
https://doi.org/10.31449/inf.v48i4.4752 Informatica 48 (2024) 543–548 543

Empirical Evaluation of Algorithm Performance: Addressing Execution Time
Measurement Challenges

Tomaž Dobravec
Faculty of Computer and Information Science
University of Ljubljana, Slovenia
E-mail: tomaz.dobravec@fri.uni-lj.si

Keywords: Empirical algorithm analysis, time measuring, accuracy, reliability, Java, C, x86 assembly

Received:March 21, 2023

In this paper, we investigate the influence of various factors, such as programming language, testing envi-
ronment, and input data, on the accuracy of algorithm execution measurements. To conduct this study, we
used the BubbleSort algorithm as a test case and implemented it in Java, C, and x86 assembly languages.
We executed these implementations with various inputs and performed an empirical evaluation of the results
using the ALGator system. We showed that the influence of the chosen programming language is negligi-
ble, since the Java and C implementations gave very similar results, while the assembler implementation
differed only by a constant factor. Furthermore, our analysis emphasized the importance of repeating tests
to obtain precise timing measurements - the more tests we do, the more accurate the measured result will
be. We also discuss the impact of the input data type which can significantly affect the execution time due
to the increased number of mispredictions of the branch predictor.

Povzetek: Narejena je empirična študija vpliva programskega jezika, ponavljanja testov in tipa vhodnih
podatkov na točnost meritev časa izvajanja algoritmov.

1 Introduction

The analysis of algorithmic complexity is a crucial com-
ponent of the algorithm design process [3]. This analysis
is primarily concerned with estimating the amount of re-
sources (such as time or memory usage) that an algorithm
will require during its execution [10]. The outcome of this
analysis is dependent upon the chosen computation model
[4], which encompasses the execution environment and its
limitations. Generally, the results of theoretical complexity
analysis are used to differentiate between fast (i.e., poly-
nomial) and slow (exponential) algorithms. However, the
practical value of these results is limited, especially when
two algorithms have the same (theoretical) time complex-
ity. This is because the theoretical model used in the analy-
sis does not take into account all the intricacies of the actual
execution environment, such as memory caching, paging,
or branch prediction [6, 7], which are only revealed during
the execution of the algorithm on a real computer. There-
fore, in order to make a practical comparison of algorithms,
the theoretical analysis must be supplemented with empir-
ical measurements of resource utilization during algorithm
execution on various input data types [5, 8, 11].
To obtain accurate and reliable results, these measure-

ments must be performed with great care, as numerous fac-
tors can impact the data beingmeasured. This paper focuses
on some of these factors and presents the results of our mea-
surements that highlight their significance. Specifically,
we employ three programming languages and demonstrate

the impact of language selection on the speed of execu-
tion. Furthermore, we emphasize the importance of repeat-
ing tests, especially when the size of the input (and con-
sequently, the execution time) is small. In addition, we
discuss how the input data type can affect the rankings of
algorithm quality. By thoroughly examining these factors
and presenting our results, we hope to contribute to a more
comprehensive understanding of the practical implications
of algorithmic complexity analysis.

2 Testing environment setup
For all our tests in this research we will use the BubbleSort
[1] algorithm for sorting arrays of integers. Since this is a
very well-known and simple algorithm we are able to per-
form a precise theoretical analysis and provide a very ac-
curate (theoretical) forecast for the time complexity of its
implementations. The algorithm is so simple that we can
count the number of operations performed during the exe-
cution for different inputs. Thus we will be able to compare
theoretical predictions with the empirical results.
One of the goals of this research was to analyze the

impact of the selected programming language on the ef-
ficiency of algorithm execution. Therefore we used three
programming languages (namely Java, C, and the x86 as-
sembler) to implement BubbleSort. Due to the simplicity
of the algorithm, we managed to write the three implemen-
tations in such a way that they provide semantically identi-
cal code (see listings in Fig. 1). For further reference, we

544 Informatica 48 (2024) 543–548 T. Dobravec

named implementations BubbleJ, BubbleC and BubbleA,
where the last letter denotes the programming language
used (J for Java, C for C, and A for x86 assembler). Ex-
ecuting these implementations on the same inputs will re-
sult in an equal number of each programming-language-
dependant atomic operations. Any differences in the execu-
tion speed will thus reflect the differences in the execution
speed of these operations in the selected programming lan-
guage. The C implementation was compiled with the gcc
compiler in two ways: without optimization (the -O0 flag)
and with full optimization (the -O3 flag). In this way, we
got two distinct implementations (namely BubbleC0 and
BubbleC3). In the following, we will analyze the impact
of this optimization on the speed of execution.
To facilitate the empirical evaluation in our research we

used the ALGator system [2]. We used its tools to config-
ure the Sorting project, to provide the test sets of input data
and implementations, and to execute the algorithms’ imple-
mentations in a controlled environment. For the execution
machine, we used the Intel(R) Core(TM) i7-6700 CPU @
3.40GHz computer with 32GB RAM and with the Linux
Ubuntu operating system installed.
The inputs for our algorithms consist of arrays of in-

tegers prearranged in three different orders: random or-
der (RND), sorted order (SOR), and inversely sorted order
(INV). These three distributions of input data are well man-
ageable from a theoretical point of view since we know for
all three the number of operations that will be performed
during the sorting process. In all three case BubbleSort
will perform exactly n(n − 1)/2 comparisons, and n2/4,
0, n(n − 1)/2 swaps for RND, SOR, INV respectively.
Note that all the numbers of operations are exact, except
for the number of swaps in the RND case - here we only
have the expected (instead of exact) number of swaps, since

the sequence is randomly mixed. Since BubbleSort per-
forms only comparisons and swaps (and some auxiliary in-
crements of indices to maintain the loops) we could expect
that, for example, sorting the RND array will be faster than
sorting the INV array of the same size. But as we will see
in the following this is not the case.
In the ALGator project inputs (i.e. test cases) are grouped

into test sets. Each test case has its own identifier (Test ID),
so the results can also be compared on a test basis. To pro-
vide accurate results each test case is executed several times
(each execution of the test case has its identifier, Repetition
ID). Besides a list of all execution times of a test case, AL-
Gator provides two pieces of information, the time of the
first execution (Tfirst) and the time of the fastest execution
(Tmin) of this test case. The first execution is usually much
slower than other executions - as we will see in the follow-
ing the Tfirst time can even be twice as big as the Tmin
time. This behavior is more noticeable in the java environ-
ment since the JVM needs to warm up before it can operate
at full speed [9].
To measure the time in Java we can only use the wall

clock (Java does not provide any processor usage informa-
tion). To minimize the unreliability of the measured time
(which is due to the fact that the process may spend time
waiting for I/O or for other processes that are also using the
CPU) we use a ”clean” computer which is dedicated only
to the execution of the algorithms. Besides that, we usu-
ally take the Tmin time as reference data, since this is a
time in which the computer is capable of solving the prob-
lem (the number of disturbing factors is minimal). For the
algorithms implemented in the C programming language,
we use the CPU time obtained by the clock() function
(which returns the number of clock ticks used by the pro-
cess). By calling this function before and after the algo-

Figure 1: The tree implementations of the BubbleSort algorithm

Empirical Evaluation of Algorithm Performance… Informatica 48 (2024) 543–548 545

Figure 2: The Tmin and Tfirst measured times for BubbleJ implementation on inputs of size n=500, n=5000 and n=20000.

rithm execution and subtracting the returned values we get
the total amount of time a process has actively used a CPU.
The time measured this way is a much more reliable and
accurate quality indicator.

3 The meaning of test repetition
In our first experiment, we would like to find out the mean-
ing of several repetitions of a given test case execution. For
this, we used a test set consisting of three groups of test
cases: in each group, there are 50 identical tests of sizes
500, 5000, and 20000. All the input arrays in these test
cases were ordered in inverse order (to ensure an identical
number of operations during the sorting process). We exe-
cuted each test case 50 times.
The graph in Fig. 2 depicts the times Tfirst and Tmin for

all 150 tests. The Tfirst times (blue dots) in this graph are
a little bit bigger than the Tmin times.
By analyzing the results we noticed that the (absolute)

difference between Tfirst and Tmin is approximately the
same for all three groups of test cases. The relative differ-
ence is therefore smaller for bigger measured times. We can
conclude that the measurement of both Tfirst and Tmin is
important for small inputs and that the importance of distin-
guishing between Tfirst and Tmin decreases with increas-
ing input size. Measurements have shown that something
similar to Java’s ”Tfirst phenomenon” also happens with
C, except that in this case ”warming up the machine” adds
significantly less to the overall time complexity, so the dif-
ferences in speed between Tfirst and Tmin are noticeable
only in experiments that take very little time. From Table
1, which shows the relationship between the average first
and the minimum execution time of a test case, f =

T first

Tmin

it can be seen that for small n the ratio is similar in both im-
plementations, but for largern the difference between Tfirst
and Tmin is almost negligible for the BubbleC3, while for
the BubbleJ the value decreases significantly more slowly.
At n = 20000 the difference is still more than 5%.
The difference in measured times of multiple executions

of the BubbleJ and BubbleC3 implementations is depicted
in Fig. 3. Here we used 50 inversely ordered arrays of size

5000, each test case was repeated 50 times. On the graph,
the time of the first execution of the test case is shown in
gray (Tfirst, Repetition ID=0), the first 20 repetitions are
shown in orange and the next 30 in red.
With BubbleJ, we see that the first times (Tfirst) devi-

ate considerably from the other measured times; the Tfirst
times are somewhere between 18k and 22k, and the other
times are much smaller (between 12k and 14k), which cor-
responds to the factor of 1.4 from Table 1. Other measured
times on this graph do not show much fluctuation, as the
scale of the display is reduced due to the large Tfirst times;
we see that some Tfirst times are almost 100% larger than
the smallest measured times. With BubbleC3, all times are
quite similar to each other; the graph shows some varia-
tions, but everything is between 14.6k and 15.6k; the differ-
ences between measured times are relatively small (approx.
6%).
In conclusion: is it important to repeat the algorithm ex-

ecution for several times to find the minimum time? As the
measurements show, the answer depends on the size of the
input - the smaller the input, the more measurements are
unreliable, so we need to take more measurements to get a
good result.
Bar charts in Fig. 4 depict the proportion of measure-

ments that differ from the smallest measurement by the
given percentage range. The measurements on small inputs
for the BubbleJ vary a lot. More than 36% of all measure-
ments differ from the minimal time of more than 10%. For
the BubbleC3 on the other hand only 17% of the measure-
ments are that bad. When increasing the size of the input the
results for both algorithms improve. For n=20000, for ex-
ample, more than 73% (98%) of measurements differ from
the minimal measurements for less than 1% for BubbleJ

Table 1: The ratio f =
T first

Tmin
between the average of the

first and the minimal measured times

546 Informatica 48 (2024) 543–548 T. Dobravec

Figure 3: Times of execution of 50 identical test cases (50 repetitions of each test case) with BubbleJ and BubbleC3

Figure 4: The proportion of measurements that differ from the smallest measurement by the given percentage range.

(BubbleC3) implementation.
The relative standard deviations of all measured times

for BubbleJ are 21%, 7%, and 1% for n=500, 5000, and
20.000 respectively. This confirms the claim that as the
size of the input increases, the importance of multiple tests
decreases. Since the relative standard deviations are even
smaller for BubbleC3 (namely 15%, 1%, 0.24%), the im-
portance of a large number of measurements is even smaller
here.

4 The impact of the programming
language

We compared the times of execution of four implementa-
tions (BubbleJ, BubbleA, BubbleC0 and BubbleC3) on
randomly ordered sequences (RND) of length 500 to 50000

Figure 5: Tmin, RND data, n = 500, ..., 50000

(step 500). Each test was executed 30 times. Fig. 5 shows
the minimum measured times Tmin of all four algorithms.
We expected the BubbleC3 to be the best, whichwas also

proven with the measurements. The difference between
BubbleC0 and BubbleC3 is somewhat surprising. Since
BubbleSort is a simple algorithm, one would expect that the
speedup resulting from the optimization would not be that

Empirical Evaluation of Algorithm Performance… Informatica 48 (2024) 543–548 547

great. But this is not the case, the difference is almost 2
times for large n. An interesting observation is that the fac-
tor of 2 appears to approximate the ratio between the sizes
of machine code produced by optimized and non-optimized
compilation. Specifically, the former contains 28 machine
code instructions, while the latter contains 53.
The relationship between BubbleJ and BubbleA is in-

teresting. In a battle between fast implementations, Java
turned out to be the slowest, although the differences in
speed are not so great. Fitting all measurements with
quadratic functions results in the following:

BubbleC0: Tmin(n) = 2.438n2 µs
BubbleJ: Tmin(n) = 1.372n2 µs
BubbleA: Tmin(n) = 1.311n2 µs
BubbleC3: Tmin(n) = 1.246n2 µs

The ratio between the best (BubbleC3) and the worst
(BubbleC0) implementation is 1 : 1.956, which we also no-
ticed from the graph. More interesting is the ratio between
the optimized C3 and Java implementation: BubbleC3 :
BubbleJ = 1 : 1,101. This means that for sorting random
sequences Java is 10% slower than C. To find out, how good
this conclusion is, let us calculate and depict the relative er-
ror

Error =
|BubbleC3.Tmin − 1.1 ∗BubbleJ.Tmin|

BubbleJ.Tmin

Figure 6: Relative error of estimating BubbleJ.Tmin with
1.1*BubbleC3.Tmin

Fig. 6 shows that for small inputs (n < 5000) the error
is very big (as big as 1200%), but for larger inputs (n >
10000) the error is always less than 5% and it seems that it
decreases when n increases.

5 The impact of the input data type
The input for a sorting algorithm is not always a randomly
ordered array - sometimes the input data is already partially
sorted. To find out if the (partial) pre-ordering of data im-
pacts the execution time we used two special cases of the
input data type - already sorted (SOR) and inversely sorted
(INV) data. The results for both types show similar trends.
Fig. 7 depicts the results on inversely ordered sequences
(INV) of length 500 to 50,000 (step 500). The quality
ranking of algorithms when sorting INV data changes com-
pared to the ranking on RND data (Figures 5 and 7). While
BubbleC0 remains the worst implementation, in the first

place there is a swap - BubbleC3 gives way to BubbleA
and BubbleJ. Something similar happens with the sorted
(SOR) data. This change in ranking is hard to explain, but
according to the research results presented in the following,
we could speculate that the code generated by JVM is less
suitable for branch prediction: with INV and SOR data the
branch predictor is always correct, which could reflect bet-
ter performance. Anyway, the results unequivocally show
that the type of input has a great impact on the quality of
implementation. While with random data BubbleC3 im-
plementation was faster than BubbleJ, for inversely or-
dered and already ordered data the Java implementation is
the fastest.
The importance of data type is demonstrated by the re-

sults of the following experiment in which we ran the same
algorithm (BubbleJ) on three different types of data: ran-
domly ordered (RND), reverse-ordered (INV), and already
sorted (SOR) data. With this experiment, we compared the
number of swaps needed to sort an array with the time of
execution and we discovered a strange behavior that can be
explained only by the presence of the processor’s branch
predictor. The BubbleJ algorithm is a simple algorithm
composed of three parts: loop administration, data compar-
ison, and data exchange (data swap). Loop administration
takes the same amount of time regardless of the input data
type. Likewise, the input data type does not affect the num-
ber of comparisons performed by the algorithm, which is
always precisely n ∗ (n − 1)/2. The input data type only
affects the number of swaps performed, which is exactly
n ∗ (n− 1)/2 in the case of INV data, 0 in the case of SOR
data, and approximately n2/2 in the case of RND data. The
exact number of swaps in our test is shown in the left graph
in Figure 8. Since the number of swaps is the only vari-
able quantity during algorithm execution (the number of all
the other operations is the same for all input data types),
one would expect that graphs depicting the experimental
time complexity for these three data types would be sim-
ilar, but this is not the case. The right graph in Figure 8
shows that running the algorithm on randomly sorted data is
much slower than running it on reverse-ordered data, even
though the algorithm in the former case performs fewer op-
erations than in the latter case. The only reasonable ex-
planation for this phenomenon is in the influence of the
processor’s branch prediction mechanism, which optimizes
data preparation for the processor and enables faster execu-
tion. This mechanism is particularly effective when suc-
cessfully predicting the future, which it apparently does

Figure 7: Tmin, INV data, n = 500, ..., 50000

548 Informatica 48 (2024) 543–548 T. Dobravec

Figure 8: The number of swaps and the time of execution of BubbleJ algorithm on three different types of data: randomly
sorted, already sorted and inversely sorted data.

well in the case of reverse-ordered data - because a swap
follows each comparison, the branch predictor makes fewer
mistakes than when swaps occur only occasionally. Prop-
erly prepared data makes the processor’s work easier, re-
sulting in a shorter total execution time, even though more
operations are performed. This result clearly shows that the
execution time of an algorithm is also influenced by fac-
tors that are not usually considered in theoretical analysis,
which leads to significantly different results between theo-
retically predicted and empirically measured times.

6 Conclusions

The findings of this research paper demonstrate that the per-
formance of algorithms is affected by numerous factors.
Despite our efforts to maintain a controlled environment,
we observed variations in our measurements. These devi-
ations were particularly noticeable in Java, where the mea-
surement of time is more sensitive to environmental influ-
ences than in C. We discovered that repeated execution of
algorithms is particularly important for small inputs. Fur-
thermore, we compared the performance of algorithms im-
plemented in different programming languages. Our find-
ings revealed that the difference between Java and C is not
significant and that it depends on the type of input data.
For randomly sorted arrays, the C implementation outper-
formed Java, while for inversely ordered and already sorted
data, Java was superior.
In the future, we could apply similar methods to inves-

tigate other problems and determine if these results can
be generalized. Additionally, we could explore the use of
other popular programming languages such as Python, and
examine in detail the real impact of the branch predictor
on the final results. By conducting further research in this
field, we can gain a better understanding of the factors that
impact algorithm performance, and ultimately improve the
efficiency and effectiveness of computer programs.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[2] T. Dobravec. Algator — an automatic algo-
rithm evaluation system. Advances in Comput-
ers, 116(1):65–131, 2019. https://doi.org/10.
1016/bs.adcom.2019.07.002.

[3] T. Dobravec. Exact time measuring challenges. In
Proceedings of the 25th International Multiconfer-
ence Information Society, IS MATCOS, volume I,
pages 21–24, Koper, 13-14 October 2022.

[4] M. Fernández. Models of Computation, An Introduc-
tion to Computability Theory. Springer, 2009. https:
//doi.org/10.1007/978-1-84882-434-8.

[5] D. Johnson. A theoretician’s guide to the experimental
analysis of algorithms. 12 2001. https://doi.org/
10.1090/dimacs/059/11.

[6] R. Kumar. Instruction Level Parallelism: Branch
Prediction and Optimization. LAP LAMBERT Aca-
demic Publishing, 2012.

[7] C. C. McGeoch. Experimental methods for algorithm
analysis. Encyclopedia of Algorithms, 2008. https:
//doi.org/10.1007/978-0-387-30162-4_135.

[8] B. Moret. Towards a discipline of experimental al-
gorithmics. Monograph in Discrete Mathematics and
Theoretical Computer Science, 2002. https://doi.
org/10.1090/dimacs/059/10.

[9] M. Price. Hot code is faster code - addressing jvm
warm-up. QCon, April 2016.

[10] B. Swathi. A comparative study and analysis on
the performance of the algorithms. International
Journal of Computer Science and Mobile Comput-
ing, 5(1):91–95, Januar 2016. ijcsmc.com/docs/
papers/January2016/V5I1201621.pdf.

[11] M. Tedre and N. Moisseinen. Experiments in comput-
ing: A survey. The Scientific World Journal, (1):1–11,
2014. https://doi.org/10.1155/2014/549398.

