
Informatica 38 (2014) 31–42 31

SOAROAD: An Ontology of Architectural Decisions Supporting Assessment of
Service Oriented Architectures

Piotr Szwed, Pawel Skrzyński, Grzegorz Rogus and Jan Werewka
Department of Applied Computer Science
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland
E-mail: {pszwed, skrzynia, rogus, werewka}@agh.edu.pl

Keywords: software architecture, ontology, SOA, ATAM, architecture assessment, architecture evaluation, enterprise
architecture

Received: November 23, 2013

Enterprise architecture (EA) management has become a widely discussed approach in both industry and
academia due to the inefficiency of current IT architectures to cope with rapid changes in business envi-
ronments. On the other hand Service Oriented Architecture (SOA) is widely accepted as a state of the art
approach to the design and implementation of enterprise software. However software design and devel-
opment according to SOA paradigm is a complex task, often integrating various platforms, technologies,
products and design patterns. Hence, it arises a problem of early evaluation of a software architecture
to detect design flaws that might compromise expected system qualities. Decisions related to software
architecture have a great impact on the business value of a software product under development and influ-
ence the software company competitiveness. Usually, a software architecture is developed by a company
team, whose experience is limited to narrow set of solutions and technologies. This is a motivation for
developing a methodology for the assessment of architectural solution that can be performed in more in-
dependent way. Such assessment requires extensive knowledge gathering information on various types of
architectural decisions, their relations and influences on quality attributes. In this paper SOAROAD (SOA
Related Ontology of Architectural Decisions) is described, which was developed to support the evaluation
of architectures of information systems based on SOA approach. The main goal of the ontology is to pro-
vide constructs for documenting architecture. However, it is designed to support future reasoning about
architecture quality and fulfilling the non functional system requirements such as scalability, ease of main-
tenance, reuse of software components etc. The last important reason is building a common knowledge
base. When building the ontology Architecture Tradeoff Analysis Method (ATAM) was adopted which
was chosen as a reference methodology of architecture evaluation.

Povzetek: Opisana je ontologija, ki omogoča evaluacijo arhitektur za informacijske sisteme SOA.

1 Introduction

Service Oriented Architecture (SOA) might be treated as a
state of the art approach to the design and implementation
of enterprise software, which is driven by business require-
ments. Within the last decade a number of concepts re-
lated to SOA have been developed, including ESB (Enter-
prise Service Bus), web services, design patterns, service
orchestration and choreography and various security stan-
dards. Due to the fact that there are many technologies that
cover the area of SOA and the fact that SOA is not related to

This paper is based on P. Szwed, P. Skrzyński, G. Rogus and J.
Werewka Ontology of architectural decisions supporting ATAM based as-
sessment of SOA architectures published in the proceedings of the 3rd

International Workshop on Advances in Semantic Information Retrieval
(part of the FedCSIS’2013 conference).

any specific technology, the development and evaluation of
SOA compliant architectures is especially interesting and
problematic.

SOAROAD has been designed as a methodology for the
assessment of software architectures developed according
to SOA principles. During system development several
stages and corresponding architecture evaluation goals can
be identified. The first stage is related to the formulation of
a strategy for a new system development or an integration
of existing software. The next stage consists in proposing
competitive architectural approaches and assessing them
with respect to selected quality attributes. The third stage
has as an input the assumed system architecture and aims at
identifying requirements (usually expressed as scenarios)
and determining risks and costs for achieving the assumed
scenario responses. This step can be referred as early archi-
tecture evaluation. The last stage, that can be considered as
a late architecture evaluation, is related to software verifi-
cation and validation resulting in the specification of test



32 Informatica 38 (2014) 31–42 P. Szwed et al.

cases used for TDD (Test Driven Development) or BDD
(Behaviour Driven Development) approach.

In this paper we focus on the third stage of architecture
evaluation. SOAROAD has been designed as a methodol-
ogy for the assessment of software architectures developed
according to SOA principles. It is based on the Architecture
Tradeoff Analysis Method (ATAM) [18, 7], which is a ma-
ture, scenario-based, early method for architecture assess-
ment. ATAM defines a quality model and an organizational
framework for evaluation process. Expected system qual-
ities are represented as mappings between scenarios and
quality attributes. System architecture being an input for
ATAM is expressed in form of views describing compo-
nents and their connections. During the evaluation a team
of experts analyzes selected properties of components and
connections to detect sensitivity points, tradeoffs and as-
signs risks. In the evaluation process, the first information
on expected system qualities, architectural approaches and
decisions is collected from architecture documentation and
interviews with stakeholders, then a team of experts ana-
lyze selected properties of components to identify sensitiv-
ity points and evaluate risks. A limitation of the ATAM
method is that it depends on experts knowledge, perception
and previous experience. It may easily happen that an inex-
perienced evaluator overlooks some implicit decisions and
risks introduced by them.

In the SOAROAD approach the very basic set of ATAM
terms used to describe architecture is enriched by including
common terminology and relationships between concepts
related to various aspects of service oriented architecture
design and development. The gathered knowledge, formal-
ized as an ontology, facilitates performing an assessment in
more exhaustive manner, helping to ask questions, reveal-
ing implicit design decisions and obtaining more reliable
results.

The contribution of the paper is a proposal of a
SOAROAD ontology as a tool supporting scenario based
assessment of systems following a service-orientation
paradigm and service design, development and deploy-
ment.

The paper is organized as follows. In Section 2 related
works are discussed. Section 3 gives an overview of ATAM
methodology. Section 4 introduces a concept of ontology
application in architecture evaluation. Section 5 provides
the ontology description. Section 6 discusses an example
of SOAROAD methodology application. Section 7 sum-
marizes the paper and presents conclusions together with
future works planned.

2 Related works

Architecture evaluation has attracted many researchers and
practitioners during the last 20 years. A survey paper on
this topic [26] lists 37 methods of architecture evaluation,
classifying them according to two dimensions: location in
the software lifecycle (early vs. late) and element being an-

alyzed (system architecture, isolated architectural style or
a design pattern). The paper suggests that scenario-based
methods, including SAAM [20] and ATAM [18, 7] can be
considered as a mature, reliable and easy to implement in
practical situations.

There are several reports on successful applications of
ATAM for assessment of a battlefield control system [19],
wargame simulation [17], product line architecture [10],
control of a transportation system [4], credit card trans-
actions system[24] and a dynamic map system [32]. Re-
cently, a few extensions of ATAM were proposed, includ-
ing a combination with the Analytical Hierarchy Process
[36] and APTIA [21].

Despite the fact that the area of enterprise architecture
(EA) and service oriented architecture (SOA) has been
gaining significant attention there have not been much re-
search on SOA architecture assessment.

Song and Song [30] proposed EA institutionalization
processes and its metric based assessment for implemented
EA based on the currently available EA frameworks. In
the EA processes, we define institutionalization strategies
specific to an organization’s goals, target architecture based
on their baseline architecture, and transition plan for insti-
tutionalization. The assessment is based on changes made
on existing architecture which describes the current or as-is
state of an enterprise. To describe the baseline architecture
they suggest organizing information structure according to
the architectural views as in ANSI/IEEE Standard 1471-
2000 [13].

Javanbakht, Pourkamali, Feizi [16] observed that in
some enterprises, particularly in developing countries,
baseline is not a suitable basis for creating target archi-
tecture and they proposed improvement and correction of
organizational architecture by using enterprise architecture
maturity. They used multifactor systems to provide a prac-
tical method for the assessment of any given organization
and making accurate decisions on the improvement or re-
design of its architecture based on missions, goals and re-
strictions of the organization. With the use of their method
they claimed that the enterprise architectures can be as-
sessed and an accurate decision about the development of
the enterprises can be made based on its mission.

Jange and Medling [23] tried to address the problem of
cost benefit ratio of EA with a qualitative research design.
They conducted a series of semi structured interviews with
industry experts on enterprise architecture in order to iden-
tify classes of EA goals, corresponding EA frameworks
adoption to achieve those goals and employed EA bene-
fit assessment approaches. Their findings point to, among
others, a fairly stable set of EA goals that shift over time
and EA frameworks that lack modularity and adjustment
capabilities to easily customize towards these goals.

Zhou and Zhang [37] presented an architecture-centric
assessment approach for model evaluation over reference
architecture to quantitatively estimate architecture maturity
and quality. They selected a nine-layer (S3) SOA solution
stack as reference architecture, and introduced the neces-



SOAROAD: an Ontology . . . Informatica 38 (2014) 31–42 33

sary mathematical definitions and formulation. The base-
line for such an assessment is a model template composed
of S3 solution patterns. A template is the starting point of
creating a design model.

There has been interesting research performed on the
analysis of the composition of services [6]. The authors
observed and grouped common service composition tech-
niques into six solution patterns with distinct characteris-
tics of their integration intermediary. Their effort also can
be used as a base to develop better solution templates to
include architectural building blocks level interactive pat-
terns into solution template creation.

The application of ontologies to provide a systematic and
formal description of architectural decisions was first pro-
posed by Kruchten in [22]. The ontology distinguished
several types of decisions that can be applied to software
architecture and its development process. Main categories
included: Existence, Ban, Property and Executive deci-
sions. The ontology defined also attributes, which were
used to describe decisions, including states (Idea, Tenta-
tive, Decided, Rejected, etc.). In [9] an ontology support-
ing ATAM based evaluation was proposed. The ontology
specified concepts covering the ATAM model of architec-
ture, quality attributes, architectural styles and decisions,
as well as influence relations between elements of archi-
tectural style and quality attributes. The effort to structure
the knowledge about architectural decisions, was accom-
panied by works aimed at a development of tools enabling
the edition and graphical visualization of design decisions,
often in a collaborative mode, e.g. [5, 8, 25].

This short selection of works proves that the problem
of documenting and visualizing architectural decisions as a
support for software development process and architecture
evaluation remains a challenge. In contrast to approaches
aimed at providing classification of concepts and their rela-
tions (commonly referred as TBox), we attempt to gather
in the proposed ontology also facts (commonly referred
as ABox) constituting ready to use dictionaries of deci-
sions (properties of architectural design) and the knowl-
edge about their relations reflecting current state of the art
for SOA technologies.

3 ATAM Overview

The goal of software architecture evaluation methods is
to assess whether a system meets or will meet certain re-
quirements concerning quality characterized as quality at-
tributes. A standardized list of quality attributes is pub-
lished in ISO/IEC 9126-1 norm [14], which enumerates six
groups of quality attributes: Functionality, Reliability, Us-
ability, Efficiency, Maintainability and Portability. This set
was extended in the superseding norm ISO/IEC 25010[15]
to 8 groups by adding Compatibility and Security. Many of
the quality attributes were known elsewhere under differ-
ent names, e.g. Efficiency as Performance, Changeability
(sub-attribute of Maintainability) as Modifiability, etc.

Architecture evaluation methods may bring the great-
est benefits to software development if applied early in the
software lifecycle, as identified flaws in system design can
be corrected at a lower cost [26]. Typically, an assessment
is conducted based on the specification of the software ar-
chitecture (architectural views) and use other sources of in-
formation, such as interviews with various stakeholders in-
cluding owners, future users, architects and development
teams. At an early development stage it is difficult to give
the ultimate answer whether a particular quality attribute
can or cannot be assured. Therefore, assessment methods
aim at estimating such characteristics as a risk or cost.

Identified high risk to achieve a quality attribute can trig-
ger mitigation actions which consist in revising the design
and changing the design decisions. However, it should be
emphasized that even after changes and corrections are ap-
plied some acceptable residual risks can still be present be-
cause the estimated effort required to remove them exceed
expected losses.

ATAM (Architecture-based Tradeoff Analysis Method)
was developed at the Software Engineering Institute (SEI)
in 2000 [18], [7] as a successor of the SAAM method [20].

The method aims at evaluating architectural decisions
against specific quality attributes and detecting:

– risks – architectural decisions that may cause prob-
lems to assure some quality attributes,

– sensitivity points – decisions related to components
or their connections that are critical for achieving re-
quired level of quality attribute,

– tradeoffs – decisions of increasing one quality at-
tribute with a negative impact on the others.

ATAM provides evaluations based on the requirements
expressed as scenarios that are elicited and assessed in a
formal process divided into phases and steps.

ATAM uses a quality model called the utility tree. At
the root of the utility tree, an abstract concept Utility is
placed. Its child nodes are annotated with general qual-
ity attributes, e.g. these specified in the ISO norm (perfor-
mance, reliability, security, modifiability, etc.); at the next
level they can be decomposed into more specific attributes,
and finally, scenarios are placed at leaves. Both quality at-
tributes present in the utility tree and scenarios are elicited
from various stakeholders and represent their point of view
on expected system qualities.

According to ATAM, the architecture assessment pro-
cess is a group effort of various stakeholders involved in
system development. It deploys typical group techniques
such as brainstorming, assigning priorities and voting. The
course of evaluation is divided logically into four phases
including nine steps:

1. Presentation: (1) presentation of the ATAM method,
(2) business drivers and (3) the assumed software ar-
chitecture.



34 Informatica 38 (2014) 31–42 P. Szwed et al.

2. Investigation and Analysis: (4)identification of ar-
chitectural approaches, (5) generation of quality at-
tribute tree and (6) an analysis of the architectural ap-
proaches.

3. Testing: (7) brainstorming and the prioritization of
scenarios, (8) repeated analysis of the architectural ap-
proaches with reference to high priority scenarios.

4. Reporting: (9) presenting the results of the analysis:
risks, sensitivity points and tradeoffs.

4 The concept of SOAROAD
ontology application

ATAM has many obvious benefits: it precisely defines the
quality model based on a utility tree, enumerates the ex-
pected outcomes, indicates the participants and provides
an organizational framework for conducting the evaluation.
Nevertheless, due to its generic character, the method can
cause problems related to collecting and representing in-
formation that can be used for an architecture assessment.
The identification of key design decisions (properties) that
should be considered is up to experts’ knowledge and ex-
perience. In the case of inexperienced evaluators, some
key architectural decisions strongly influencing the system
qualities can be easily overlooked. Gathering knowledge
related to leading technologies, e.g. web services, business
process execution environments, databases, semantic web
as a support to ATAM would be beneficial for the efficiency
and reliability of the evaluation.

The proposed approach consists in collecting and for-
malizing this knowledge as an ontology. SOAROAD (SOA
Related Ontology for Architectural Decisions) ontology
has four main goals, it should:

1. provide a comprehensive description of architectural
views, i.e. components and their connections;

2. gather a domain knowledge providing a unified vocab-
ulary related to SOA and enterprise architecture;

3. help to ask question about various properties of archi-
tectural design and decisions;

4. be capable to represent assignments of properties rel-
evant to SOA compliant technologies to elements of
system architecture.

It was assumed that the ontology would follow a foun-
dational model (ontology skeleton) described later in the
section 5.1 defining various properties corresponding to de-
sign decisions that can be attributed to components, con-
nections, interfaces and compositions. If applicable, these
design decisions can be supplemented by additional rela-
tions. The ontology would also specify design patterns.

Another assumption is related to a distribution of the
knowledge between ontology TBox (set of classes, their
attributes and relations) and ABox (individuals, values of

their attributes and relationships). The types of elements
appearing in architectural views are classified in the TBox.
Concrete elements, e.g. those appearing in the diagrams
of architectural views, are represented as individuals in an
ABox. The ontology describes types of design decisions
(properties) as classes, whereas their values as individuals
that can be directly assigned to elements of architectural
views or linked to form trees. Such approach is more flexi-
ble, than e.g. a simplistic model of key-value pairs assigned
to components, where a key would correspond to a decision
type, and a value to a concrete decision.

The concept of the ontology application is presented in
the Fig. 1 (thick lines indicate data flows and thin arrows
describe import relations among ontologies). The process
of building an architecture description starts with eliciting
Architecture views ABox, i.e. a set of linked components,
interfaces and connections. This model can be prepared ei-
ther manually or with the support of dedicated import tools
converting ArchiMate [33, 34] models of Archi editor [2]
or UML [27], e.g. from VisualParadigm. For clarity, the
figure shows only one import tool that converts the Archi-
Mate model into Architecture views ABox encoded in OWL
language.

A web based tool supporting architecture description
uses the classes and individuals defined in the SOAROAD
ontology Domain Description TBox and SOAROAD Archi-
tectural decisions ABox to generate forms or questionnaires
in which software architects or members of development
teams can make assignments of property values to elements
of architecture views.

These questionnaires are dynamically generated from
the ontology content by transforming relevant items to
XML representation and then applying XSLT transforms
to give them a visual appearance. Users selections in
questionnaires after feeding them to a web server are con-
verted into assertions in Detailed Architecture ABox ontol-
ogy stored at the server side. For this purpose we use Jena
library and TDB [1] as the storage system. The resulting
Detailed Architecture ABox refers elements of Architecture
views ABox and individuals defined in SOAROAD ontol-
ogy (merging two input ontologies and asserting additional
relations). This ontology serves as a detailed architecture
documentation within a software development project. It
can be examined either manually or with use of automated
tools.

It should be mentioned that for large projects realized by
multiple teams at distant locations, maintaining a central-
ized repository documenting software architecture and ar-
chitectural decisions can be considered as a key factor for
project success. In many cases, independent teams make
many implicit decisions that may influence interoperabil-
ity, performance, modifiability and other quality attributes.
Collecting detailed information by the suggested in ATAM
interviews is more time consuming and less exhaustive than
filling in questionnaires driven by an ontology content.



SOAROAD: an Ontology . . . Informatica 38 (2014) 31–42 35

Architecture
Views

(ArchiMate)

Jena

Java

OWL
SOAROAD
ontology
TBox

(OWL)

SOAROAD
ontology
ABox: 
predefined

values
(OWL)

Jena

TDB

JSF
Architecture 
Views ABox

(OWL)

Architecture 
Views ABox
enriched by 
desing

decisions
(OWL)

ArchiMate Import Tool

Web based architecture 

Description Tool

imports

imports

imports

imports

Designers and development 

teams

Figure 1: A concept of application of SOAROAD ontology

5 Ontology description

Ontology engineering methodologies [11, 12, 29] usually
distinguish the following common steps in the ontology de-
velopment:

1. Specification, aimed at establishing the domain of the
ontology, its scope, usage and competency questions
(including preparing motivating examples);

2. Conceptualization. The goal of this step is to identify
concepts, arrange them in hierarchies and establish re-
lations;

3. Formalization which consists coding ontology in a
formal language, e.g. OWL;

4. Deployment – using the ontology in a software tool.

In this section we will briefly describe the assumptions
determined in the specification phase and results of for-
malization. The main outcome of the specification phase
is the foundational model described in section 5.1. Dur-
ing the conceptualization step, we manually gathered and
analyzed information related to service oriented architec-
tures, technologies, architectural approaches, design pat-
terns, etc. originating from various sources: books, techni-
cal papers, reference manuals and Internet resources.

The ontology was populated with the information during
the formalization phase by translating intermediate textual
description into OWL constructs. For this purpose a small
software tool using Jena [1] library was developed. The
resulting ontology content is described in section 5.2.

5.1 Foundational model of software
architectures

The basic model of software architecture used in ATAM
[3] defines it after [28] as a set of components and link-
ing them connections. We extend this simplistic model by
defining Interfaces and Functions of components as pre-
sented in Fig. 2. A connection links a component having
the caller role with an interface (calee). Components, con-
nections and interfaces can be attributed with: Component-
Properties, ConnectionProperties and InterfaceProperties
respectively. Examples of such properties are: platform,
web service type, communication type, queueing and query
granularity.

Composition is a coherent set of components and con-
nectors. System architecture is itself a composition. For
the purpose of analysis we may focus on a particular subset
of components and connectors and describe their proper-
ties, e.g. a distribution of queries among several databases
building up a composition or realization of a design pattern.

During the ATAM based evaluation the overall sys-
tem architecture and properties of its parts are analyzed
to establish scenario responses and achievements of cor-
responding quality attributes. It may be, however, ob-
served that some architecture properties or their combina-
tions have known influence on quality attributes, e.g. a
use of asynchronous web services or applying MVC de-
sign pattern, which increases modifiability and a granular-
ity of queries, has an impact on performance. This kind of
knowledge can be expressed as influences relations.

Architectural decision is an assignment of a property
value to a component, interface, connection or a compo-
sition. In this context the terms property and architectural



36 Informatica 38 (2014) 31–42 P. Szwed et al.

Foundational Model

Properties

DesignPatern

QualityAttribute

Function

(Tbox)

(Tbox)

(Tbox)

ComponentProperty (Tbox)

(Tbox)

(Tbox)

(Tbox)

import

Individuals (ABox)

Individuals (ABox)

Individuals (ABox)

Individuals (ABox)

import
CompositionProperty

InterfaceProperty

ConnectionProperty

Figure 3: Structure of SOAROAD ontology

decision can be used to some extent interchangeably. How-
ever, it may happen that certain decisions or components
are dependent on previously assigned properties. An exam-
ple of such a dependency is the composition type – a prop-
erty assigned to a set (composition) of web service compo-
nents. Selecting orchestration as the composition type re-
quires that an orchestration component, e.g. BPEL capable
module is be used. The required relation or its subproper-
ties in the ontological model express this dependency.

The assumed foundational model adopts a reification
strategy while modeling various properties of an architec-
tural design. Properties are defined as classes, whose in-
dividuals can be linked by additional relations indicating
specific roles. An example of such a property is MVC
design pattern – pattern, which requires the identification
of a components playing the roles of a Model (typically a
database), a Controller (e.g. an EJB) and a View (e.g. a set
of HTML pages produced by JSP scripts).

Two types of components are distinguished: Applica-
tionComponents and InfrastructureComponents. Applica-
tion components correspond to software developed mod-
ules; infrastructure components provide such supporting
functions, as message queuing or service registry.

5.2 The ontology content

SOAROAD ontology, provides a knowledge about soft-
ware architecture, its structure, components, connections
and required properties in the context of the SOA paradigm.
It consists of 110 classes, 9 object properties and 105 indi-
viduals.

The structure of SOAROAD ontology is shown in
(Fig. 3). The Foundational Model presented earlier in
Fig. 2 forms the ontology skeleton. In the conceptual-
ization phase, the skeleton was extended by defining sub-
classes of classes marked in gray: various types of proper-
ties (ComponentProperty, ConnectionProperty, Composi-
tionProperty and InterfaceProperty), functions, design pat-
terns and quality attributes.

Figure 4: Classes of component properties

For each property, that can be treated as a class of de-
sign decision, a number of individuals (corresponding to
decision values) is defined. They can be selected in as-
signments, e.g. JavaEECompliantAS (a subclass of Com-
ponentProperty) has several predefined individuals: JBoss,
Glassfish, WebLogic, Web-Sphere, ColdFusion, etc.

ComponentProperty class defines various properties and
design decisions, which can be assigned to components
(Fig. 4). Software architect preparing ATAM evaluation
should consider them as an exhaustive list of questions
related to important issues in SOA architectures. Exam-
ples of such properties are Platform (Hardware, Operat-
ingSystem, ApplicationServer), PlatformTechnology, Pro-
grammingLanguage, ComponentLogic and ComponentSe-
curity.

Example ontology assertions related to component prop-
erties are presented in Table 1 and Table 2. A property (an
ontology class) is followed by property values (individuals
in the ontology) put in parentheses.

ConnectionProperty subsumes the CommunicationType,
ConnectionSecurity and NetworkType. The class Co-
municationType has two individuals: Comunication-
Type.asynchronous and ComunicationType.synchronous.
ConnectionSecurity has individuals representing various
security technologies SSL, VPN, WS_Security.

CompositionProperty is a superclass for Architectural-
Layout, ServiceCompositionLanguage, ServiceComposi-
tionType. ArchitecturalLayout defines types of application
structure. Its individuals are: LayeredArchitecture, P2P,
ServiceComposition and SpokeAndHub.

ServiceCompositionLanguage defines languages (BPEL,
CDL or not_defined) and ServiceCompositionType with in-
dividuals: choreography and orchestration.

Class InterfaceProperty has subclasses ExceptionHan-
dling (defining exception handling method), QueryGranu-
larity (granularity level of of interface functions), WebSer-
viceType (type of communication protocol: SOAPWebSer-
vice or RESTWebService).

Apart from defining design decisions, the ontology spec-
ifies functions of components. Their list is rather related to
infrastructure components. Class Function contains classes
of entities such as: Routing, MessageMapping, Protocol-
Switch, MediationService, MessageValidation, AuditFunc-
tion, DatbaseIntegration, etc.



SOAROAD: an Ontology . . . Informatica 38 (2014) 31–42 37

Component ComponentProperty-property

Connection ConnectionProperty-property

Composition

QualityAttribute

-i
n
fl
u
en

ce
s

-property CompositionProperty

-components

-connections

-i
n
fl
u
en

ce
s

-influences

DesignPattern-is_described_by

Interface

Function

InterfaceProperty
-interface

-calee

-caller

-functions
-property

-i
n
fl
u
en

ce
s

ApplicationComponent InfrastructureComponent

-i
n
fl
u
en

ce
s

Figure 2: Foundational model of software architecture and its properties

Figure 5: The tree of quality attributes (according to ISO/IEC 9126 and ISO/IEC 25010)

Table 1: Component properties
Property (values) Description
PlatformTechnology
(CORBA, EJB, JINI,
RMI)

Set of technologies used on the platform.

ComponentLogic (flexi-
ble, fixed, rulebased)

Specifies an approach the component logic imple-
mentation.

Platform Defines the component platform. Has several
subclasses: ApplicationServer, Hardware, Operat-
ingSystem and VirtualServer

ProgrammingLanguage
(Cpp, Java, Ruby, PHP,
Erlang, Python, C,
C_sharp )

Define programming language used to implement
a component.

StatePersistence (State-
less, Statefull)

Specifies whether a component saves internal data
during and in between calls of operations on the
client’s behalf.

The ontology provides a taxonomy of quality attributes.
Quality attribute is a nonfunctional characteristic of a com-
ponent or a system. It represents the degree to which soft-
ware possesses a desired combination of properties, which
are defined by means of externally observable features of
software systems. Some of the attributes are related to the
overall system design, while others are specific to run-time
or design time. Quality attributes can be categorized into
two broad groups: attributes that can be directly measured
(e.g. performance) and attributes that can be indirectly
measured (e.g., usability or maintainability). In the latter
category, attributes are divided into subcharacteristics.

SOAROAD ontology defines 30 quality attributes in-
cluding both terms defined in software quality model by the
ISO/IEC 9126-1 norm [14] and those arising directly from
requirements to architectures formulated in the SOA man-



38 Informatica 38 (2014) 31–42 P. Szwed et al.

Table 2: Properties describing platform (subclasses of Plat-
form).

Property (values) Description
ApplicationServer Subclass of Platform. Defines an application

server on which a component is deployed, can have
such attributes, as: version (string), vendor (string)

JEECompliantAS
(TomEE, Glassfish,
JBoss, Interstage,
JOnAS, Geronimo,
SAPNeatWeaver,
WebSphere, Resin,
ColdFusion, WebLogic )

Subclass of ApplicationServer dedicated to JEE
compliant components.

DotNetCompliant-
AS (AppFabric, IIS,
TNAPS, Base4, Mono)

Subclass of ApplicationServer; its individuals de-
fine products for .NET enviroment

JavaAS (Jetty, Enhydra,
iPlanet)

Application servers for Java environment

Hardware Subclass of Platform. Used to specify a hard-
ware configuration on which the component is de-
ployed. Attributes: memory (double), processor
(string), number_of_cores (int)

OperatingSystem (Win-
dows, Unix, Linux, iOS,
Android, Bada, Black-
berry )

Subclass of Platform. Defines types of operating
systems on which a component is executed. At-
tributes: version (string), vendor (string), product
(string)

VirtualServer (no, yes) Subclass of Platform. Specifies whether a compo-
nent is deployed on a virtual server

ifesto . Examples of classes belonging to the first group
(see Fig. 5) are: Functionality, Reliability, Usability, Ef-
ficiency, Maintainability and Portability. The example of
classes originating from SOA manifesto are ServiceAuton-
omy, PlatformIndependency, LooseCoupling, Modularity,
OpenStandardAdoptation, BusinessAgility etc.

When designing an applications to meet quality require-
ments, it is necessary to consider a potential impact of de-
sign properties on various quality attributes. SOAROAD
ontology defines influences object property to this kind of
relation.

A design pattern can be seen as a structure build of com-
ponents of particular types, defining their roles and rela-
tions among them together with a set of restrictions on
their usage. Design patterns do not change the function-
alities of a system but only the organization or structure of
those functionalities. One of the most important benefits
of using design patterns is that they constitute standardized
software building blocks with a well defined influence on
quality attributes. In SOAROAD ontology the class De-
signPattern has 56 subclasses representing patterns dedi-
cated to SOA architecture. The examples of subclasses are:
EnterpriseServiceBus, EventDrivenMessaging, Orchestra-
tion. The relation is_described_by links a particular Com-
positionProperty to one of the defined design patterns.

6 Example
We illustrate the proposed approach on an example of a
small system aimed at publishing and browsing of free of
charge announces. The diagram in Fig. 6 gives the sys-
tem architecture specified in ArchiMate language. As it
can be noticed, two layers: application and technology are

http://www.soa-manifesto.org/

presented. In the application layer several system compo-
nents are distinguished: Data Base with the SQL inter-
face, three Java beans: Announcement JPA (Java Persis-
tence API), Announcement Business Logic and a Facade
providing Announcement WS – web service based inter-
face. The last component of the application layer visible
on the diagram is Announcement JSF Presenter being re-
sponsible for presentation and interaction with end users.
It plays here the role of web service consumer. The com-
ponents are packaged as three artifacts: ANN_DB (Post-
greSQL), ann.ear and ann_pres.war and deployed at three
separate servers (technology layer nodes) linked with two
connections: JDBC and WS Presenter.

The above specification is an input for ArchiMate Import
tool (indicated in Fig. 1) that transforms it into Architecture
Views ABox. Fig. 7 gives and excerpt of this ontology (node
marked with boldlines). We focus on three elements appli-
cation layer: Announcement Facade, WS interface and ac-
cessing it JSF presenter. Following the foundational model
that encompasses connections and their properties, the WS
Presenter Connection was also included. The remaining
elements of of ArchiMate specification are converted into
properties.

The tool supporting architecture description allows to as-
sign various properties (architectural decisions) to ontology
individuals corresponding to components and connections
of the software architecture. In the presented example:

– Announcement Facade is deployed on Intel Xeon 2.13
GHz machine running Ubuntu 10.4 system and Glass-
Fish application server.

– Announcement WS is a SOAP web service with low
query granularity and exception handling based on
soap faults.

– WS Presenter Connection is asynchronous, uses SSL
based protection mechanism and 10Gb network.

– Announcement JSF Presnter is deployed on JBoss ap-
plication server and is stateless.

The resulting graph of interconnected elements with as-
signed properties presented in a user-friendly browseable
form can be input to ATAM analysis performed in the stan-
dard manner.

The SOAROAD ontology specifies additional relations
(Fig. 8) that can be used in architecture assessment.

The supports relation indicates that particular elements
can be used together, e.g. JBoss (ApplicationServer) sup-
ports Document.Literal (SOAP web service style).

The supports property has two subproperties: sup-
ports_fully and supports_partially, that can be used to indi-
cate possible incompatibility issues. Another way to define
potentially conflicting architectural decisions is to use Con-
flict objects (reified multirole properties) that indicate sets
of properties, which should not be used together, provide
specification of conflict levels (e.g. partially_compatible,



SOAROAD: an Ontology . . . Informatica 38 (2014) 31–42 39

Figure 6: Announcement system expressed in Archimate language.

Announcement 
Facade

Ann. JSF 
Presenter

Announcement 
WS

JBoss

J2EEAS.GlassFish

OS.Ubuntu10.4

ExcptH.soapFault

QGranularity.low

WSType.SOAP

StatePers.stateless

HwA

4GBXeon 2.13GHz8

WS Presenter 
Connection

Comm.async Security.SSL

Netw.10GB

-caller

-callee

-interface

-number_of_cores -processor -memory

Figure 7: ABox describing the architecture of the announcement system. Elements of an architectural view (marked with
boldlines) are assigned with design decisions (individuals of classes defined in the ontology)



40 Informatica 38 (2014) 31–42 P. Szwed et al.

ComponentProperty ConnectionProperty

CompositionPropertyInterfaceProperty

Property -properties Conflict-requires

-supports

Figure 8: Relations between properties

incompatible, error_prone) and textual description (ratio-
nales). The required relation can be used to specify that
one element requires another. Such assertions can be ex-
plored, while reasoning about implicit decisions, i.e. re-
sulting from earlier assignments.

The SOAROAD ontology is formalized in the OWL lan-
guage. In consequence, it should follow the Open World
Assumption (OWA) to be compatible with OWL reasoners,
e.g. Pellet, Fact+ or Racer.

According to OWA, the following approach was
adopted:

– A lack of the assertion on property of a particular type,
means that nothing is known about the assignment.
For example in Fig. 7 no information is provided about
the hardware or operating system for Annotations JSF
Presenter.

– A lack of decision is represented explicitly by an in-
dividual (constant) of a particular type, e.g. and indi-
vidual OperatingSystem.not_decided can be assigned
to Annotations JSF Presenter.

– Conflicting decisions of the same type can be at-
tributed to a component, e.g. Annotations JSF Presen-
ter can be attributed with Windows and Linux proper-
ties. Such conflicts reflect, that in a certain step an
alternative is envisaged. During an evaluation pro-
cess (possibly supported by reasoning with the use of
a separately developed set of SWRL rules) such an as-
sertion can be indicated as non valid.

– Negative assertions about properties are represented
by a special ban relation, whose object can be
an anonymous individual of a selected type. For
example an assertion (Annotations JSF Presen-
ter, ban, IOS.anonymous) can be made, where
IOS.anonymous belongs to the class IOS (operating
system).

7 Conclusion

This paper describes the SOAROAD ontology and a con-
cept of a tool that supports the documenting architectures
of SOA-based systems. The proposed approach addresses
the problem that can be encountered during architecture
assessment: to be reliable, a reasoning about architecture
qualities, must have solid foundations in a knowledge re-
lated to a particular domain: architectural styles, design
patterns, used technologies and products. The idea behind
SOAROAD ontology is to gather experts knowledge to en-
able even inexperienced users performing ATAM-based ar-
chitecture evaluation. An advantage of the presented ap-
proach is that its result is a joint representation of archi-
tecture views and properties attributed to design elements
formalized in OWL language.

From a software engineering perspective, such central-
ized information resource may represent a valuable arti-
fact, which, if maintained during the software lifecycle, can
provide reference to design decisions that can be examined
later in the integration, testing and deployment phases.

On the other hand, the machine interpretable represen-
tation, constituting a graph of interconnected objects (in-
dividuals), can be processed automatically to check con-
sistency, detect potential flaws and calculate metrics. An
extensive list of metrics related to architectural design was
defined in [35]. We plan to adapt them to match the struc-
tural relations in the SOAROAD ontology, as well to de-
velop new ones.

Another direction that is at present researched is an ap-
plication of fuzzy reasoning to evaluate quality attributes.
We use fuzzy Mamdani rules encoded in SWRL language
defining influence of selected design decisions on quality.
The approach taken follows the idea presented in [31].

Further plans are related to the extensions of the cur-
rently developed tool. At present its functionality is limited
to building the architecture description. Our intention is to
fully integrate it with ATAM process allowing specifying
scenarios, describing sensitivity points, tradeoffs and risks.

References

[1] Jena - a semantic web framework for java.

[2] Archi, archimate modelling tool, 2011. [Online; ac-
cessed 23-June-2012].

[3] P. Bianco, R. Kotermanski, and P. Merson. Evaluat-
ing a service-oriented architecture. Technical Report
CMU/SEI-2007-TR-015, Carnegie Mellon, Septem-
ber 2007.

[4] N. Bouck’e, D. Weyns, K. Schelfthout, and
T. Holvoet. Applying the ATAM to an Architecture
for Decentralized Control of a Transportation System,
volume 4214, pages 180–198. Springer, 2006.



SOAROAD: an Ontology . . . Informatica 38 (2014) 31–42 41

[5] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas. A
web-based tool for managing architectural design de-
cisions. ACM SIGSOFT Software Engineering Notes,
31(5), 2006.

[6] Y.-C. Chang, P. Mazzoleni, G. A. Mihaila, and
D. Cohn. Solving the service composition puzzle.
IEEE SCC, 2:387–394, 2008.

[7] P. Clements, R. Kazman, and M. Klein. Evaluating
Software Architectures: Methods and Case Studies.
Addison-Wesley Professional, 2001.

[8] R. C. de Boer, P. Lago, A. Telea, and H. van Vliet.
Ontology-driven visualization of architectural design
decisions. In WICSA/ECSA, pages 51–60. IEEE,
2009.

[9] A. Erfanian and F. S. Aliee. An ontology-driven soft-
ware architecture evaluation method. In Proceedings
of the 3rd international workshop on Sharing and
reusing architectural knowledge, SHARK ’08, pages
79–86, New York, NY, USA, 2008. ACM.

[10] S. Ferber, P. Heidl, and P. Lutz. Reviewing prod-
uct line architectures: Experience report of ATAM in
an automotive context, volume 2290, pages 364–382.
Springer, 2001.

[11] M. Fernandez-Lopez, A. Gomez-Perez, and N. Ju-
risto. Methontology: from ontological art towards on-
tological engineering. In Proceedings of the AAAI97
Spring Symposium, pages 33–40, Stanford, USA,
March 1997.

[12] M. Gruninger and M. S. Fox. Methodology for the
design and evaluation of ontologies. In International
Joint Conference on Artificial Inteligence (IJCAI95),
Workshop on Basic Ontological Issues in Knowledge
Sharing, 1995.

[13] IEEE. IEEE standard 1471-2000, ieee recommended
practice for architectural description of software-
intensive systems, 2000.

[14] ISO/IEC. Software engineering – product quality,
ISO/IEC 9126-1. Technical report, International Or-
ganization for Standardization, 2001.

[15] ISO/IEC. ISO/IEC cd 25010-3: Systems and software
engineering – software product quality requirements
and evaluation (SQuaRE) – software product quality
and system quality in use models. Technical report,
International Organization for Standardization, 2009.

[16] M. Javanbakht, M. Pourkamali, and F. M. Derakhshi.
A new method for enterprise architecture assess-
ment and decision-making about improvement or re-
design. Proceedings of the Fourth International
Multi-Conference on Computing in the Global Infor-
mation Technology, pages 69–76, 2009.

[17] L. G. Jones and A. J. Lattanze. Using the architec-
ture tradeoff analysis method to evaluate a wargame
simulation system: A case study. Technical Report
CMUSEI2001TN022 Software Engineering Institute
Carnegie Mellon University Pittsburgh PA, (Decem-
ber):33, 2001.

[18] Kazman. Atam:method for architecture evaluation.
CMUSEI2000TR004, 2000.

[19] R. Kazman, M. Barbacci, M. Klein, J. Carriere, and
S. G. Woods. Experience with performing architec-
ture tradeoff analysis. Proceedings of the 21st in-
ternational conference on Software engineering ICSE
99, pages 54–63, 1999.

[20] R. Kazman, L. Bass, G. Abowd, and M. Webb.
SAAM: a method for analyzing the properties of soft-
ware architectures, volume 16pp, pages 81–90. IEEE
Comput. Soc. Press, 1994.

[21] R. Kazman, L. Bass, and M. Klein. The essential
components of software architecture design and anal-
ysis. Journal of Systems and Software, 79(8):1207–
1216, 2006.

[22] P. Kruchten. An ontology of architectural design de-
cisions in software intensive systems, pages 54–61.
Citeseer, 2004.

[23] M. Lange and M. Jan. An experts’ perspective on en-
terprise architecture goals, framework adoption and
benefit assessment. Proceedings of the 15th IEEE In-
ternational Enterprise Distributed Object Computing
Conference Workshops, pages 304–313, 2011.

[24] J. Lee, S. Kang, H. Chun, B. Park, and C. Lim.
Analysis of VAN-core system architecture- a case
study of applying the ATAM. In Proceedings of the
2009 10th ACIS International Conference on Soft-
ware Engineering, Artificial Intelligences, Network-
ing and Parallel/Distributed Computing, SNPD ’09,
pages 358–363, Washington, DC, USA, 2009. IEEE
Computer Society.

[25] L. Lee and P. Kruchten. Visualizing Software Archi-
tectural Design Decisions, volume 5292, pages 359–
362. Springer-Verlag, 2008.

[26] B. Roy and T. C. N. Graham. Methods for evalu-
ating software architecture : A survey. Computing,
545(2008-545):82, 2008.

[27] J. Rumbaugh, I. Jacobson, and G. Booch. Uni-
fied Modeling Language Reference Manual, The (2nd
Edition). Pearson Higher Education, 2004.

[28] M. Shaw and D. Garlan. Software Architecture: Per-
spectives on an Emerging Discipline, volume 123.
Prentice Hall, 1996.



42 Informatica 38 (2014) 31–42 P. Szwed et al.

[29] J. Sliwa, K. Gleba, W. Chmiel, P. Szwed, and
A. Glowacz. IOEM - ontology engineering method-
ology for large systems. In P. Jedrzejowicz, N. T.
Nguyen, and K. Hoang, editors, ICCCI (1), volume
6922 of Lecture Notes in Computer Science, pages
602–611. Springer, 2011.

[30] H. Song and Y.-T. Song. Enterprise architecture in-
stitutionalization and assessment. Proceedings of the
9th IEEE/ACIS International Conference on Com-
puter and Information Science, pages 870–875, 2010.

[31] P. Szwed. Application of fuzzy ontological reason-
ing in an implementation of medical guidelines. In
Human System Interaction (HSI), 2013 The 6th Inter-
national Conference on, pages 342–349, 2013.

[32] P. Szwed, I. Wojnicki, S. Ernst, and A. Glowacz.
Application of new ATAM tools to evaluation of
the dynamic map architecture. In A. Dziech and
A. Czyżewski, editors, Multimedia Communications,
Services and Security, volume 368 of Communica-
tions in Computer and Information Science, pages
248–261. Springer Berlin Heidelberg, 2013.

[33] The Open Group. Archimate 1.0 specificattion, 2009.

[34] H. Van Den Berg, H. Bosma, G. Dijk, H. Van Drunen,
J. Van Gijsen, F. Langeveld, J. Luijpers, T. Nguyen,
R. Oosting, Gerand Slagter, and et al. ArchiMate
made practical. Work, 2007.

[35] A. Vasconcelos, P. Sousa, and J. Tribolet. Information
system architecture metrics: an enterprise engineer-
ing evaluation approach. The Electronic Journal In-
formation Systems Evaluation, 10(1):91–122, 2007.

[36] P. Wallin, J. Froberg, and J. Axelsson. Making deci-
sions in integration of automotive software and elec-
tronics: A method based on ATAM and AHP. Fourth
International Workshop on Software Engineering for
Automotive Systems SEAS 07, pages 5–5, 2007.

[37] N. Zhou and L.-J. Zhang. Analytic architecture as-
sessment in soa solution design and its engineering
application. Proceedings of the IEEE International
Conference on Web Services, pages 807–814, 2009.


