponds with a candidate
architecture randomly sampled from the search space Ω.
Until the computation budget is over, or other termination
criteria are met, NSGA-II operates in a generational man-
ner as follows. In every generation, a set S ofN promising
individuals in terms of Pareto dominance are selected from
P via binary tournament selection. N new candidate archi-
tectures (i.e., set O of offspring individuals) are generated
from the parent architectures (i.e., set S of selected individ-
uals) via variation operators (i.e., crossover and mutation)
and are evaluated for their objective values. The current
population P and the offspring population are then merged
into a pool (P+O)where all 2N individuals are sorted into
their non-domination ranks 0, 1, 2, . . .. Rank 0 consists of
individuals that are not dominated by any other individuals
in (P + O), and rank i consists of individuals that would
be non-dominated if individuals from lower ranks (< i) are
omitted. A group of N promising individuals are then se-
lected from the pool (P + O) via truncation selection to
form the population for the next generation. Lower-rank
individuals are selected first, and if selections need to be
performed among individuals of the same rank, far-apart
individuals are preferred.

2.3 Training-free performance metric
synaptic flow

Synaptic Flow (synflow) is a metric for measuring the im-
portance of each parameter in a neural network architec-
ture, based on the inter-layer interaction of other network
parameters. Tanaka et al. [28] first introduced the synflow
score for single parameter w[l]

ij in the l-th layer of a fully-
connected neural network as follows:

P(w
[l]
ij ) =

1T N∏
k=l+1

∣∣∣W [k]
∣∣∣

i

∣∣∣w[l]
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∣∣∣W [k]
∣∣∣ 1]

j

(1)

where W [k] is the weight matrix of the k-th layer of the
network. The synflow score for a parameterw[l]

ij takes into
account the product of the absolute values of the weights of
all the layers downstream from the current layer l, as well
as the product of the absolute values of the weights of all the
layers upstream from the current layer l. Thus, the synflow
score of a parameter PS(w

[l]
ij ) reflects the contribution of

that parameter to the information flow of the network.

Abdelfattah et al. [1] then extended the synflow score
to evaluate the entire network architecture x, which is sum
of the synflow scores for allM parameters in the network
as follows:

S(w(x)) =

M∑
i=1

P(wi(x)) (2)

According to [1], the training-free performance metric
synflow exhibits a strong correlation with the final ac-
curacy of the network in the NAS-Bench-201 architecture
search space, with Spearman ρ coefficients of 0.74, 0.76,
and 0.75 on CIFAR-10, CIFAR-100, and ImageNet16-120,
respectively. The bi-objective space of test accuracy af-
ter 200 training epochs versus FLOPs for all architectures
in NATS-Bench is depicted in Figure 1. According to
the graph, architectures with greater synflow scores tend
to have higher test accuracy. Furthermore, synflow is
a data-agnostic metric that can be computed solely based
on network weights (see Equation 1). Unlike other per-
formance metrics that do not require training, such as
jacob_cov [22] or the condition number of the NTK [4],
synflow does not need any data mini-batches to be used
as input for the network. It means that synflow can be
used to measure the performance of a neural network with-
out having to pass any data through it. This is beneficial
since it allows for a more efficient evaluation of a neural
network’s performance without having to expend resources
on data collection and pre-processing. Since synflow is
data-independent and does not quire any training epochs,
it can serve as an effective proxy for optimizing network
accuracy in tackling NAS problems [1].
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Figure 1: Illustration of all network architectures in the NATS-Bench search space. Brighter hexagons indicate greater
values of synflow, while red triangles denote the architectures with the highest synflow values.

3 NAS problem formulations

3.1 Multi-objective NAS problem
formulation

NAS can be formulated as a multi-objective optimization
problem, which seeks to simultaneously optimize two ob-
jectives, such as accuracy and computational complexity,
as follows:

min F (x) = (ferr(x,w
∗(x),Dval), fcomp(x)) ∈ R2,

st w∗(x) ∈ argmin L(x,w(x),Dtrain),

x ∈ Ωarch, w(x) ∈ Ωweight(x),

(3)

where x denotes an architecture in the search space Ωarch.
Multi-Objective NAS (MONAS), aiming to find a set of
architectures that exhibit optimal trade-offs between accu-
racy and complexity, is a bi-level optimization problem.
At the upper level, it seeks high-quality candidate archi-
tectures that optimize both error rate ferr and complexity
fcomp, while at the lower level, it searches for the proper
network weight values w∗(x) for each candidate architec-
ture x. The network weight valuesw(x)must be specified
in order to accurately evaluate the error rate of a network ar-
chitecture x. This requires solving a lower-level optimiza-
tion problem over the network weight space Ωweight(x) of
the given architecture x. By doing so, we can obtain a set
of weight values that minimize the error rate and maximize
the performance of the network. This is typically done by
employing a stochastic gradient descent (SGD) algorithm to
performmany iterative updates on networkweight values in
order tominimize a loss functionL, whichmeasures the dif-
ference between network predictions and ground-truth tar-
gets for data items in a training datasetDtrain. This process
can be computationally expensive and time-consuming, but
is necessary in order to accurately obtain the proper values
of w(x) for any given architecture.
The two optimization objectives at the upper level of

MONAS are minimizing error rate ferr and minimizing
complexity fcomp. The complexity of a network can be
assessed via metrics such as the number of floating point

operations (FLOPs), latency, the number of parameters
(#parameters), or the number of multiply-accumulate units
(#MACs). These metrics can be calculated without the
weights of the network, and thus require minimal comput-
ing time. Besides, in order to prevent overfitting to the
training dataset Dtrain, it is important to calculate error rate
ferr on a separate validation dataset Dval that has not been
used for training. At the end of a search, the error rates and
weight of resulting architectures should be tested on a new
dataset Dtest to measure their ability to generalize.

3.2 Training-free multi-objective NAS
problem formulation

Evaluating the prediction performance of multiple candi-
date architectures in MONAS requires computationally in-
tensive training procedures (i.e., lower-level optimization)
which consume a significant amount of computing time
(see Equation 3). To eliminate this cost, several NAS for-
mulations have been proposed to use training-free perfor-
mance metrics as proxies for the network error rate ferr.
This approach allows us to quickly evaluate candidate ar-
chitectures without having to perform costly training pro-
cedures. We present a training-free bi-objective NAS for-
mulation that uses the synflow metric as an alternative to
ferr as follows:

minimize F (x) = (fSF(x,w(x)), fcomp(x)) ∈ R2,

subject to x ∈ Ωarch, w(x) ∈ Ωweight(x),
(4)

where fSF(x,w(x)) = −S(w(x)) (as synflow should be
maximized). At the start of the lower level optimization
process,w(x) can be initialized randomly to compute their
synflow scores. We name this formulation TF-MONAS.

3.3 Training-free many-objective NAS
problem formulation

The TF-MONAS formulation in Equation 4 can be further
extended by incorporating many objectives simultaneously.
This approach allows for the simultaneous consideration of
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multiple complexity metrics, such as FLOPs, latency, #pa-
rameters, and #MACs. By optimizing the neural network
architecture from various perspectives, this approach can
ensure that the resultant architecture is suitable for a variety
of applications. A common scenario is the use of deep neu-
ral networks on embedded devices, such as drones or smart
watches. This requires taking into account a variety of hard-
ware limitations, such as model size and storage capacity,
as well as usage requirements like response time. All of
these must be considered when deploying deep neural net-
works on embedded devices in order to ensure reliable per-
formance. Additionally, we note that these complexity met-
rics can be evaluatedwithout incurring toomuch computing
cost. We formulate training-free many-objective evolution-
aryNAS (TF-MaOENAS) that does not require any training
and consists of five objectives as follows:

minimize F (x) = (fSF(x,w(x)), fMACs(x),

flatency(x), fFLOPs(x), fparams(x)),

subject to x ∈ Ωarch, w(x) ∈ Ωweight(x),

(5)

The complexity metrics used in this work are FLOPs
, latency, the number of parameters (#parameters), and
#MACs. We name this formulation TF-MaOENAS. We
will compare solving one TF-MaOENAS formulation that
involves four optimization objectives for network complex-
ity against solving separately four different TF-MOENAS
formulations in which each model considers only one
complexity objective. Moreover, we also compare TF-
MaOENAS with (training-based) MaOENAS to demon-
strate the benefits of the training-free performance metric
synflow.

4 Experiments

4.1 Experimental details
Our experiments are carried out on NATS-Bench [8], which
is an extended version of NAS-Bench-201 [11]. NATS-
Bench comprises 15,625 architectures and provides a vari-
ety of metrics for evaluating different architectures, such as
accuracy, number of parameters, and training time, across
three datasets: CIFAR-10, CIFAR-100, and ImageNet16-
120. We experiment with four MONAS approaches on
NATS-Bench, each with specific optimization objectives as
follows:

1. 04 MOENAS variants: 01 training-based perfor-
mance metric (validation accuracy after 12 training
epochs as in other related works [11, 26]) versus 01
complexity metric (FLOPs, #parameters, latency, or
#MACs).

2. 04 TF-MOENAS variants: 01 training-free perfor-
mance metric (synflow) versus 01 complexity metric
(FLOPs, #parameters, latency, or #MACs).

3. 01 MaOENAS variant: 01 training-based perfor-
mance metric (validation accuracy after 12 training

epochs) versus 04 complexity metrics (FLOPs, la-
tency, #parameters, and #MACs).

4. 01 TF-MaOENAS variant: 01 training-free perfor-
mance metric (synflow) versus 04 complexity met-
rics (FLOPs, latency, #parameters, and #MACs).

We use the NSGA-II [6] as our multi-objective search
algorithm. We set the population size to 20, the number of
generations to 50, and used random initialization. We also
employ binary tournament selection, two-point crossover
with a probability of 0.9, and polynomial mutation with a
probability of 1/l, where l is the encoding length of each
individual.
Besides, we also implement an elitist archive [21] to save

non-dominated architectures discovered so far throughout
theNAS process. When an architecture is evaluated, it is in-
cluded in the elitist archive if it is not dominated by any ex-
isting architectures in the elitist archive. Existing architec-
tures that are dominated by newly added architecture will
be removed from the elitist archive. The non-dominated
architectures in the elitist archive, therefore, constitute an
approximation set, which may be regarded as the NSGA-
II optimization result. The elitist archive is only used for
result logging and does not impact the workings of NSGA-
II. Because non-dominated solutions might be lost due to
the stochasticity of the variation and selection operators, an
elitist archive is desirable for multi-objective evolutionary
algorithms.
We conduct 21 independent runs of NSGA-II for each

problem formulation presented in Section 3 on CIFAR-10,
CIFAR-100, and ImageNet16-120 of NATS-Bench. All of
our experiments can be performed using Google Colab.

4.2 Performance metric
4.2.1 Inverted generational distance

To compare an approximation set S of non-dominated ar-
chitectures against the Pareto-optimal front PF of the most
efficient trade-off architectures, we employ the Inverted
Generational Distance (IGD) [3] which is defined as:

IGD(S, PF ) =
1

|PF |
∑
p∈PF

min
x∈S

∥p− f(x)∥2 (6)

The smaller IGD indicates the better approximation
front achieved by the current solutions. For example, if
IGD(S1, PF ) < IGD(S2, PF ), then S1 is a better approx-
imation front compared to S2 regarding PF . The Pareto-
optimal front PF can be obtained by iterating over all archi-
tectures in the NAS benchmark. The Pareto-optimal front
PF is computed by querying the database of NATS-Bench
for test accuracy values after 200 epochs. Approxima-
tion sets S are taken from the elitist archive obtained from
the search process. The IGD value between the archive
and the Pareto-optimal front PF can be calculated after
each evolutionary generation to measure how close the cur-
rent approximation front of the algorithm is to the front of
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Pareto-optimal architectures PF . The test accuracy after
200 epochs and IGD values are only used to assess the ef-
fectiveness of the search algorithms and are not employed
to direct the search process.

4.2.2 Hypervolume

Hypervolume [3, 18] is also a measure of the quality of a
set of non-dominated solutions in multi-objective optimiza-
tion besides IGD. It can be computed by measuring the
area covered by the solution points on the approximation
front with regard to a reference point. In contrast to IGD,
which requires the Pareto-optimal front PF to compute
(IGD can thus hardly be used in real-world multi-objective
optimization), hypervolume only need a reference point to
be specified, which is usually the nadir point (the worst
point in the objective space). The higher hypervolume im-
plies that the corresponding method achieves a better ap-
proximation front. For example, if Hypervolume(S1) >
Hypervolume(S2), then S1 is a better approximation front
compared to S2.

4.3 Result analysis

IGD Hypervolume Test
accuracy

Search cost
(hours)

Space: Test accuracy - FLOPs
(1) 0.0198 ± 0.0171 1.0332 ± 0.0013 94.28 ± 0.17 53.7
(2) 0.0250 ± 0.0133 1.0223 ± 0.0027 94.29 ± 0.17 0.7
(3) 0.0308 ± 0.0177 1.0334 ± 0.0011 94.27 ± 0.13 54.8
(4) 0.0096 ± 0.0021 1.0298 ± 0.0022 94.37 ± 0.00 2.7

Space: Test accuracy - Latency
(1) 0.0228 ± 0.0019 1.0050 ± 0.0006 94.30 ± 0.09 54.1
(2) 0.0532 ± 0.0056 0.9431 ± 0.0200 94.29 ± 0.14 1.1
(3) 0.0277 ± 0.0060 0.9967 ± 0.0168 94.27 ± 0.13 54.8
(4) 0.0412 ± 0.0060 0.9581 ± 0.0098 94.37 ± 0.00 2.7

Space: Test accuracy - #Parameters
(1) 0.0180 ± 0.0138 1.0332 ± 0.0014 94.27 ± 0.18 53.8
(2) 0.0314 ± 0.0170 1.0233 ± 0.0027 94.24 ± 0.22 0.8
(3) 0.0309 ± 0.0176 1.0334 ± 0.0011 94.27 ± 0.13 54.8
(4) 0.0098 ± 0.0022 1.0296 ± 0.0023 94.37 ± 0.00 2.7

Space: Test accuracy - #MACs
(1) 0.0195 ± 0.0131 1.0331 ± 0.0017 94.24 ± 0.22 53.8
(2) 0.0189 ± 0.0069 1.0280 ± 0.0034 94.35 ± 0.03 0.8
(3) 0.0266 ± 0.0150 1.0333 ± 0.0011 94.27 ± 0.13 54.8
(4) 0.0104 ± 0.0023 1.0292 ± 0.0025 94.37 ± 0.00 2.7

Table 1: Results of search and evaluation directly on
CIFAR-10: (1) MOENAS, (2) TF-MOENAS, (3) MaOE-
NAS, (4) TF-MaOENAS. Results that are underlined indi-
cate the best method and results that are bolded denote the
best method with statistical significance (p-value < 0.01)

Figure 2 demonstrates that TF-MaOENAS achieves su-
perior IGD convergence results compared to other ap-
proaches while taking just 3 GPU hours in most cases,
with the exception of test accuracy versus latency space.
However, in terms of hypervolume, MaOENAS and MOE-
NAS alternatively surpass other approaches on CIFAR-
10 and ImageNet16-120. Table 1, Table 2, and Table 3
show comprehensive results on CIFAR-10, CIFAR-100 and
ImageNet16-120. It is noted that the hypervolume of TF-
MaOENAS still outperforms other methods in the major-
ity of cases on CIFAR-100, and its hypervolume is only
slightly lower than that of other training-based methods on

IGD Hypervolume Test
accuracy

Search cost
(hours)

Space: Test accuracy - FLOPs
(1) 0.0384 ± 0.0086 0.7958 ± 0.0015 72.39 ± 0.21 53.8
(2) 0.0493 ± 0.0176 0.7851 ± 0.0036 72.56 ± 0.44 0.8
(3) 0.0334 ± 0.0128 0.7964 ± 0.0019 72.40 ± 0.30 54.8
(4) 0.0122 ± 0.0045 0.7993 ± 0.0019 73.49 ± 0.07 2.7

Space: Test accuracy - Latency
(1) 0.0318 ± 0.0070 0.7960 ± 0.0013 72.68 ± 0.68 54.0
(2) 0.1182 ± 0.0139 0.7460 ± 0.0149 73.51 ± 0.00 1.0
(3) 0.0352 ± 0.0084 0.7701 ± 0.0057 72.40 ± 0.30 54.8
(4) 0.0446 ± 0.0057 0.7539 ± 0.0076 73.49 ± 0.07 2.7

Space: Test accuracy - #Parameters
(1) 0.0369 ± 0.0029 0.7960 ± 0.0013 72.47 ± 0.23 53.8
(2) 0.0189 ± 0.0038 0.7883 ± 0.0025 73.47 ± 0.11 0.8
(3) 0.0335 ± 0.0127 0.7963 ± 0.0019 72.40 ± 0.30 54.8
(4) 0.0123 ± 0.0045 0.7990 ± 0.0020 73.49 ± 0.07 2.7

Space: Test accuracy - #MACs
(1) 0.0313 ± 0.0094 0.7956 ± 0.0021 72.39 ± 0.36 53.8
(2) 0.0156 ± 0.0025 0.7941 ± 0.0041 73.51 ± 0.00 0.8
(3) 0.0270 ± 0.0096 0.7961 ± 0.0018 72.40 ± 0.30 54.8
(4) 0.0126 ± 0.0041 0.7985 ± 0.0021 73.49 ± 0.07 2.7

Table 2: Results of search and evaluation directly on
CIFAR-100: (1) MOENAS, (2) TF-MOENAS, (3) MaOE-
NAS, (4) TF-MaOENAS. Results that are underlined indi-
cate the best method and results that are bolded denote the
best method with statistical significance (p-value < 0.01)

CIFAR-10 and ImageNet16-120. Furthermore, because it
is a training-free approach, it only requires 3 GPU hours as
opposed to dozens to hundreds of GPU hours for training-
based methods like MOENAS and MaOENAS. Regarding
test accuracy, TF-MaOENAS discovers top-performing ar-
chitectures on NATS-Bench and outperforms other meth-
ods in the majority of situations.
The experimental results also show that TF-MaOENAS

and TF-MOENAS (using synflow) perform better than
MaOENAS and MOENAS (using validation accuracy af-
ter 12 training epochs), respectively. This indicates that us-
ing synflow is more effective at optimizing for multiple
objectives simultaneously than using the validation accu-
racy after 12 training epochs. This might reflect that the
training-free synflow metric is more capable of measuring
and balancing between optimizing for accuracy and other
complexity objectives. Moreover, synflow is a training-
free metric, it just takes a few seconds to compute, result-
ing in a lower computing cost than a training-based met-
ric. On the other hand, TF-MaOENAS, which employs
five objectives concurrently, outperforms TF-MOENAS,
which employs only two objectives. This is due to the ad-
dition of MACs, the number of parameters, and latency as
complexity objectives in addition to synflow and FLOPs.
Most of the time, optimizing more objectives is favor-
able while not incurring considerably more computing ex-
penses. This will provide a fuller picture of the complexity
of achieved architectures, enabling a more precise evalua-
tion of the trade-offs between performance and complex-
ity. Additionally, the penta-objective approximation fronts
obtained by TF-MaOENAS can be projected into differ-
ent bi-objective spaces (i.e., test accuracy versus one com-
plexity metric) and still achieve better results than the cor-
responding TF-MOENAS variants. This means that run-
ning TF-MaOENAS once in the penta-objective space can
obtain good approximation fronts in different bi-objective
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Figure 2: IGD and hypervolume comparisons in terms of GPU hours (log scale) on four different bi-objective spaces
(plot title) across CIFAR-10 (top two rows), CIFAR-100 (middle two rows) and ImageNet16-120 (bottom two rows). The
figures depict the mean values with lines and the standard deviation with shaded areas over 21 runs.
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IGD Hypervolume Test
accuracy

Search cost
(hours)

Space: Test accuracy - FLOPs
(1) 0.0217 ± 0.0087 0.5165 ± 0.0026 46.34 ± 0.35 161.8
(2) 0.0296 ± 0.0089 0.5062 ± 0.0062 46.25 ± 0.15 0.6
(3) 0.0192 ± 0.0165 0.5193 ± 0.0032 46.41 ± 0.43 163.7
(4) 0.0151 ± 0.0019 0.5189 ± 0.0017 46.57 ± 0.05 2.3

Space: Test accuracy - Latency
(1) 0.0281 ± 0.0047 0.5171 ± 0.0019 46.62 ± 0.52 162.2
(2) 0.0543 ± 0.0112 0.4852 ± 0.0118 46.52 ± 0.17 1.1
(3) 0.0192 ± 0.0165 0.5012 ± 0.0059 46.41 ± 0.43 163.7
(4) 0.04428 ± 0.0062 0.4922 ± 0.0086 46.57 ± 0.05 2.3

Space: Test accuracy - #Parameters
(1) 0.0194 ± 0.0067 0.5171 ± 0.0019 46.46 ± 0.24 161.8
(2) 0.0264 ± 0.0114 0.5092 ± 0.0047 46.40 ± 0.18 0.8
(3) 0.0194 ± 0.0165 0.5191 ± 0.0032 46.41 ± 0.43 163.7
(4) 0.0153 ± 0.0019 0.5186 ± 0.0017 46.57 ± 0.05 2.3

Space: Test accuracy - #MACs
(1) 0.0198 ± 0.0073 0.5153 ± 0.0039 46.17 ± 0.46 161.8
(2) 0.0188 ± 0.0020 0.5161 ± 0.0020 46.57 ± 0.02 0.6
(3) 0.0156 ± 0.0107 0.5188 ± 0.0032 46.41 ± 0.43 163.7
(4) 0.0148 ± 0.0022 0.5181 ± 0.0017 46.57 ± 0.05 2.3

Table 3: Results of search and evaluation directly on
ImageNet16-120: (1) MOENAS, (2) TF-MOENAS, (3)
MaOENAS, (4) TF-MaOENAS. Results that are underlined
indicate the best method and results that are bolded de-
note the best method with statistical significance (p-value
< 0.01)

Alg. CIFAR-10
(direct)

CIFAR-100
(transfer)

ImageNet16-120
(transfer)

Search cost
(hours)

Space: Test accuracy - FLOPs
(1) 0.0198 ± 0.0171 0.0465 ± 0.0183 0.0316 ± 0.0147 53.7
(2) 0.0250 ± 0.0133 0.0322 ± 0.0103 0.0400 ± 0.0145 0.7
(3) 0.0308 ± 0.0177 0.0299 ± 0.0106 0.0230 ± 0.0091 54.8
(4) 0.0096 ± 0.0021 0.0125 ± 0.0017 0.0161 ± 0.0016 2.7

Space: Test accuracy - Latency
(1) 0.0228 ± 0.0019 0.0419 ± 0.0056 0.0416 ± 0.0103 54.1
(2) 0.0532 ± 0.0056 0.0932 ± 0.0100 0.0841 ± 0.0175 1.1
(3) 0.0277 ± 0.0060 0.0390 ± 0.0093 0.0369 ± 0.0049 54.8
(4) 0.0412 ± 0.0060 0.0612 ± 0.0091 0.0577 ± 0.0097 2.7

Space: Test accuracy - #Parameters
(1) 0.0180 ± 0.0138 0.0413 ± 0.0171 0.0342 ± 0.0139 53.8
(2) 0.0314 ± 0.0170 0.0502 ± 0.0144 0.0306 ± 0.0092 0.8
(3) 0.0309 ± 0.0176 0.0300 ± 0.0106 0.0231 ± 0.0090 54.8
(4) 0.0098 ± 0.0022 0.0124 ± 0.0017 0.0164 ± 0.0017 2.7

Space: Test accuracy - #MACs
(1) 0.0195 ± 0.0131 0.0348 ± 0.0129 0.0250 ± 0.0069 53.8
(2) 0.0189 ± 0.0069 0.0322 ± 0.0085 0.0197 ± 0.0036 0.8
(3) 0.0266 ± 0.0150 0.0247 ± 0.0083 0.0188 ± 0.0060 54.8
(4) 0.0104 ± 0.0023 0.0137 ± 0.0024 0.0163 ± 0.0022 2.7

Table 4: IGD on transfer learning task: (1) MOENAS, (2)
TF-MOENAS, (3)MaOENAS, (4) TF-MaOENAS. Results
that are underlined indicate the best method and results that
are bolded denote the best method with statistical signifi-
cance (p-value < 0.01)

spaces simultaneously, rather than having to run separately
TF-MOENAS many times for each bi-objective space.
We note that the variation in the obtained results across

the datasets (see Tables 1, 2, 3) can be attributed to the
following reasons. First, the performance metrics (i.e., ac-
curacy or synflow) and some complexity metrics (e.g., la-
tency or FLOPs) of each candidate architecture vary across
the datasets (e.g., the accuracy of an architecture on CIFAR-
10 is different from its accuracy on ImagetNet16-120).
Therefore, the IGD and hypervolume results of each NAS
method are different from one dataset to another. Second,
we assess the effectiveness of NAS methods using the test
accuracy after 200 training epochs but, during the search
process of each NAS algorithm, the validation accuracy af-
ter 12 training epochs (for training-based approaches) or

Alg. CIFAR-10
(direct)

CIFAR-100
(transfer)

ImageNet16-120
(transfer)

Search cost
(hours)

Space: Test accuracy - FLOPs
(1) 1.0332 ± 0.0013 0.7962 ± 0.0043 0.5167 ± 0.0051 53.7
(2) 1.0223 ± 0.0027 0.7830 ± 0.0054 0.5061 ± 0.0057 0.7
(3) 1.0334 ± 0.0011 0.7996 ± 0.0023 0.5191 ± 0.0028 54.8
(4) 1.0298 ± 0.0022 0.7958 ± 0.0039 0.5169 ± 0.0015 2.7

Space: Test accuracy - Latency
(1) 1.0050 ± 0.0006 0.7589 ± 0.0028 0.4861 ± 0.0056 54.1
(2) 0.9431 ± 0.0200 0.6425 ± 0.0284 0.4164 ± 0.0179 1.1
(3) 0.9967 ± 0.0168 0.7545 ± 0.0159 0.4897 ± 0.0067 54.8
(4) 0.9581 ± 0.0098 0.7234 ± 0.0140 0.4710 ± 0.0055 2.7

Space: Test accuracy - #Parameters
(1) 1.0332 ± 0.0014 0.7963 ± 0.0044 0.5155 ± 0.0055 53.8
(2) 1.0233 ± 0.0027 0.7824 ± 0.0054 0.5056 ± 0.0057 0.8
(3) 1.0334 ± 0.0011 0.7995 ± 0.0023 0.5189 ± 0.0028 54.8
(4) 1.0296 ± 0.0023 0.7954 ± 0.0040 0.5166 ± 0.0016 2.7

Space: Test accuracy - #MACs
(1) 1.0331 ± 0.0017 0.7964 ± 0.0048 0.5165 ± 0.0055 53.8
(2) 1.0280 ± 0.0034 0.7803 ± 0.0058 0.5042 ± 0.0060 0.8
(3) 1.0333 ± 0.0011 0.7992 ± 0.0023 0.5186 ± 0.0028 54.8
(4) 1.0292 ± 0.0025 0.7947 ± 0.0042 0.5160 ± 0.0016 2.7

Table 5: Hypervolume on transfer learning task: (1)
MOENAS, (2) TF-MOENAS, (3) MaOENAS, (4) TF-
MaOENAS. Results that are underlined indicate the best
method and results that are bolded denote the best method
with statistical significance (p-value < 0.01)

synflow (for training-free approaches) are employed as
the performance objective (see experimental details in Sec-
tion 4.1). The correlation of 12-epoch validation accuracy
or synflow with the final test accuracy (after 200 epochs)
varies per dataset [1] (e.g., the correlation coefficients of
synflow for CIFAR-10, CIFAR-100, and ImageNet16-120
are 0.74, 0.76, and 0.75, respectively). Therefore, the rank-
ings of the considered NASmethods might differ across the
datasets.

4.4 Tranferability

This section explores the potential of transfer learning in
NAS by evaluating the transferability of architectures dis-
covered through multi-objective and many-objective NAS
problem formulations. The final approximation front (i.e.,
the elitist archive) of architectures on CIFAR-10 is re-
evaluated on CIFAR-100 and ImageNet16-120 for their
performance and complexity. Transfer learning in NAS of-
fers several benefits, including the reduced computational
cost and the potential for faster deployment of deep learn-
ing models in real-world applications by identifying archi-
tectures that are highly transferable across datasets.
Table 4 and Table 5 show that TF-MaOENAS yields

better IGD compared to other methods, whereas MaOE-
NAS outperforms other methods in hypervolume in most
cases. In terms of test accuracy, TF-MaOENAS also com-
pletely surpasses most of the approaches in Table 6, with
better accuracy and lower search costs. It indicates that
TF-MaOENAS using the training-free performance met-
ric synflow are more effective at transferring knowledge
from one dataset to another. Besides, both penta-objective
approaches TF-MaOENAS and MaOENAS give better
IGD and hypervolume, respectively, than bi-objective ap-
proaches. Although the four TF-MOENAS approaches
have lower computing time, the optimization result of TF-
MaOENAS is a penta-objective approximation front that
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CIFAR-10
(direct)

CIFAR-100
(transfer)

ImageNet16-120
(transfer)

Search cost
(hours)

Manually designed
ResNet [14] 93.97 70.86 43.63 -

Weight sharing
RSPS [16] 87.66 ± 1.69 58.33 ± 4.34 31.14 ± 3.88 2.1
DARTS [17] 54.30 ± 0.00 15.61 ± 0.00 16.32 ± 0.00 3.0
GDAS [10] 93.51 ± 0.13 70.61 ± 0.26 41.84 ± 0.90 8.0
SETN [9] 86.19 ± 4.63 56.87 ± 7.77 31.90 ± 4.07 8.6
ENAS [24] 54.30 ± 0.00 15.61 ± 0.00 16.32 ± 0.00 3.6

Non-weight sharing
RS [2] 93.70 ± 0.36 71.04 ± 1.07 44.57 ± 1.25 3.3
BOHB [13] 93.61 ± 0.52 70.85 ± 1.28 44.42 ± 1.49 3.3
NASWOT∗ [22] 93.84 ± 0.23 71.56 ± 0.78 45.67 ± 0.64 -

Evolution
REA [27] 93.92 ± 0.30 71.84 ± 0.99 45.54 ± 1.03 3.3

TF-MOENAS∗† [7] 94.16 ± 0.22 72.75 ± 0.63 46.61 ± 0.46 2.87

MOENAS (valacc - FLOPs)† 94.28 ± 0.17 72.68 ± 0.71 46.50 ± 0.68 53.7

TF-MOENAS (synflow - FLOPs)∗† 94.29 ± 0.17 73.22 ± 0.71 46.31 ± 0.40 0.7

MOENAS (valacc - Latency)† 94.30 ± 0.09 73.00 ± 0.32 46.35 ± 0.43 54.1

TF-MOENAS (synflow - Latency)∗† 94.29 ± 0.14 73.17 ± 0.25 46.28 ± 0.31 1.1

MOENAS (valacc - #Parameters)† 94.27 ± 0.18 72.72 ± 0.69 46.31 ± 0.68 53.8

TF-MOENAS (synflow - #Paramters)∗† 94.24 ± 0.22 72.81 ± 0.76 46.31 ± 0.32 0.8

MOENAS (valacc - #MACs)† 94.24 ± 0.22 72.60 ± 0.77 46.37 ± 0.74 53.8

TF-MOENAS (synflow - #MACs)∗† 94.35 ± 0.03 73.15 ± 0.07 46.47 ± 0.00 0.8

MaOENAS† 94.27 ± 0.13 72.94 ± 0.33 46.53 ± 0.27 54.8

TF-MaOENAS∗† 94.37 ± 0.00 73.51 ± 0.00 46.51 ± 0.04 2.7

Optimal 94.37 73.51 47.31 -

* Training-Free †Multi-Objective/Many-Objective

Table 6: Accuracy on the transfer learning task. Previous studies’ results are adopted from [11, 22]. Results that are
underlined indicate the best method

contains much more insightful information, which can be
obtained in one run and easily projected into any lower-
dimensional objective spaces for intuitive Pareto front in-
vestigations.

5 Conclusions
This paper described different multi-objective and many-
objective problem formulations for NAS, i.e., MONAS and
MaONAS, which can be solved by multi-objective evolu-
tionary algorithms, such as NSGA-II. We showed that the
training-free metric synflow can be used as a proxy metric
for the network accuracy performance during NAS, without
requiring any training epochs. Experimental results demon-
strated the benefits of using training-free approaches, espe-
cially the many-objective TF-MaOENAS, including com-
putational efficiency, search effectiveness and insightful
decision-making capabilities. These benefits were due to
the ability to obtain top-performing architectures on both
direct and transfer learning tasks, and the resulting penta-
objective fronts of non-dominated architectures, which pro-
vided beneficial trade-off information among the concerned
objectives.
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