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Our study presents a strategy for designing and implementing a Multi-Agent System (MAS) using organiza-
tional paradigms. The developed system offers a healthcare-oriented approach that utilizes the Internet of
Medical Things (IoMT) to assist public health authorities in predicting COVID-19-infected patients. The
proposed approach leverages autonomous agents to handle dynamic data from various sources within a
structured organization. These agents collaborate to make effective, real-time predictions. As the agents
continuously learn from the cases entering the system, the accuracy of predictions improves over time.
The system was implemented using the JaCaMo framework, which integrates three key layers of MAS pro-
gramming: organization, environment, and agent programming. The methodology demonstrated a predic-
tion accuracy of over 90%, outperforming state-of-the-art (SOTA) approaches by enabling faster real-time
decision-making. This capability facilitates the efficient processing of real-time big data, making a signif-
icant contribution to the advancement of predictive healthcare systems.

Povzetek: Razvit je sistem za napovedovanje okužb s COVID-19 z uporabo večagentnega sistema (MAS)
in algoritmov strojnega učenja. Sistem omogoča natančne napovedi z analizo podatkov v realnem času,
izboljšanih z učnimi agenti in IoMT.

1 Introduction

Artificial intelligence [1] is becoming increasingly impor-
tant in healthcare and has the potential to revolutionize the
way we diagnose, treat, and prevent diseases. In this pa-
per, our aim is to develop an intelligent system to predict
COVID-19 infection cases by involving a multitude of con-
cepts, such as Multi-Agent Organization, IoT devices, Ma-
chine Learning algorithms, and BigData analytics. This pa-
per presents a novel approach that leverages these advance-
ments to address the urgent need for accurate COVID-19
infection predictions.
Agent-Oriented Engineering is a widely recognized

method for constructing distributed and complex software
systems. This approach focuses on using autonomous,
proactive agents as the key elements in the design and
development process, making it well-suited for systems
that operate in highly dynamic environments. Autonomy
is a fundamental characteristic of agents in Multi-Agent
systems (MAS). However, while the autonomy of agents
can be beneficial in many contexts, it may also lead to
challenges, such as dispersed behavior that prevents align-
ment with global objectives. Consequently, conventional
Multi-Agent models frequently adopt an individualistic
outlook towards the environment by treating agents as self-
governing entities pursuing their objectives based on their

perceptions and abilities. In critical applications, such as
those found in business or government settings, it is essen-
tial to consider the behavior of the overall system.
The aim of Multi-Agent systems research is to under-

stand how autonomous agents can collaborate to solve
problems and create collective outcomes that cannot be
achieved by each agent working alone [2]. To reduce the
dispersing effects of agent autonomy, organizations offer
solutions. A Multi-Agent Organization is a social entity
composed of multiple agents, structured according to spe-
cific topologies and communication relationships. These
agents work together to complete multiple tasks to fulfill
the overall goal of the organization [3].
To attain global objectives in MAS, the independent be-

havior of individual agents may need to be regulated. This
is where organizational models come into play, serving as
a means of controlling agent behavior so that they can col-
laborate effectively to attain shared objectives [4]. These
models can be divided into two perspectives [5]: Agent-
Centered MAS, where the designer focuses on the behav-
ior of individual agents and their interactions without con-
sidering the system’s structure, and Organization-Centered
MAS, which emphasizes the behavior of the system as
a whole. From this perspective, the designer considers
both the overall organizational structure and coordination
patterns, as well as the individual actions of each agent.
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By creating norms or guidelines, organizational abstrac-
tion facilitates the coordination of agents’ local behavior
and interactions with one another. Furthermore, this model
enables agents to reason about the overall organizational
structure and the behavior of other agents.

Several applications based on Multi-Agent systems that
utilize Organization Theory have demonstrated its useful-
ness and proven successful in various fields, including
simulation, e-commerce, network management, collective
robotics, avionic mechanical design, traffic simulation, and
more. These diverse applications underscore the versatil-
ity and effectiveness of multi-agent systems across various
domains. Additionally, the organization in a Multi-Agent
system is important to support adaptation to environmen-
tal changes. These changes may be addressed by transi-
tioning from one organization to another (reorganization or
self-organization), as evidenced by the significant amount
of research in this area.

The Internet of Things (IoT) is a network of physical ob-
jects, devices, and sensors that are connected to the internet
and can communicate and exchange data with other devices
or systems. IoT technology enables the collection and anal-
ysis of large amounts of data, which can be used to improve
operational efficiency, reduce costs, and enhance decision-
making. More specifically, we are interested in the Inter-
net of Medical Things (IoMT) [6], which refers to medical
devices, sensors, and wearables that are connected to the
internet and can exchange health-related data. This inter-
connectedness plays a pivotal role in enhancing healthcare
delivery.

In the proposed approach, we combine the concepts and
techniques presented above with Big Data Analytics and
machine learning algorithms [7]. Big Data Analytics refers
to the process of analyzing large and complex datasets to
extract insights, patterns, and trends that can help inform
decision-making. It involves using advanced tools and
techniques to process and analyze data from various sources
[1], including structured and unstructured data, to uncover
meaningful insights.

With these foundational concepts established, the sub-
sequent sections of this paper will detail the proposed ap-
proach and its implementation. Section 2 presents a mo-
tivating healthcare example, while Section 3 reviews re-
lated research across various fields. Section 4 compares
our approach with existing methods from related work, and
Section 5 focuses on the design of the proposed solution.
Section 6 addresses the implementation and utilization of
the developed approach, and Section 7 provides a compari-
son and discussion of results from each agent in the system.
Finally, the ”Conclusions and Future Work” section offers
concluding remarks and potential directions for future re-
search.

2 Motivation and overview

To demonstrate the importance of incorporating organiza-
tional perspectives into the design of Multi-Agent Systems
(MAS), we present a scenario envisioning a solution for
combating the Coronavirus pandemic. This study intro-
duces an architecture for a Multi-Agent System that lever-
agesmachine learning algorithms to rapidly identify Covid-
19-infected patients. Our approach is based on a real-time
investigation system that collects physiological data from
patients, including body temperature, ECG, heart rate, oxy-
gen levels, blood pressure, glucose levels, and more.
The system relies on accurate information from hospitals

connected to it, necessitating an efficient method for storing
and processing large volumes of data. Big Data technology
is utilized to digitally store comprehensive information on
all Covid-19 cases, including those currently infected, re-
covered, or deceased. The stored data can be continuously
analyzed to develop future preventive measures. The sys-
tem applies a Multi-Agent Organizational model, enhanced
with data analytics powered by machine learning (ML), to
analyze the collected data and improve prediction models
in real-time.
This solution aids local health authorities in monitoring

a large number of users, promptly alerting them if symp-
toms are reported. Health officials can then reach out to
the affected users, instructing them to report to the hospital
for testing. Patients are admitted for observation until test
results are confirmed. Additionally, the system tracks in-
dividuals in close contact with the infected patient, includ-
ing family members, friends, and coworkers, and monitors
them for any signs of infection.
By assisting health authorities in controlling the spread

of Covid-19, this approach helps alleviate the burden on
medical staff. Furthermore, the solution is adaptable for
use in other hazardous pandemics or public health crises,
offering a versatile and scalable tool for managing health
emergencies.

3 Related work

As noted by Ilana et al. (2021) [8], the majority of AI re-
search aimed at combating the coronavirus can be classified
into four main categories: diagnosis and prognosis, treat-
ments and vaccines, social control and tracking, and predic-
tion. This paper focuses primarily on the latter category—
prediction.
Otoom et al. (2020) [9] proposed a system for detect-

ing and monitoring Covid-19 cases in real-time. During
quarantine, IoT devices were deployed to gather real-time
physiological data, and machine learning algorithms were
used to enhance predictive accuracy. Their study compared
seven machine learning algorithms, with five showing im-
provements in prediction accuracy. This demonstrates the
effectiveness of using IoT in combination with machine
learning for real-time pandemic response.
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A survey by Thanh (2020) [10] analyzed various AI tech-
niques applied to combat Covid-19, focusing on data ana-
lytics, natural language processing, and data mining. The
work highlighted the diversity of AI applications in pan-
demic management, particularly in addressing key chal-
lenges such as big data processing and decision-making ef-
ficiency.
Carrillo et al.(2020)[11] employed unsupervised ma-

chine learning techniques, including k-means clustering,
to classify countries based on similar Covid-19 infection
patterns. This study emphasized the importance of using
machine learning to understand the geographic spread of
the virus and revealed significant insights into transmission
trends across different regions.
Janko et al.(2021)[7] explored how non-countermeasure

factors, such as culture, development, and travel, con-
tributed to the early spread of Covid-19 before strict inter-
ventions were implemented. Using machine learning and
statistical models, the study achieved approximately 80%
prediction accuracy, showing how interconnected societal
factors affect viral transmission in diverse contexts.
Recently, agent-based systems have emerged as a

promising approach to addressing limitations in the health-
care sector. By integrating Multi-Agent Systems (MAS)
into medical applications, healthcare costs can be reduced,
and the burden on medical professionals can be alleviated.
These systems shift the focus toward preventive, long-
term care, which is patient-centered rather than hospital-
centered. This transformation includes the use of remote
monitoring systems that enable patients to play a more ac-
tive role in managing their health and treatment, especially
during extended care periods in both hospitals and homes.
Isern et al.(2016)[12] developed a MAS-based platform

for managing patient care during hospital stays. This plat-
form collects real-time data from various sources, facili-
tating dynamic bed occupancy allocation, doctor assign-
ments, medical procedure planning, and automated billing
by tracking the behavior of hospital actors in real time.
The system demonstrates the potential of MAS to optimize
healthcare operations and improve hospital management ef-
ficiency.
Lanzola et al.(1999)[13] proposed a framework for de-

veloping interoperable Multi-Agent Systems for medical
applications. Their work highlighted the need for MAS in
enhancing collaboration across diverse healthcare systems.
Additionally, Juan et al.(2006) [14] in an Ambient Intel-
ligence (AmI) ecosystem for Alzheimer patients, another
study by Gonzalez et al.(2002)[15] developed BDI agents
that integrate context-aware technologies to gather real-
time data from users, further advancing patient-centered
care.

4 Discussion
To summarize the key methodologies, results, and con-
tributions from the aforementioned studies, we present a

comparative table (Table .1). This table provides a clear
overview of the different approaches to Covid-19 predic-
tion, their key features, and their relative performances.
This table highlights how different methods approach

COVID-19 prediction, focusing on collaboration effi-
ciency, machine learning techniques, and accuracy. It also
demonstrates the strength of our proposed MAS-based sys-
tem, particularly its adaptability, collaboration-driven im-
provements, and real-time monitoring capabilities, which
are critical for managing future pandemics and healthcare
crises.
In summary, previous research demonstrates the effec-

tiveness of AI and MAS in addressing various healthcare
challenges, particularly in pandemic response and patient
monitoring. Our study builds on these approaches by inte-
grating Multi-Agent Organizational paradigms with IoMT
devices and machine learning for real-time Covid-19 pre-
diction, providing a novel solution that enhances predictive
accuracy and supports public health efforts.

5 The proposed solution
Several studies conducted in the field of Multi-Agent learn-
ing have emphasized the importance of large datasets [16,
17]. Additionally, extensive research has been performed
on variousmodels, such as ensembles of classifiers [18, 19].
The goal of this research is to develop a predictive Covid-19
case detection system using a Multi-Agent approach based
on an organizational model. The system operates in a dis-
tributed environment and is composed of different sites re-
ferred to as ”Assistant Controllers” (ACs). Each AC con-
sists of two agents: a Learner Agent and an Interface Agent.
It is crucial to note that different sites may have distinct in-
stances of datasets. The knowledge generated by the inde-
pendent ACs at each site will be consolidated into a single
knowledge repository. The global system comprises of a
collection of ACs and a special agent called a Broker agent
or Mediator, as illustrated in (Fig. 1).

Figure 1: The global architecture of MAS organization
Covid-19 approach

The agents communicate and share information about the
selected datasets at each node. Subsequently, the Broker
Agent selects the dataset that provides the most significant
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Table 1: Performance comparison of predictive methods
Article Title Key Metrics/Variables Methods Results/Findings

[9]:An IoT-based Accuracy, real-time IoT, Ensemble Learning (RF Achieved over 90%
Framework for Early health data GBTs), Apache Spark accuracy with various AI
Identification and algorithms; proposed a

Monitoring of Covid-19 real-time framework for
Cases monitoring Covid-19

using IoMT and WBANs.
[11]:Using Country-Level Covid-19 case counts, Unsupervised Machine Identified distinct clusters

Variables to Classify country variables Learning of countries based on
Countries According to Covid-19 case counts
Confirmed Covid-19 using unsupervised

Cases learning techniques.
[13]:A Framework for Collaboration Framework Development, Proposed a cooperative
Building Cooperative efficiency, application Agent-Based Modeling agent framework for
Software Agents in areas healthcare applications to
Medical Applications enhance collaboration

among medical agents.
[14]:Intelligent Patient monitoring Agent Technology, Sensor Developed an intelligent
Environment for metrics, AI integration Networks monitoring environment

Monitoring Alzheimer for Alzheimer’s patients
Patients, Agent to enhance care and

Technology for Health support for families.
Care.

[7]:Machine Learning for Spread factors, Machine Learning, Data Analyzed non-
Analyzing Non- machine learning Analysis countermeasure factors

Countermeasure Factors accuracy affecting Covid-19
Affecting Early Spread of to spread; developed

Covid-19 predictive models with
promising accuracy 80%
in identifying influential

factors.
The proposed approche Collaboration Multi Agent based on an Support for Remote Care,

efficiency ,Decision- Organizational Modeling, Real-time Monitoring and
making efficiency , Incremental Machine & Alerts, Improved
machine learning ensemble learning Decision-Making,
accuracy , real-time Techniques Customizable for Future

health data Pandemics

information. After this, the prediction decisions are sent
to health authorities and users for preventive action (see
Fig. 2). In our proposed approach, the agents work to-
gether within a structured organization to coordinate their
behavior and cooperate to achieve the global objective of
improving Covid-19 predictions.

Figure 2: The global architecture of the MAS organiza-
tional approach to Covid-19 prediction

5.1 Assistant controller AC

An Assistant Controller (AC) is a Multi-Agent System
(MAS) designed to categorize and predict Covid-19 pa-
tients using streaming datasets provided by health authori-
ties. The structure of the AC is illustrated in Fig. 3. The
Assistant Controller (AC) operates within the framework
of the Agent and Artifact (A&A) paradigm, as discussed in
Section 5.2.3. This paradigm serves as a conceptual model
that outlines the interactions between autonomous agents
and their environment, facilitating effective communica-
tion and collaboration.
At the heart of the AC’s operation are two primary agents:
1. Interface Agent: This agent is responsible for cap-

turing every incoming dataset at the Assistant Con-
troller (AC) and processing bid queries from the Bro-
ker Agent, ensuring that relevant data is available for
decision-making. Upon receiving new data or queries,
the Interface Agent immediately notifies the Learner
Agent by updating its environment through the Agent



Predicting Covid-19 Infections With a Mutlti-Agent… Informatica 48 (2024) 685–698 689

and Artifact (A&A) mechanism, where artifacts act as
intermediaries to facilitate communication, coordina-
tion, and collaboration among agents. This process
initiates the prediction process, ensuring continuous
and adaptive updates to the predictive model.

2. Learner Agent: This agent plays a crucial role in up-
dating the predictive model. Upon receiving notifi-
cations from the Interface Agent, the Learner Agent
incrementally updates the model based on the incom-
ing data. It can also predict the queried bids as the
expected results. This capability allows the Learner
Agent to refine its predictions continuously, ensuring
that the model remains current and relevant.

The real-time coordination between the Interface Agent and
the Learner Agent enables the AC to continuously rebuild
and dynamically update the predictive model. As a result,
our system effectively manages highly dynamic healthcare
datasets, adapting seamlessly to new information as it be-
comes available. This flexibility is essential in a rapidly
changing context like Covid-19, where timely and accu-
rate predictions can significantly impact public health re-
sponses.

Figure 3: Assistant Controller architecture

5.1.1 Interface agent

The Interface Agent plays a crucial role in cleaning, stan-
dardizing, and transforming data to produce high-quality
datasets. Preparing these training datasets is essential for
machine learning and statistical analysis, as it allows a com-
puter to acquire knowledge and effectively learn problem-
solving techniques. Both machine learning models and
statistical analyses rely heavily on these well-prepared
datasets.
Since datasets may contain erroneous or missing infor-

mation, data cleaning is necessary to remove or correct
these issues. The data is partitioned into separate sets for
testing and training purposes, with the machine learning
(ML) model being trained on 75% of the dataset. The effi-
ciency of the proposed solution is then evaluated using the
remaining 25%. Additionally, the Interface Agent serves as
a connection point between the Learner Agent and the Bro-
ker Agent, facilitating seamless communication and coor-
dination within the system.

Medical data streams: Whenever a new Covid-19 case is
discovered, it must be reported promptly to the relevant As-
sistant Controller system. This allows the intelligent learn-
ing agents to update the model using only a single iteration
through the data, leading to better and more accurate real-
time predictions.

5.1.2 Learner agent

The Learner Agent has two vital roles to fulfill. The first
function is responsible for creating the training model, re-
ferred to as the Classify function. The second function is
tasked with making predictions, known as the Predict func-
tion. This function utilizes the model to predict unknown
outcomes. Notably, the goals of these two missions can be
achieved in parallel, leveraging the strengths of a Multi-
Agent System (MAS) and incremental machine learning
techniques.
Supervised machine learning algorithms include a clas-

sification type, where a model is developed from a set of
labeled training data. As a result, the model can predict
the class or label for newly discovered data, known as test-
ing data. Metrics such as accuracy, which are calculated
based on the testing results, can be used to evaluate classi-
fication performance . Numerous classification algorithms
exist, including decision trees, random forests, neural net-
works, rule-based algorithms (such as conjunctive rules and
PRISM), logistic regression, naive Bayes, and others. Each
algorithm has its distinct advantages and limitations, and
the selection of an appropriate algorithm depends on vari-
ous factors, including the data’s attributes and the desired
objectives [20].
Decision trees are highly regarded classification tech-

niques in the field of data mining and have applications
across various domains, including business intelligence,
biomedicine, and healthcare. The conventional method of
creating a decision tree is known as the Greedy Search ap-
proach. This process involves loading the complete dataset
into memory and organizing it into a series of nodes and
leaves that form a hierarchical structure. However, a sig-
nificant drawback of this method is that once the decision
tree has been constructed, it cannot be easily modified or
updated, even in the presence of new data. Incorporating
newly acquired information necessitates the complete re-
construction of the tree by loading both historical and recent
data, a process that may be time-consuming and computa-
tionally intensive. Additionally, this approach risks losing
critical information or patterns that were present in the orig-
inal tree. To address these limitations, various alternative
methods for decision-tree learning have been developed to
enhance the scalability and adaptability of decision trees to
changing data [21].
The conventional approach is inadequate for handling

limitless data inputs, such as data streams, where informa-
tion arrives in real-time. To tackle this challenge, an in-
cremental approach has been introduced, enabling dynamic
model construction so that the tree expands as new data is
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inputted. The Very Fast Decision-Tree (VFDT) algorithm,
proposed by [22], employs the Hoeffding Bound [23] for
incremental node splitting. This approach constructs a de-
cision tree by continuously observing the features of incom-
ing data and maintaining a record of their statistics. Once
sufficient statistics are collected from every leaf, a node-
splitting algorithm is applied to determine whether there is
adequate statistical evidence to justify a node split. If a node
split is warranted, the tree is expanded, and a new decision
node is added in place of the leaf. This technique allows
the decision tree to learn continuously as the data stream is
processed in real-time [24]. The primary advantage of this
approach is its ability for real-time data mining, eliminat-
ing the need to store all data in advance since data streams
are potentially unlimited. Unlike traditional decision trees
that require retraining with every new data arrival, the in-
cremental approach allows for dynamic updates to the tree,
enabling more efficient and effective data analysis. The
process of building a VFDT is demonstrated in Algorithm
1 [25]. Notably, node divisions across multiple leaves can
occur concurrently and autonomously [26].
While several libraries in the literature support incre-

mental learning—particularly for the Very Fast Decision
Tree (VFDT), such as MOA, Apache Spark MLlib, Scikit-
Multiflow, and River—we have chosen WEKA for the fol-
lowing reasons:
1. Compatibility with Java Eclipse: WEKA is fully

compatible with Java, allowing for seamless integra-
tion with the Java Eclipse IDE. Its rich package and
API facilitate the easy incorporation of WEKA’s ma-
chine learning capabilities into larger Java applica-
tions, making it a versatile tool for implementing ma-
chine learning within the JaCaMo framework.

2. User-Friendly Interface: WEKA provides an intu-
itive interface for data preprocessing, model evalu-
ation, and visualization. This streamlines the ma-
chine learning workflow, making it accessible for re-
searchers who are new to the field.

3. Community Support and Documentation: WEKA
boasts a strong community and extensive documenta-
tion, which facilitate troubleshooting and ensure the
availability of resources for further experimentation.

4. Suitability for Multi-Agent Systems: WEKA’s ca-
pabilities align well with the requirements of our
multi-agent system, particularly in handling large
datasets, performing real-time predictions, and inte-
grating seamlessly with the JaCaMo framework.

5. Runtime Metrics: We will present detailed runtime
metrics forWEKA’s machine learning tools to demon-
strate their efficiency, including average training and
testing times for various algorithms implemented
within WEKA, such as Random Forest, VFDT, and
others utilized in our study.

We selected the Very Fast Decision Tree (VFDT) algo-
rithm for several compelling reasons relevant to health-
care applications. First, VFDT is designed for high
scalability [27], enabling it to efficiently manage large-

scale data streams typical in healthcare settings. Unlike
ensemble-based approaches, which often require full re-
training, VFDT allows for incremental updates, making it
well-suited for the rapid influx of patient data. Addition-
ally, VFDT’s real-time adaptation capabilities [28] ensure
that the model can quickly adjust to dynamic changes in
healthcare datasets. Finally, its memory efficiency [29] en-
ables effective resource management, which is crucial in
healthcare environments where computational power may
be limited. Thus, the combination of efficiency, adaptabil-
ity, and memory management makes VFDT a more suit-
able choice for our predictive modeling needs compared to
ensemble-based incremental algorithms.

Algorithm 1: Very Fast Decision Tree Induction
Input: S: A sequence of examples; X : The set of

attributes; γ: One minus the desired
probability; ε: The Hoeffding bound

Output: τ : very fast decision tree learned from S

1 Initialize τ with a single root node.
2 Initialize the statistics for tree growth.
3 foreach s ∈ S do
4 Sort s into leaf node l using τ .
5 Update the statistics at l for tree growth.
6 if Examples at l are not from the same class

then
7 foreach attribute Xa ∈ X do
8 Calculate the Hoeffding bound using the

formula: ε =
√

R2 ln(1/δ )
2|S| (where R is

the range of the attribute values);
9 Select the attribute with the highest

Hoeffding bound and split l on that
attribute.

10 if multiple attributes have the same
highest Hoeffding bound then

11 select the one with the highest
information gain.

5.2 Broker agent
The system continuously receives incoming queries related
to Covid-19 testing datasets for prediction. To facilitate
communication between the collection of Assistant Con-
troller (AC) agents and external entities, an intermediary
agent known as the Broker Agent is employed. The Broker
Agent is responsible for mediating interactions between the
AC agents and the external environment.
Once it receives the queries, the Broker Agent utilizes

Random Forest techniques to select the most appropri-
ate predictions based on the aggregated data from the AC
agents. This approach ensures that the predictions are ro-
bust and take advantage of the diverse insights provided by
the various AC agents.
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5.2.1 Random forest

The Random Forest algorithm is an ensemble learning
method that involves building multiple decision trees and
combining their predictions to enhance accuracy. Each de-
cision tree is constructed using a randomly selected subset
of the training data and a random subset of features. The fi-
nal prediction is determined by averaging the predictions
from all the trees in the forest. This approach helps re-
duce overfitting and improves the overall accuracy of the
model. Based on the principles of Random Forest classi-
fication [30], the proposed approach involves selecting the
most relevant majority vote decision from various Assis-
tant Controller (AC) groups. This method operates under
the assumption that different AC groups may have access
to different sources of information and may employ distinct
decision-making criteria. By combining the decisions from
multiple AC groups, we can leverage their diverse perspec-
tives and expertise to arrive at amore informed and accurate
conclusion.
We chose Random Forest as the primary decision-

making technique at the broker agent level due to its strong
performance in managing complex, high-dimensional
datasets typical of healthcare applications. Although
Random Forest presents challenges in interpretability—
especially when dealing with distinct datasets from each
AC—its robustness and ability to handle missing data (par-
ticularly when one AC does not respond), along with its ca-
pacity to provide actionable insights, make it a strong can-
didate for our predictive modeling efforts in the healthcare
domain.
To implement this approach, we first need to identify

the relevant AC groups that can contribute input to the
decision-making process. Various criteria can be employed
to select these groups, including their area of expertise, past
performance, or level of authority.
Once the relevant AC groups are identified, we can

gather their decisions and use a voting mechanism to deter-
mine the most pertinent majority decision. This can involve
assigning weights to the decisions based on the expertise or
performance of each group or utilizing a more complex al-
gorithm to combine decisions in a meaningful manner.
Overall, this approach has the potential to improve the

accuracy and robustness of the decision-making process
by leveraging the collective intelligence of multiple AC
groups. However, it also requires careful coordination and
communication between the different groups to ensure that
their decisions are aligned and consistent with the overall
goals and objectives of the organization.

5.2.2 Contract Net

To prevent potential bottlenecks associated with the Bro-
ker Agent, the system employs the Contract Net Protocol,
originally proposed by [31] and later refined by [32]. This
protocol is designed to facilitate the announcement of trans-
ferable tasks and to solicit bids from Interface Agents rep-
resenting each Assistant Controller (AC) group capable of

executing these tasks.
When a task is announced, the Interface Agents respond

with bids that indicate their perceived capability to fulfill
the task. The Broker Agent collects these bids and allo-
cates the task to the bidder with the highest offer. Although
the Contract Net Protocol is often viewed as a negotiation
technique, its primary function is to act as a coordination
mechanism for task allocation.
Task Announcement and Bid Solicitation: When a spe-

cific task arises—such as processing a new Covid-19
dataset for prediction—the Broker Agent announces this
task to the relevant AC groups within the system. Each In-
terface Agent receives the announcement and evaluates its
own capabilities, resources, and current workload before
deciding whether to respond with a bid. The bid submit-
ted by each Interface Agent includes not only an estimate
of the time and resources required to complete the task but
also their confidence level in executing it successfully.
Bid Evaluation and Task Allocation: Once the Broker

Agent has received all the bids from the Interface Agents, it
conducts a thorough evaluation to determine which bid of-
fers the best combination of capability and cost. The Broker
Agent allocates the task to the bidder with the highest offer,
taking into account the quality of the bid and the capabilities
of the Interface Agent. This allocation process ensures that
tasks are assigned to agents that are most likely to perform
them effectively and efficiently.
Coordination and Flexibility: Although the Contract Net

Protocol is often viewed primarily as a negotiation tech-
nique, its primary function is to serve as a coordination
mechanism for task allocation. By allowing dynamic task
allocation and enabling agents to bid for multiple tasks si-
multaneously, the protocol enhances the system’s flexibil-
ity and adaptability. This is particularly important in a
healthcare setting where the demands on the system can
vary significantly and unpredictably.
Workload Balancing The protocol also promotes work-

load balancing within the system. Since agents that are al-
ready busy with other tasks are less likely to place bids,
the distribution of tasks tends to be more even across the
available agents. This self-regulating mechanism helps to
prevent any single agent from becoming overwhelmed with
too many tasks, thereby maintaining overall system perfor-
mance.
Limitations of the Contract Net Protocol: However, the

Contract Net Protocol does have its limitations:
1. Conflict Detection and Resolution: One notable

drawback is that the protocol lacks built-in mecha-
nisms for conflict detection and resolution. If two
agents bid for the same task or if their bids conflict
in terms of resource availability, the protocol does
not provide a framework for resolving these conflicts,
which may lead to inefficiencies or delays.

2. Heavy Reliance on Communication: The protocol
heavily relies on communication between agents. This
reliance can introduce delays or inefficiencies in task
allocation, especially in scenarios where network la-
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tency or communication failures occur. If the commu-
nication channels are congested or disrupted, it could
hinder the timely allocation of tasks.

3. Scalability Concerns: In larger systems with numer-
ous agents and tasks, the process of soliciting bids and
evaluating them can become computationally expen-
sive and time-consuming. This could potentially lead
to performance bottlenecks as the system scales.

4. Limited Bidder Pool: The effectiveness of the pro-
tocol is contingent upon having a sufficient number
of agents willing and able to submit bids. If too few
agents respond to a task announcement, it could result
in suboptimal task allocation.

Overall, while the Contract Net Protocol offers a struc-
tured and efficient means of task allocation within the Bro-
ker Agent framework, it is important to be aware of these
limitations and to consider supplementary mechanisms or
strategies that could mitigate potential issues and enhance
the overall robustness of the system.

5.2.3 Agents and artifacts (A&A) environment

Our proposal involves utilizing the Agents and Artifacts
meta-model to create a coordination mechanism for devel-
oping a shared environment, as described by [33]. This
model addresses some of the shortcomings of the Con-
tract Net Protocol by representing the environment as
workspaces, where Agents and Artifacts coexist to provide
various services. In this environment, agents interact with
artifacts through a mechanism known as the focus action.
When an agent focuses on an artifact, it gains access to the
observable properties of that artifact as perceptions. Addi-
tionally, artifacts can offer a range of operations or actions
that agents can perform, enhancing collaboration and inter-
action within the system. Bidding Process for Task Allo-
cation: The Broker Agent plays a crucial role in locating
Interface Agent contractors for each Assistant Controller
(AC) group (Fig. 4). This is achieved through a structured
bidding process, which follows these steps:
1. The Broker Agent announces the task (the task is con-

sidered an artifact in the system).
2. Interface Agents evaluate the task based on their capa-

bilities and commitments.
3. Interface Agents submit bids to the Broker Agent.
4. The Broker Agent evaluates the received bids and se-

lects themajority vote from the competing predictions.
Decentralized and Collaborative Approach: This bidding
scheme is completely distributed, meaning that each agent
operates independently without a centralized controller.
The Broker Agent facilitates the announcement of tasks and
the collection of bids, but the decision-making process re-
lies on the collective actions of multiple agents. Each Inter-
face Agent autonomously assesses the task based on its own
capabilities and commitments, leading to a diverse range of
bids that reflect varying perspectives. The final decision
regarding task allocation is made based on the majority of
predictions from the Interface Agents. This approach not

only ensures a decentralized and collaborative handling of
tasks but also leverages the diverse expertise of multiple
agents to enhance the accuracy and reliability of the out-
comes.
By employing the Agents and Artifacts framework, we

create a flexible and adaptive environment that can effec-
tively manage the dynamic and complex nature of health-
care data processing tasks. The interaction between agents
and artifacts allows for improved coordination, resource
utilization, and task execution in the context of predicting
Covid-19 patient outcomes.

Figure 4: Broker agent

6 Some implementation aspects
The integration process described in the previous sections
was implemented using the Eclipse Modeling and JaCaMo
framework. The JaCaMo1 framework is a multi-agent-
oriented programming platform (MAOP) designed to facili-
tate the development of complex multi-agent systems [34].
This framework utilizes autonomous agents programmed
in Jason2 , which operate within environments defined as
artifacts in CArtAgO 3. Additionally, these agents are or-
ganized by the Moise framework 4, and they interact with
each other using a specified interaction language.
All experiments were conducted on a system equipped

with an Intel Core i5-1035 G1 processor running at 1.00
GHz and 16 GB of RAM. The software application Alert-
Covid employs the proposed model, consisting of three As-
sistant Controllers named UK, Biskra, and ESI. The Broker

1http://jacamo.sourceforge.net
2http://jason.sourceforge.net/wp
3http://cartago.sourceforge.net
4http://moise.sourceforge.net/
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Agent serves as the intermediary, facilitating communica-
tion and coordination among the different Assistant Con-
trollers.

6.1 UK assistant controller

Figure 5: UK architecture

Figure 6: UK interface

6.1.1 UK interface agent

For the training data at the UK Assistant Controller site
(Fig 7), we utilize the dataset titled Covid-19 Symptoms
and Presence, which is publicly available on Kaggle [35].
This dataset comprises 20 attributes that represent poten-
tial factors associated with contracting Covid-19, including
symptoms such as cough and fever, along with other rel-
evant indicators. Additionally, it contains a class attribute
indicating the presence of the virus.
The dataset is sourced from reputable organizations, in-

cluding the World Health Organization and the All India
Institute of Medical Sciences, with the aim of facilitating
research into the prevalence of symptoms and their corre-
lation with Covid-19 diagnoses. Its comprehensive nature
makes it a valuable resource for predictive modeling in the
healthcare domain.

6.1.2 UK learner agent

The UK Assistant Controller’s learning agent implement
the Hoeffding tree algorithm, which is integrated into the
open-source software WEKA, to obtain knowledge from

Figure 7: UK interface agent

data streams. WEKA is a suite of machine learning al-
gorithms developed at the University of Waikato in New
Zealand [36]. It facilitates data mining by providing a wide
range of tools for clustering, pre-processing, visualization,
association, regression, and classification.
The VFDT implementation in the UK learner agent uses

the following specific parameters Fig. 8:
1. Splitting Criterion: Gini Index, which is a measure

of the impurity or variance of a node. The algorithm
selects the attribute with the lowest Gini Index to split
the node, leading to purer child nodes.

2. Allowable Error δ : 1 · 10−7.This parameter controls
the confidence level for deciding whether to split a
node. A lower error threshold ensures higher confi-
dence in the decision to split, minimizing the likeli-
hood of unnecessary splits, which helps in maintaining
the efficiency of the model.

3. Grace Period: 100 instances. This setting ensures
that the algorithm waits for 100 instances before eval-
uating a potential split at any node. This helps to accu-
mulate sufficient data to make statistically sound split-
ting decisions, avoiding premature splits based on in-
sufficient data.

These parameters help the UK learner agent achieve a
balance between accuracy and efficiency, making it capa-
ble of handling continuous data streams while ensuring the
decision tree adapts quickly to new data without overfitting.

Figure 8: UK learner agent

A learning curve plots accuracy against the number of in-
stances, as illustrated in (Fig. 9), showing how the model’s
performance improves with more training data.
– The accuracy starts at 81.42% at 5602 instances and
fluctuates slightly as more data is processed.

– Over time, there is a general upward trend, with accu-
racy reaching 93.65% at 1982 instances.



694 Informatica 48 (2024) 685–698 S. Safir et al.

Figure 9: UK learner curve

– The model demonstrates significant improvement,
achieving over 90% accuracy as it processes larger
datasets.

Analysis:
– The learning curve likely depicts an overall positive
trend with some small fluctuations. These fluctuations
suggest that the model is learning from new data but
may occasionally encounter challenges from certain
instances.

– Despite these variations, the general increase in accu-
racy indicates the model’s capacity to learn and im-
prove its predictions as more instances are introduced.

The UK learner model shows a general improvement in ac-
curacy as more data is processed, starting at 81.42% and
reaching over 90%. Despite minor fluctuations, the overall
trend is upward, indicating the model’s ability to adapt and
learn effectively from increasing data.

6.1.3 UK test Covid-19 case

With the implementation of our proposed architecture, we
developed a GUI module for testing the UK Assistant Con-
troller, enabling functional testing at the local level. Fig.10
presents an example of a positive Covid-19 case.

Figure 10: UK test Covid-19 case

6.2 ESI assistant controller
6.2.1 ESI interface agent

The ESI Interface Agent operates as a crucial component
within the multi-agent system, specifically tasked with han-
dling and processing COVID-19-related health data from a

Figure 11: ESI interface

localized data stream. To enable effective COVID-19 pre-
diction, the ESI Interface Agent utilizes a dataset sourced
from a research repository [37]. This combined dataset,
titled ”Covid Symptoms,” features 3,021,444 entries and
ten essential characteristics related to COVID-19 symp-
toms and test outcomes. The dataset includes key informa-
tion on symptoms such as cough, fever, shortness of breath,
sore throat, and headache, which are critical indicators for
COVID-19 detection.
Given the dataset’s comprehensive nature, the ESI Inter-

face Agent processes and cleans the data to ensure its us-
ability for predictive modeling. The cleaned and prepro-
cessed data is then forwarded to the Learner Agent, which
uses the Very Fast Decision Tree (VFDT) algorithm for in-
cremental learning. This approach allows the agent to con-
tinuously update the prediction model in real time as new
COVID-19 cases are added to the stream, without the need
for retraining from scratch.
The choice of this dataset aligns perfectly with the goals

of the ESI Interface Agent for several reasons:
1. Rich Symptom Features: The dataset contains detailed

records of COVID-19 symptoms, allowing the ESI In-
terface Agent to make highly accurate predictions. By
processing a diverse range of symptoms such as cough,
fever, and sore throat, the agent can feed comprehen-
sive input into the learning model.

2. Large Scale Data: With over 3 million entries, the
dataset provides the necessary volume for evaluating
the robustness and scalability of the system. This is es-
pecially useful in a real-world scenario where the ESI
Interface Agent must process a continuous influx of
new COVID-19 cases.

3. Real-Time Updates: The incremental learning method
employed by the Learner Agent ensures that the ESI
Interface Agent can handle real-time data without de-
lays. The large dataset simulates real-world condi-
tions, where updates to themodel must happen quickly
to reflect new information.

4. Binary Class Labels: The presence of a class attribute
indicating a positive or negative COVID-19 test result
is crucial for the classification tasks performed by the
agent. This simplifies the prediction process, allow-
ing for straightforward binary classification and eval-
uation of prediction accuracy.

In summary, the ”Covid Symptoms” dataset not only
aligns with the core tasks of the ESI Interface Agent but also
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ensures the agent can process high-volume data efficiently,
update models in real time, and make accurate predictions
based on symptom analysis. By incorporating this dataset
into the system, the ESI Interface Agent plays a vital role in
ensuring the overall success of the multi-agent COVID-19
prediction architecture.

6.3 Biskra assistant controller

Figure 12: BISKRA interface

6.3.1 Biskra interface agent

The dataset titled ’Covid-19 Symptoms Checker,’ sourced
from Kaggle[38], contains 27 attributes related to Covid-
19 symptoms and demographic information that may affect
whether an individual has contracted the Coronavirus. Key
attributes include:
– Symptoms: Fever, Tiredness, Dry Cough, Difficulty in
Breathing, Sore Throat, and more.

– Severity Levels: Indicators for Mild, Moderate, Se-
vere, and None.

– Contact Information: Details on contact with con-
firmed Covid-19 cases.

– Demographics: Gender (Male, Transgender) and
Country.

This dataset is suitable for building a robust model to bet-
ter predict Covid-19-infected patients for several reasons:
1. Comprehensive Symptoms: The dataset includes a

wide array of Covid-19 symptoms, making it highly
relevant for early detection and diagnosis in real-time
applications.

2. Severity Assessment: Having labels for different
severity levels helps in predicting the potential pro-
gression of the infection, allowing healthcare author-
ities to prioritize responses based on predicted out-
comes.

3. Contact History: Information on whether individuals
were in contact with confirmed cases significantly im-
proves the predictive power of the model, aiding in
identifying likely transmissions.

4. Demographic Factors: Attributes like gender and
country allow for a detailed analysis of symptom pre-
sentation and the potential impact of demographics on
infection susceptibility and disease outcomes.

6.4 The broker
The role of the Broker is to mediate between different As-
sistant Controllers (UK, ESI, Biskra) (Fig .13), ademon-
strating the benefits of collaboration despite varying inter-
ests and goals. Autonomous and collaborative decision-
making among the three Assistant Controllers is facilitated
through the use of the Contract Net Interaction Protocol
(Fig . 14).

Figure 13: Broker interface

Figure 14: Broker use Contact Net protocol

7 Comparison and discussion
Fig .15 illustrates a comparison of the accuracy results from
a portion of the dataset, starting from instance 7500 onward.
This timeframe allows the system to build its model effec-
tively. The comparison includes the UK, Biskra, and ESI
agents, as well as the Broker Agent.

Figure 15: Broker acurracy

The performance of the UK, Biskra, and ESI ACs is sum-
marized as follows:
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– UK AC: Active in roughly half of the instances, with
an accuracy ranging from 85% to 92%when involved.

– Biskra AC: Sporadically active, performing well when
engaged, with an accuracy between 80% and 90%.

– ESI AC: The least active but consistently reliable when
used, often achieving 85% or higher accuracy.

7.1 Broker performance highlights
– Consistent Activity: Unlike the individual agents, the
broker is always active and never shows an accuracy
of 0. It ensures that predictions are made even when
some agents are inactive.

– Accuracy Selection:: The broker typically mirrors the
highest-performing agent’s accuracy, indicating that it
selects or aggregates the best available prediction from
the active agents.

– Aggregation Role: When multiple agents are active,
the broker’s performance reflects its ability to select
the most accurate prediction or combine insights, en-
suring higher accuracy.

7.2 Key observations
– Broker Stability: The broker’s accuracy remains con-
sistently strong, never dropping to 0, unlike the agents.
This reliability makes the broker a crucial decision-
maker, especially when certain agents are inactive.

– Dependence on Agents: The broker performs better
whenmultiple agents contribute. When only one agent
is active, the broker’s accuracy mirrors that agent’s
performance. For example:

– In instance 7541, only the UK agent contributes,
resulting in the broker’s accuracy being equal to
the UK agent’s at 92.86

The response times of the Broker Agent (in nanoseconds)
across various instances are illustrated in (Fig .16). The
broker’s response times range from 5,600 ns to a peak of
113,700 ns in instance 7540, with another notable spike at
50,200 ns in instance 7574. These variations indicate occa-
sional spikes in response times, possibly due to increased
processing complexity or load.
The average response time of the Broker Agent is ap-

proximately 11,716 ns. Despite occasional delays, which
may depend on the materials used, the broker maintains a
relatively low average response time, indicating that it can
efficiently manage predictions under typical conditions.
The broker plays a critical role in ensuring continuous

and accurate predictions, achieving over 90% accuracy
consistently over time. Utilizing the Random Forest tech-
nique, the broker consistently selects the best-performing
agent’s result, enhancing the overall system’s reliability
and performance. To further improve accuracy, increas-
ing the participation of AC, would provide the broker with
more data to work with and potentially boost overall per-
formance.

Figure 16: Broker reponse time

8 Conclusion and future work

In conclusion, this study successfully demonstrates the ef-
fectiveness of a multi-agent system (MAS) utilizing the In-
ternet of Medical Things (IoMT) in predicting COVID-19-
infected patients. The approach presented is grounded in an
organizational structure within the MAS, defining the ex-
pected behaviors of agents collaborating towards a common
healthcare objective. Through the implementation of ex-
perimental studies with various datasets, the proposed ap-
proach illustrates the contributions and benefits of organi-
zational frameworks inMAS systems, achieving significant
improvements in prediction accuracy, reaching over 90%.
Furthermore, we propose a flexible organizational model

that allows for dynamic reorganization of the MAS in re-
sponse to environmental changes. To enhance system per-
formance, future work will focus on increasing the number
of broker agents to mitigate potential bottlenecks. Addi-
tionally, rather than relying solely on random forests, we
plan to explore alternative techniques for decision-making
among different Assistant Controllers.
This research contributes to the growing body of knowl-

edge in health informatics, offering viable solutions for
public health authorities to monitor and respond effec-
tively to pandemics. Future investigations could extend this
model to other infectious diseases and further integrate it
with existing healthcare infrastructures. The findings advo-
cate for continued investment in smart health technologies
that can transform healthcare delivery and improve patient
outcomes.
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