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Failure Modes and Effects Analysis (FMEA) is a widely used tool for risk analysis, primarily to identify 

risk factors affecting system quality. Due to the limitations of the traditional FMEA model, several recent 

models incorporating advanced fuzzy set extensions have been developed to enhance the reliability of risk 

assessment outcomes. However, most of these models limit expert flexibility in expressing preferences and 

often overlook the impact of unequal expert weights and the stability of risk ranking results. This study 

introduces a new FMEA model based on Q-Rung Orthopair Fuzzy Sets (Q-ROFSs), termed Q-ROFSs-

FMEA. Q-ROFSs, an extension of intuitionistic fuzzy sets, introduce a new linguistic term. The Q-ROFSs-

FMEA model considers the unequal weights of experts, enabling a dynamic representation of expert 

preferences. These weights and the linguistic evaluation of risk factors are integrated through an 

aggregation operator, facilitating consensus among experts.  The model is applied to a case study on 

COVID-19 risk factors, revealing that ‘older age’ (risk priority number 0.000012) is the highest risk 

factor, while ‘gender’ (risk priority number -0.0037) is the lowest. It is found that the ranking of risk 

factors determined by the Q-ROFSs-FMEA model is obtained as

1 3 6 4 5 7 8 2FM FM FM FM FM FM FM FM . Furthermore, a comparative analysis indicates 

consistent ranking results across different models, demonstrating the reliability of the proposed model. 

The case study and comparative analysis validate the effectiveness and applicability of the Q-ROFSs-

based risk assessment model. 

Povzetek: Razvili so model FMEA, izboljšan z uporabo Q-rung ortoparnih mehkih množic, za oceno 

tveganj COVID-19. Model omogoča dinamično izražanje preferenc strokovnjakov z neenakimi utežmi in 

združuje ocene tveganj prek agregacijskega operatorja. V študiji je bil kot najvišji dejavnik tveganja 

identificiran 'starejša starost', kot najnižji pa 'spol' (RPN -0,0037). 

 

1 Introduction 
Risk assessment is a crucial management tool for reducing 

project risks and promoting sustainable development. Risk 

assessment helps us to make the right decision especially 

when we are confronting problems with several 

alternatives and criteria [1].  There are numerous models 

available for determining risks and identifying hazards. 

The Failure Modes and Effects Analysis (FMEA) is one 

of the most widely used models since it is straightforward 

and efficient.  It employs a proactive and systematic 

approach to identifying where and how it may fail [2]. 

Looking into the detailed part of FMEA, it is the process 

of analysing as many components, assemblies, and 

subsystems as possible to discover potential failure modes 

in a system and their causes and effects. FMEA has been 

widely applied across various sectors due to its proactive  

 

and systematic approach to failure identification. The 

FMEA is used to assess the relative impact of various 

failures such as in reducing medical errors [3], analysing 

the failure modes of nuclear-powered icebreakers, 

obtaining risk analysis for the textile industry’s 

occupational safety and health [4], among many other 

applications. When mathematical failure rate models 

proposed by Tay and Lim [5] were linked with a statistical 

failure mode ratio database, the FMEA can be a qualitative 

analysis [6]. Therefore, FMEA is one of the earliest and 

most meticulously structured methods of failure analysis.  

The FMEA was originally used in the aerospace 

sector in the 1960s, and it has been around for more than 

60 years. Unlike other failure-prevention strategies, the 

FMEA was described in language that was universally 

understandable by those with minimal technical and/or 
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systems knowledge. These encouraged the use of 

intelligent linguistic based approaches that are applicable 

to all enterprises and industries. The FMEA was brought 

into the mainstream by the automotive sector, which 

adopted it as the major mechanism for error and risk 

reduction. In recent years, the FMEA method has been 

widely used in a variety of fields, including manufacturing 

[7,8], aerospace [9], information technology risk 

assessment [10], healthcare risk management, [11,12] 

food industry [13,14], and maritime risk safety [15,16]. 

From a theoretical point of view, the FMEA 

comprises three components, namely the severity of the 

failure mode (S), the occurrence probability of a failure 

mode (O), and the detectability of the failure mode (D), 

which yields the risk priority number (RPN).  The larger 

the RPN, the higher the risk of the related failure mode. 

The goal of RPN is to prioritise a product's or system's 

failure modes so that available resources can be 

appropriately allocated. The RPN can be expressed 

mathematically as the multiplication of S, O and D where 

they are risk parameters that are measured using a suitable 

point scale, such as Likert's scale [17].   According to 

Balaraju et al. [18] the FMEA team established an action 

approach based on the risk categories or risk rating level. 

For example, minor risk means no action is taken, 

moderate risk means some action is taken. Then, for high 

risk, corrective action will be taken, and for critical risk, 

corrective action will be taken, and major adjustments to 

the process/product will be necessary.  However, in recent 

years it was argued that many types of risk assessments 

are difficult to obtain by the standard RPN. In an attempt 

to ease the assessment, Wang et al. [19] introduced the 

interval two-tuple linguistic representation model in 

FMEA. A dental manufacturing business uses the 

suggested linguistic FMEA technique to manufacture 

medical products. On the other hand, Huang et al. [20] 

employed probabilistic linguistic terms in FMEA instead 

of the normal linguistic term sets. The benefit of 

probabilistic linguistic terms is that they can handle the 

inherent ambiguity in FMEA team members' risk 

assessments without losing any information. 

Risks are often associated with contradictory, 

subjective, ambiguous, or unclear information, making 

them well-suited for analysis using fuzzy set theory.  

Based on this assumption, the assessment model FMEA 

was integrated with fuzzy sets.  The risk categories in the 

form of linguistics such as minor, moderate and high are 

closely related to the memberships of fuzzy set. The use 

of linguistic expressions to deal with uncertainty is one of 

the common aspects in fuzzy set-based risk models. For 

example, linguistics based on Pythagorean fuzzy set was 

employed in determining the risk performance of logistic 

service provider [21]. Recently, Huang et al. [22] 

proposed an integrated T-spherical fuzzy linguistic-

FMEA. More works of FMEA that integrated with fuzzy 

set theory can be retrieved from Nie et al. [23] and 

Daneshvar et al. [24].  It was noticed that some of these 

integrated works used trapezoidal fuzzy set, [25, 26] 

triangular fuzzy set [27], and interval 2-tuple fuzzy 

linguistic variables [11, 28]. Recently, an integrated fuzzy 

set-FMEA was proposed by Ouyang et al. [29] where 

trapezoidal fuzzy numbers are used in defining linguistic 

variables.  The use of linguistics in risk assessment has 

attracted many researchers because of its ability to deal 

with subjective and unclear notions.  

In risk assessment models, fuzzy sets [30] that were 

represented by the membership functions allow the use of 

linguistic variables in FMEA to have a value between 0 

and 1. However, some argued that a single membership 

function fails to address dual membership functions. 

Therefore, the intuitionistic fuzzy set (IFS) was proposed 

by Atanassov [31] where the total value of membership 

and non-membership may be greater than 1.  However, in 

some real-world situations, the square sum of its dual 

memberships is equal to or less than 1 which is in violation 

of the condition of IFS. To solve the problem, Yager [32] 

developed the Q-rung Orthopair Fuzzy sets (Q-ROFSs) to 

overcome the ultimate limitation in which we can change 

the parameter value q to fulfil the value range requirement 

in a corresponding risk decision-making environment.  

The Q-ROFS is developed to deal with increasingly 

complex challenges where parameter value q is the notion 

of flexibility and variability.  The capacity to evaluate a 

broader membership grade space with the parameter value 

q is the main benefit of these sets [33]. In other word, Q-

ROFS is a new set for studying ambiguous information in 

a system.  Compared to fuzzy sets, intuitionistic fuzzy sets, 

and Pythagorean fuzzy sets, this set is more potent and 

complete.  Due to the inclusion of the parameter value q, 

the space of uncertain information described by the Q-

ROFS is found to be enormous and flexible [34]. The 

current literature serves as the motivation for this paper to 

propose a novel FMEA model that can successfully 

address uncertainty issues. Some experts might not 

appreciate utilising crisp numbers to evaluate the failure 

modes while employing FMEA. They frequently employ 

linguistic variables or interval numbers to convey their 

ideas more effectively. In these circumstances, our 

suggested method is heavily emphasis the use of FMEA to 

combine heterogeneous information.  Table 1 summarizes 

related research, highlighting current literature gaps that 

motivate this paper’s proposed FMEA model to address 

uncertainty more effectively. 

 

Table 1: Summary of literature review 

Authors 
Year of 

publication  

Type of sets 

used 

Type of 

linguistic 

representation 

Wang et al. [19] 2019 NA 
Interval two-

tuple 

Huang et al. 

[20] 
2022 NA 

Probabilistic 

linguistic 

Yalcinkaya and 

Cebi [21] 
2022 

Pythagorean 

fuzzy set 
NA 

Huang et al. 

[22] 
2022 NA 

T-spherical 

fuzzy linguistic 

Nie et al. [23] 2018 NA 
Multi-granular 

linguistic 

Daneshvar et al. 
[24] 

2020 

Triangular 

and 
trapezoidal 

fuzzy set 

NA 

Wang et al. [25] 2017 
Trapezoidal 

fuzzy set 
NA 
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Wang et al. [26] 2017 
Trapezoidal 

fuzzy set 
NA 

Testik and Unlu 

[27] 
2022 

Triangular 

fuzzy set 
NA 

Bhuvanesh 

Kumar and 
Parameshwaran 

[28] 

2018 NA 
Interval 2-tuple 
fuzzy linguistic 

Ouyang et al. 

[29] 
2021 NA 

Trapezoidal 

fuzzy linguistic 

Proposed 

method 
 Q-ROFSs NA 

Note: NA is an acronym for Not Available 

The development of Q-ROFSs provides a valuable 

integration with FMEA, as both approaches address 

uncertainty in risk assessment. This paper proposes a Q-

ROFS-FMEA model, where uncertainty is expressed 

through the linguistic variables of Q-ROFS. In this model, 

the linguistic variables for severity (S), occurrence (O), 

and detectability (D) in FMEA are replaced with Q-ROFS 

memberships, allowing for a nuanced representation of 

uncertainty. To illustrate the proposed work, a case study 

of risk factors of Coronavirus disease 2019 (COVID-19) 

will be implemented. In more detail, our proposed method 

can convert various assessment data into four-tuple 

linguistic variables that can be used to compute RPN. As 

a collective decision tool, FMEA requires input from a 

group of experts using linguistic terms. The uncertainty of 

information in FMEA is dealt with appropriately in the 

proposed model.  The novel approach can handle the 

fuzziness and subjectivity in an uncertain environment, 

cover the diversity of viewpoints on the FMEA group of 

experts, and prevent the loss of crucial data throughout the 

risk assessment process. This method has the advantage of 

considering heterogeneous information as opposed to 

information of a single type.  

The contributions of this paper are three-fold. First, we 

define ten linguistic terms for failure modes and develop 

two equations to transform interval-valued memberships 

into single-valued memberships and non-memberships 

within the Q-ROFSs framework. These terms are 

specifically applied to the S, O, and D components of 

FMEA. Second, the paper addresses heterogeneous expert 

input by assigning unequal weights to experts, reflecting 

differences in their opinions. Third, we demonstrate the 

model’s application by identifying critical failure modes 

associated with COVID-19 risk factors. This paper is 

organised as follows. The next section recalls some 

prerequisite definitions and operations of Q-ROFSs. 

Section 3 presents the proposed Q-ROFS-FMEA risk 

assessment model. A case study of the risk factors of 

COVID-19 is illustrated in Section 4. In this section, 

detailed computational steps and results are presented. 

Finally, Section 5 concludes. 

 

2 Preliminary 
This section presents the definition of Q-ROFSs and its 

related operations.  

 

Definition 2.1 Q-Rung Orthopair Fuzzy sets [32]. 

Let X  be the universe of discourse. A Q-ROFSs Q  in X  

is denoted by 

 ( ) ( ) , , | ,
Q Q

Q x x v x x X=     

where  : 0,1
Q

X →  and  : 0,1
Q

v X →  signify the 

membership degree and the non-membership degree of the 

element x X  to the set Q , respectively with the limited 

condition ( ) ( )0 1q q

Q Q
x v x +  . The indeterminacy 

degree ( ) ( ) ( )1 q qq
Q Q Q

x x v x = − − .  

For convenience, Yager [32] termed ( ) ( )( ),
Q Q

x v x  a Q-

rung Orthopair Fuzzy number (Q-ROFN), which is 

signified as ( ),
Q Q

q v= . 

Definition 2.2 Accuracy value ( )H Q [35].  

Let ( ),
Q Q

Q v=  be a Q-ROFN. The score value 

( )S Q  of the Q-ROFN ( ),
Q Q

Q v=  is defined as 

( ) q q

Q Q
s Q v= − , where ( ) [ 1,1]S Q  −  and 1q  . The 

accuracy value ( )H Q  of the Q-ROFN  ( ),
Q Q

Q v=  is 

defined as ( ) q q

Q Q
H Q v= +  , where ( ) [0,1]H Q   and 

1q  . 

 

Definition 2.3 Accuracy values of the Q-ROFNs [35] 

Let ( )
1 1

1 ,
Q Q

Q v=  and ( )
2 2

2 ,
Q Q

Q v=  be any two Q-

ROFNs, and let 1( )S Q  and 2( )S Q  be the score values of 

the Q-ROFNs 1Q  and Q-ROFNs 2Q  respectively.  

Let 1( )H Q  and 2( )H Q  be the accuracy values of the Q-

ROFNs 1Q  and Q-ROFNs 2Q , respectively,  

(1) If 1 2 ) ( ) (S Q S Q , then 1 2 Q Q . 

(2) If 1 2 ) ( ) (S Q S Q=  and 1 2 )  (( )H HQ Q  , then 

1 2 Q Q . 

(3) If 1 2 ) ( ) (S Q S Q=  and 1 2( )()H HQ Q= , then 

1 2Q Q=  

 

Many scholars have studied and expanded 

mathematical operations over Q-ROFSs, a fascinating 

topic with many obstacles. The following are the basic 

activities outlined by Peng and Luo [36]. 

 

(1) Complement, ( ),cq v=  

(2) Union,    ( )1 2 1 2 1 2max , ,min ,q q v v =  

(3) Intersection, 

   ( )1 2 1 2 1 2min , ,max ,q q v v =  

(4) Subset, 
1 2 1 2 1 2,q q iff v v     
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(5) Addition, 

( )
1

1 2 1 2 1 2 1 2,q q q q qq q v v   
 

 = + −   
 

 

(6) Multiplication. 

( )
1

1 2 1 2 1 2 1 2, q q q q qq q v v v v 
 

 =  + −  
 

   

These definitions of concepts and their operations are 

directly used in the computational implementation of the 

proposed work. 

 

3 Proposed Q-ROFSs-FMEA 
The FMEA is a computational tool that proactively 

strategized for examining a process whether it might fail.  

The tool is also used to analyse the relative impact of 

various failures in which process aspects that need to be 

altered the most can be identified.  This section presents a 

new proposed Q-ROFS-FMEA where Q-ROFS and 

FMEA are combined. The computational procedures of 

fuzzy sets-FMEA method that was proposed by Ouyang et 

al. [29] become the basis in this work.  To make it 

compatible with Q-ROFSs setting, several innovations to 

FMEA are made.  The first innovation is the use of Q-

ROFSs in defining linguistic terms where four-tuple 

number is used instead of one single number. To recognise 

the difference in experts’ opinions and heterogenous 

information, unequal relative weight of experts is 

introduced as the second innovation. Finally, an 

aggregation operator is introduced to merge expert 

opinions of which a consensus RPN can be obtained. 

Details of these innovations are further explained in the 

computational procedures of the proposed Q-ROFSs-

FMEA. The computational procedures of the proposed 

work are presented as follows.  

 

Step 1: Determine the failure modes 

To identify all probable failure modes denoted by 

 1 2, , , mFM FM FM FM=  indicates the m failure 

modes that results in system failure, the experts 

( 1,2, , )ke k l=  with suitable expertise and experience 

are invited. 

 

Step 2: Estimate the failure modes by linguistic terms. 

Assessment scale of failure modes are made using 

linguistic terms due to uncertainty and ambiguity of 

human perceptions and heterogenous information.  In this 

step, a new linguistic term is proposed. The linguistic 

terms proposed by Jin et al. [37] becomes the basis in this 

effort. Interval number of memberships in the work of Jin 

et al. [37] is simplified and transformed into memberships 

of Q-ROFSs. This transformation is made using Equation 

(1) and Equation (2) subjected to the condition 

( ) ( )0 1.q q

QROF QROF
x v x +   

 

( ) 1 2

( ) ( )
( )

2

Q Q

QROF

x x
x

 


 + 
=  
 
 

     (1) 

  

( ) ( )( ) 1
QROF QROF

v x = −      (2) 

 

where, ( )
QROF

x  is a membership degree corresponding 

Q-ROFSs, and ( )
QROF

v x   is non-membership degrees 

corresponding Q-ROFSs. 

For example, if the interval membership is ([0.99, 

0.99], [0.01, 0.01]) then, by using Equation (1), 

( )
0.99 0.99

( ) 0.99
2QROF

x
 + 

= = 
 

. Then using Equation 

(2), we have ( ) ( )( ) 1 0.99 0.01
QROF

v x = − = .  The similar 

transformations are made for other linguistic terms.  

Summarily, the new linguistic terms are presented in 

Table 2. 

 

Table 2: The linguistic terms of Q-ROFSs 

Scales Linguistic terms Q-ROFSs 

0 Exceptionally high (0.99,0.01) 

1 Extremely High (0.90,0.10) 

2 Very High (0.80,0.20) 

3 High (0.675,0.325) 

4 Medium High (0.525,0.475) 

5 Medium (0.50,0.50) 

6 Medium Low (0.40,0.60) 

7 Low (0.30,0.70) 

8 Very Low (0.175,0.825) 

9 Extremely Low (0.10,0.90) 

 

To measure the risks and to make it compatible with 

the FMEA model, the linguistic terms are changed to 

linguistic of Severity (S), Occurrence (O) and Detection 

(D).  Table 3 provides the linguistic terms for S, O, and D 

with Q-ROFSs. 

 

Table 3: The linguistic terms for Severity (S), 

Occurrence (O) and Detection (D) with Q-ROFSs 
Scale Severity 

(S) 

Occurrence 

(O) 

Detection 

(D) 

 Q-ROFSs 

9 Hazardous Almost 
certain 

Almost 
impossible 

(0.99,0.01) 

8 Serious Very High Very 

Remote 

(0.90,0.10) 

7 Very High  High Remote (0.80,0.20) 

6 High Moderately 

High 

Very Low (0.675,0.325) 

5 Moderate Moderately Low (0.525,0.475) 

4 Low Moderately 

low 

Moderate (0.50,0.50) 

3 Very Low Low Moderately 

high 

(0.40,0.60) 

2 Slight Slight  High  (0.30,0.70) 

1 Very 
Slight 

Remote  Very High (0.175,0.825) 

0 None Almost 

Never 

Almost 

certain 

(0.10,0.90) 

 

Step 3: Determine the weights of experts 
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There is an innovation in this step where weights of 

experts are introduced. Differently from Ouyang et al. [29] 

where no weight was introduced, this step introduces 

weights in which these weights are crucial as it represents 

the difference of human perceptions and heterogenous 

information.   

The weights, 
k  for 𝑘𝑡ℎ experts, are calculated using 

Equation (3) with q is a constant.  The total weight of 

experts must equal to one.  

( ) ( )

( ) ( )
1

1 ((1 ) ) / 2)

1 ((1 ) ) / 2)

QROF QROF

k l

QROF QROF
k

x v x

x v x





=

− − +
=

− − +
  (3) 

 

where 
1

1
l

k

k


=

=  

The linguistic terms used in finding the weight of 

experts is presented in Table 4. 

Table 4: The weight of expert’s preference scale 
Scale Linguistic terms Corresponding Q-ROFSs 

9 Exceptionally Important  (0.99,0.01) 

8 Extremely Important (0.90,0.10) 

7 Very Important (0.80,0.20) 

6 Important (0.675,0.325) 

5 Medium Important (0.525,0.475) 

4 Neutral (0.50,0.50) 

3 Medium not Important (0.40,0.60) 

2 Not Important (0.30,0.70) 

1 Very Not Important (0.175,0.825) 

0 Extremely Not Important (0.10,0.90) 

 

The weights obtained here will be used for the next 

step of computational procedures.  

Step 4: Aggregate the assessment of experts 

In this step, the Q-rung Orthopair fuzzy weighted 

averaging operator (q-ROFWA) proposed by Liu and 

Wang [35] is used to aggregate the assessment of experts. 

An aggregated matrix to represent assessments made by k-

th experts are calculated using Equation (4).  

 

( ) ( )1 2

1 1

, , , 1 1 ,
k

k

l l
qq

l k k

k k

q ROFWA E E E v




= =

− = − − 

       (4) 

 

Differently from Ouyang et al. [29] where no aggregation 

equation is used, an aggregation is inserted at this step.  

This aggregation operation is significant as it combines all 

expert opinions to become a consensus decision.  

The q-ROFWA operator is employed because it 

effectively incorporates the weights of experts, making it 

well-suited for our context. Its simplicity allows for a 

balanced aggregation that accurately reflects expert 

consensus without adding unnecessary complexity. 

Additionally, the q-ROFWA operator was selected over 

other averaging methods due to its compatibility with q-

ROF numbers, which supports a more precise 

representation of expert opinions. 

 

Step 5: Determine score function values of failure modes  

Score function, ( )s Q   is used for the defuzzification 

process. Equation (5) is used to find a crisp value.   

  

( ) ( )( )
QROF QROF

s Q x v x= −     (5) 

 

Step 6: Calculate the RPN of failure modes using the 

multiplication operator of S, O and D (See Equation (6)). 

 

RPN S O D=        (6) 

 

where S, O, and D are risk parameters.  

Step 7: Rank the failure modes using RPN results. 

The final RPN results can be ranked in ascending order 

and the highest failure mode can be identified.  The 

proposed computational procedures will be implemented 

in a case study investigating risk factors of COVID-19. 

Detailed computations and results will be discussed in the 

following section.  

 

4 A case study of COVID-19 failure 

modes 
This section describes the failure modes of COVID-19, the 

experts who are giving their assessment, and the proposed 

computational model used to implement the computation.  

 

4.1 Failure modes 

The list of failure modes for COVID-19 disease is defined.  

Table 5 shows the failure modes considered in this study 

and their respective literature sources.  

 

Table 5: Selected failure modes of COVID-19 
No. Failure mode Source of Literature 

1 Older age ( )1FM  Rashedi, et al. [38] and 

Jordan et al. [39] 

2 Gender ( )2FM  Gebhard et al. [40], Rashedi, 

et al. [38] and Ambrocino et 

al. [41]  
3 Individual medical condition 

( )3FM  

De Sousa Lima et al. [42] 

4 Occupational factors ( )4FM  Leso et al. [43] 

5 Poor ventilation ( )5FM  Rashedi, et al. [38] 

6 Low education ( )6FM  Rashedi, et al. [38] 

7 Transmissibility ( )7FM  Rashedi, et al. [38] 

8 Viral load COVID-19 and its 

receptor, ACE2 ( )8FM  

Rashedi, et al. [38] 

 



86 Informatica 49 (2025) 81–92 L. Abdullah et al. 

4.2 Experts’ information 

Five experts were invited to contribute their insights in 

assessing COVID-19 failure modes. A summary of their 

profiles is provided in Table 6. 

 

Table 6: Biographical data of experts 

Expert Designation 
Experience 

(year) 
Academic 

1E  Senior Nurse 10 
B,Sc Nursing, 

Community Health 

Nursing Certification 

2E  Senior Nurse 19 

B,Sc Nursing,  

Community Health 
Nursing Certification 

3E  
Public Health 

Expert 
16 MBBS, MPH 

4E  
Public Health 

Expert 
11 MBBS, MPH 

5E  Nurse 5 

B,Sc Nursing,  

Community Health 
Nursing Certification 

 

 The experts provide an assessment of failure modes 

and then analyse using FMEA. 

 

4.3 Data 

Specifically, eight failure modes for COVID-19, denoted 

as ( )1 2 3 4 5 6 7 8, , , , , , ,FM FM FM FM FM FM FM FM  were 

evaluated by a group of experts ( )1 2 3 4 5, , , ,E E E E E . Each 

expert assessed the failure modes based on severity, 

occurrence, and detection using a scale from zero to nine. 

To ensure consistency and minimize subjective bias, the 

experts were provided with Table 3, which outlines the 

numerical scale alongside its corresponding linguistic 

terms. Additionally, a brief training session was conducted 

to standardize the experts' understanding of these 

linguistic terms, enhancing alignment throughout the 

evaluation process. 

 

Table 7: Assessment of severity, occurrence, and 

detection 

Expert FM Severity (S) 
Occurrence  

(O) 

Detection 

(D) 

1E  
 

FM1 8 8 8 

FM2 0 0 0 

FM3 8 7 7 

FM4 8 9 5 

FM5 7 9 5 

FM6 2 4 8 

FM7 8 9 3 

FM8 9 9 1 

 

2E  

  

FM1 9 9 8 

FM2 8 6 1 

FM3 9 7 8 

FM4 9 8 6 

FM5 7 9 4 

FM6 3 8 8 

FM7 9 9 3 

FM8 9 9 2 

3E  

 

FM1 9 9 8 

FM2 6 2 0 

FM3 9 9 9 

FM4 9 9 4 

FM5 9 9 0 

FM6 7 9 8 

FM7 9 9 2 

FM8 9 9 2 

4E  

FM1 9 9 8 

FM2 6 2 2 

FM3 9 9 6 

FM4 9 9 6 

FM5 9 9 0 

FM6 9 7 9 

FM7 9 9 3 

FM8 9 9 3 

5E  

FM1 7 6 8 

FM2 1 1 3 

FM3 8 8 5 

FM4 8 5 6 

FM5 6 6 5 

FM6 7 5 6 

FM7 8 7 4 

FM8 6 8 1 

 

The heterogenous information from the above table are 

regarded as the input data in which these data are then 

computed in accordance with the proposed Q-ROFSs-

FMEA (see Section 3). 

 

4.4 Computation and results 

The Q-ROFSs-FMEA method is implemented for the case 

of failure modes of COVID-19 disease. This subsection 

presents the detailed computations of the input data using 

the Q-ROFSs-FMEA method.  

 

Step 1: Determine the failure modes 

The list of COVID-19 failure modes is provided in Section 

4.1, and the experts’ biographical information is detailed 

in Section 4.2. 

 

Step 2: Estimate the failure modes by using linguistic 

terms. 

The linguistic 0-9 scales from Table 7 are converted to 

matrix form in Q-ROFSs information and the resulting

, ,S O D  matrices are shown as, 

 

8 5

0.900,0.100 0.990,0.010 0.800,0.200

0.100,0.900 0.900,0.100 0.175,0.825

0.990,0.010 0.990,0.100 0.675,0.325

S



 
 
 =
 
 
  

 

 

8 5

0.900,0.100 0.990,0.010 0.675,0.325

0.100,0.900 0.675,0.325 0.175,0.825

0.990,0.010 0.990,0.010 0.900,0.100

O



 
 
 =
 
 
  

 

8 5

0.900,0.100 0.900,0.100 0.900,0.100

0.100,0.900 0.175,0.825 0.400,0.600

0.100,0.900 0.300,0.700 0.175,0.825
x

D

 
 
 =
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Step 3: Determine the weights of experts.  

The linguistic terms defined in Table 4 are used to 

determine the weights of experts. The importance of 

experts is represented by a linguistic term and its 

corresponding Q-ROFSs. Table 8 shows the linguistic 

terms and their respective Q-ROFSs which reflect the 

importance of experts.  

Table 8: Importance of experts in Q-ROFSs 

Expert Linguistic term Q-ROFSs 

1E  Neutral 0.500,0.500  

2E  Very Important 0.800,0.200  

3E  Important 0.675,0.375  

4E  Neutral 0.500,0.500  

5E  Medium not Important 0.400,0.600  

 

With the assumption that weights of experts are 

unequal, then Equation (3) is used to compute relative 

weights of experts. Given the information in Table 8, 

weight for the first expert, 1  for example is computed as   

( ) ( )

( ) ( )

( )

3 3

1 3 3 3 3

3 3 3 3

3 3

1

1 ((1 0.500 ) 0.500 ) / 2)

1 ((1 0.500 ) 0.500 ) / 2) 1 ((1 0.800 ) 0.200 ) / 2)

1 ((1 0.675 ) 0.375 ) / 2) 1 ((1 0.500 ) 0.500 ) / 2)

1 ((1 0.400 ) 0.600 ) / 2)

0.178





− − +
=
 − − + + − − +
 
 + − − + + − − + +
 
 − − +
 

=

 

 

 Similarly, the weights for other experts are 

calculated and summarised in Table 9.  

 

Table 9: Weight of experts 

Expert Weights 

1E  0.178 

2E  0.268 

3E  0.224 

4E  0.178 

5E  0.151 

 

Step 4: Aggregate the evaluation from different experts 

using q-ROFWA aggregation operator of matrices, 

, ,S O D . The aggregated matrices to represent assessments 

made by k-th experts are calculated using Equation (4). 

For example, the aggregated value of FM1 is computed as 

follows.  

( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( )( )( )( )

1

0.178 0.268 0.224
3 3 3

3
0.178 0.151

3 31

0.178 0.268 0.224 0.178 0.151

1

1 0.900 1 0.990 1

7

0.990

1 ,

1 0.990 1 0.80

7

0

0.1 0

0.9 71,

00 0.010 0.01 0 0

0.023

.010 0.20

l

k

FM

l

k

s =

=

 − − −
 

−  
 − −=
 

 
 

=





 

( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( )( )( )( )

1

0.178 0.268 0.224
3 3 3

3
0.178 0.151

3 31

0.178 0.268 0.224 0.178 0.151

1

1 0.900 1 0.99 1

5

9

0.

0.99

1 ,

1

.

0.9 1 0.675

9758,

0.1 0.01 0.01 0 5

0 02

1

5

.0 0.32

l

k

FM

l

k

o =

=

 − − −
 

−  
 − −=
 

 
 

=





 

 

( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )( )

1

0.178 0.268 0.224
3 3 3

3
0.178 0.151

3 31

0.178 0.268 0.224 0.178 0.151

1

1 0.900 1 0.900 1 0.900

1 ,

1 0.900 1 0.900

0.100 0.100 0.100 0.100 0.1

0.90,0.10

00

l

k

FM

l

k

d =

=

 − − −
 

−  
 − −=
 

 
 

=





 

   

It is good to note that while parameter value q can be 

varied, in this computation q=3 is chosen as to cushion the 

impact of non- membership with negation of membership. 

The aggregated matrices , ,S O D  are shown as  

 
0.977 0.0237

0.732 0.327

0.979 0.021

0.979 0.021

0.941 0.065

0.844 0.197

0.979 0.021

0.984 0.017

,

,

,

,

,

,

,

,

S =  

0.976 0.026

0.471 0.611

0.949 0.054

0.969 0.033

0.984 0.017

0.01 0.114

0.985 0.016

0.986 0.014

,

,

,

,

,

,

,

,

O =  

0.9 0.1

0.255 0.791

0.905 0.106

0.623 0.383

0.438 0.623

0.924 0.079

0.403 0.604

0.299 0.719

,

,

,

,

,

,

,

,

D =  

Step 5: Determine score function values of , ,S O D .   

Score function is used for the defuzzification process (see 

Equation (5)).   The score function values of , ,S O D  are 

shown in Table 10.  

 

Step 6: Calculate the RPN of failure modes using the 

product of S, O, D using Equation (6).  For example, RPN 

of FM1
 in the last column of Table 10 can be calculated as 
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1
0.953 0.95 0.8

0.725

FMRPN

=

=  
 

The similar operation is implemented to other failure 

modes.  

Step 7: Rank the failure modes using RPN results.  

The ranking of failure modes using Q-ROFS-FMEA 

method is obtained as shown in Table 10.  

 

Table 10: The score function of , ,S O D , RPN and 

ranking 

FM 
Score function 

RPN Rank 
S  O  D  

FM1 0.953 0.950 0.800 0.725 1 

FM2 0.405 -0.140 -0.536 0.030 5 

FM3 0.958 0.895 0.800 0.686 2 

FM4 0.958 0.936 0.240 0.216 4 

FM5 0.876 0.967 -0.185 -0.157 6 

FM6 0.647 0.787 0.845 0.430 3 

FM7 0.958 0.969 -0.201 -0.187 7 

FM8 0.967 0.972 -0.420 -0.395 8 

 

The above result shows the RPN of each failure 

modes in which eventually can portray the rank of RPN.  

It indicates that FM1 (older people) is the highest risk 

factor and FM2 (gender) is the lowest risk factor of 

COVID-19.  The final results are subjected to comparative 

analysis of which will be explained in the following 

section.  

 

5 Comparative analysis 
The same data used to determine the ranking using the 

proposed Q-ROFSs-FMEA is then computationally 

reiterated using the existing FMEA methods such as crisp 

FMEA, Triangular Fuzzy Number FMEA (TFN-FMEA), 

and Intuitionistic Fuzzy Set FMEA (IFS-FMEA).  It is 

good to note here that the existing FMEA method is the 

method used without considering the Q-ROFSs.  Table 11 

shows the comparison ranking of failure modes based on 

Q-ROFS-FMEA method alongside other FMEA methods. 

 

Table 11: The ranking of failure modes 

FM 

RPN 

FMEA 
TFN-

FMEA 

IFS-

FMEA 

Q-ROFS-

FMEA 

FM1 450.378(1) 0.846 (1) 0.572 (1) 0.725 (1) 

FM2 91.456(8) 0.021 (8) 0.006 (5) 0.030 (5) 

FM3 437.326(2) 0.696 (2) 0.393 (2) 0.686 (2) 

FM4 412.574(3) 0.559 (3) 0.212 (3) 0.216 (4) 

FM5 235.316(7) 0.231 (6) -0.220 (6) -0.157 (6) 

FM6 381.611(4) 0.419 (4) 0.033 (4) 0.430 (3) 

FM7 369.809(5) 0.246(5) -0.222 (7) -0.187 (7) 

FM8 334.708(6) 0.174 (7) -0.331 (8) -0.395 (8) 

 

It can be seen that the RPN values obtained from 

FMEA are much higher compared to the RPN obtained 

from TFN-FMEA, IFS-FMEA and Q-ROFSs-FMEA. The 

main reason behind this big difference is because the type 

of numbers used. In the FMEA method, assessments are 

made using real numbers from 0 to 9, whereas fuzzy 

numbers between 0 and 1 are utilized in TFN-FMEA, IFS-

FMEA, and Q-ROFS-FMEA. The RPN values in Q-

ROFS-FMEA are significantly lower due to the use of 

four-tuple values, which represent the membership 

degrees within Q-ROFSs. 

Furthermore, the RPNs obtained from the methods are 

used to compare the ranking of risk factors (FMs).  The 

comparison of these ranks and their respective RPNs can 

be seen in Figure 1. 

 

 
Figure 1: Comparison of RPN values obtained using Q-

ROFS- FMEA versus other methods 

 

The ranks of failure modes of COVID-19 obtained 

using the proposed Q-ROFS-FMEA and some existing 

FMEA methods are shown in Figure 2. 

 
Figure 2: Comparison of FM ranking obtained using Q-

ROFS- FMEA versus other methods 

 

The rankings of failure modes across these four 

methods show a high level of consistency. Both the first 

1FM  (older age) and second 
3FM  (individual medical 

condition) ranks are the same across all methods. Minor 

shifts are observed in the third and fourth ranks, but there 

are significant changes from the fifth rank onward among 

the methods. Unlike other methods, the traditional FMEA 

approach does not account for fuzziness or uncertainty, 

while TFN-FMEA only considers the membership degree 

and omits the non-membership aspect of the problem. IFS-
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FMEA, on the other hand, incorporates both membership 

and non-membership degrees and can partially address 

hesitancy. The proposed Q-ROFS-FMEA generates 

ranking results closely aligned with IFS-FMEA, primarily 

due to its ability to manage uncertainty. However, Q-

ROFS-FMEA offers an advantage by introducing the q 

parameter, which provides enhanced flexibility not 

available in IFS-FMEA. Although IFS-FMEA includes 

both non-membership and hesitancy degrees, it has been 

criticized for limitations in practical applications, as its 

dual memberships must sum to one or less, which can 

restrict its adaptability. 

Applying Q-ROFS to FMEA offers greater flexibility, 

as the parameter q can be adjusted to meet the specific 

requirements of various risk decision-making contexts. 

The Q-ROFS framework is especially well-suited to 

handle complex scenarios, with the parameter q providing 

added adaptability. This ability to adjust membership 

grade space via q is a significant advantage, as it enhances 

Q-ROFS’s capacity for analyzing ambiguous information. 

Compared to crisp sets, fuzzy sets, and intuitionistic fuzzy 

sets, Q-ROFS is more robust and comprehensive. With the 

inclusion of q, the range of uncertain information captured 

by Q-ROFS is notably extensive and flexible, making it a 

powerful tool for addressing uncertainty in diverse 

applications. To assess the robustness of the parameter q 

in the Q-ROFS-FMEA method, a sensitivity analysis is 

conducted, with the results presented in Table 12. 

 

Table 12: Sensitivity analysis of Q-ROFS-FMEA 

method with different values of q 

q Ranking 

1 1 3 6 4 2 7 5 8FM FM FM FM FM FM FM FM  

2 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

3 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

4 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

5 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

6 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

7 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

8 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

9 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

10 1 3 6 4 2 5 7 8FM FM FM FM FM FM FM FM  

 

 

Based on Table 12, the sensitivity analysis results 

indicate that QROFS-FMEA is a robust method, as 

variations in the parameter q do not affect the overall 

ranking outcomes, except when q=1. At this specific 

value, a minor shift occurs between the sixth and seventh 

ranks compared to the other tested q values.  

It is recalled that the objective of this paper is to 

identify the most critical failure modes of the risk factor 

COVID-19 using the proposed Q-ROFSs-FMEA. It is 

unveiled that  
1FM  (older age) is the highest risk among 

the other failure modes.  The relative risks of all factors 

are obtained as 

1 3 6 4 5 7 8 2FM FM FM FM FM FM FM FM  

where the lowest failure mode in combating with the 

COVID-19 disease is 
2FM (gender). Therefore, this study 

suggests that the factor of ‘gender’ is not the main risk in 

estimating the likelihood of COVID-19 diseases.  

However, the failure mode 
1FM  ‘older age’ should be 

given the highest priority for risk mitigation of COVID-

19.   It is also good to mention here that the top two worst 

failure modes of the risk factor of COVID-19 are 
1FM  

and 
3FM . This research sees the ‘older age’ and 

‘individual medical condition’ failure modes are the most 

at-risk groups compared to other failure modes.  This 

result is in line with the findings of Rod et al. [44], who 

found that the two main failure modes for COVID-19 

disease are age and comorbidities. 

6 Conclusion 
Since 2019, the world has grappled with the profound 

impact of COVID-19. Numerous efforts have been 

undertaken to prevent its spread, yet questions remain as 

to whether these measures are truly sufficient to minimize 

the risk of infection. Moreover, many of the failure modes 

remain inconclusive and vague. Therefore, this research is 

conducted to identify the most critical failure modes of 

risk factors COVID-19. To meet this objective, the risk 

evaluation model, Q-ROFS-FMEA is proposed.  The input 

data was elicited from a group of experts in public health 

who have been active in treating COVID-19 patients. Data 

were computed using the proposed Q-ROFS-FMEA 

where weights of experts and aggregation operators are 

the new features in the proposed method.  This research 

indicates that the failure mode ‘older age’ is identified as 

the most-at-risk group.  The result also shows that the 

failure mode ‘gender’ is the weakest risk factor.  To 

validate these findings, a comparative analysis is 

presented where the results obtained from Q-ROFS-

FMEA is compared to the results of the conventional 

FMEA, TFN-FMEA and IFS-FMEA. The comparative 

analysis demonstrates that the proposed Q-ROFS-FMEA 

method is similar to the IFS-FMEA; however, it yields 

different rankings when compared to the TFN-FMEA and 

FMEA methods. Notably, the top two highest risk factors 

for COVID-19 identified across all four methods are 

consistent: older age and individual medical conditions. 

This study provides an essential contribution to the 

medical field to mitigate the spread of the COVID-19 

disease. However, the findings need further investigation 

as there are several limitations surrounded this study. The 

first limitation is on the data input. Since the data was 

collected from a group of experts, additional validations 

on the expert selection and data triangulation are required. 

Second limitation is on the ranking results where the 

results are obtained using the proposed works. Future 

research could benefit from incorporating insights from 

other studies, such as Gams and Kolenik [45], who 

highlighted exponential technological progress and its role 

in addressing human challenges, and Janco et al. [46], who 

investigated key cultural, developmental, and travel-



90 Informatica 49 (2025) 81–92 L. Abdullah et al. 

related factors in pandemic spread. Expanding the 

methodological scope by utilizing alternative risk 

evaluation models such as the Risk Expected Value (REV) 

method, Data Envelopment Analysis, Monte Carlo Risk 

Analysis, and Fuzzy Bayesian Network could further 

enrich the understanding of COVID-19 risk factors and 

refine predictive accuracy. 
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