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This paper investigates the feasibility of using reinforcement learning to solve combinatorial optimization 

problems, in particular, the problem of query-based monotone Boolean function reconstruction. The 

monotone Boolean function reconstruction problem is a typical combinatorial problem that reconstructs 

the function unambiguously with a minimum number of queries about the value of the function at the 

defined points, based on the monotonicity of the function. The Shannon complexity of the problem is of 

the order of 2𝑛/√𝑛, and the solution algorithm relies on complex constructions, which also add 

complexity in the form of memory and time. Additionally, there are problems of partial reconstruction, 

e.g., in the mining of associative rules, which do not fit into the developed solution formats. This 

necessitates exploring heuristic domains to attract additional resources to solve the problem. To this end, 

all elements of reinforcement learning - environment, agent, policy, etc. - are designed, and both exact 

and approximate algorithms are given to perform the necessary structural data transformations, as well 

as to calculate the reward, the value, and other operational data of the algorithm. The focal point of the 

considerations is a subclass of monotone Boolean functions related to the well-known shadow 

minimization theorem of layer-by-layer characterized functions. Preliminary experiments have been 

started and they require follow-up intensive actions. 

Povzetek: V raziskavi so avtorji preučili uporabo okrepljenega učenja za rekonstruiranje monotone 

Booleanove funkcije z minimalnim številom poizvedb. Predlagali so algoritme za točno in približno 

reševanje problema ter izvedli začetne simulacije. 

 

1 Introduction 
Many problems with monotone Boolean functions 

(MBFs) appear not only in logical and physical level 

design of systems, but also in artificial intelligence 

models, computation learning theory, hypergraph theory, 

and other areas. MBFs are used to encode extremely 

important constructions in various combinatorial 

optimization problems; they provide a natural way to 

describe satisfiable subsets of finite constraint collections. 

Extreme points of MBFs correspond to maximal 

compatible subsets of constraints, such as sets of linear 

inequalities, closed sets of frequent elements in 

association rule searches, etc. A number of applications 

(e.g., wireless sensor networks, dead-end tests of tables, 

data mining [2,3]) are based on MBF optimization, where 

MBFs are represented not in direct form, but by using 

chains and anti-chains [29]. Other similar applications can 

be added to this description [6,8,17]. 

There are a number of effective tools and methods for 

analyzing MBFs, and new approaches are constantly 

being sought, investigated, and applied. Well-known open 

problems include the reconstruction of bounded classes of  

 

Boolean functions with randomization of queries and  

functions, and the use of cube-splitting and chain-splitting 

of the Boolean domain [2]. 

A well-known problem concerning MBFs is the 

identification problem – the recognition of an unknown 

MBF of 𝑛 variables by using membership queries. 

Hansel’s algorithm [15], based on partitioning the binary 

cube into special non-intersecting chains, provides 

optimal reconstruction in the sense of Shannon 

complexity. In practical implementations, it is not 

necessary to build and store all chains in computer 

memory; according to [27,28,31], this can be done with 

simple procedures and an algebra that provides all the 

necessary answers to questions concerning the chains and 

queries mapped to these chains. 
The problem of recognition of monotone Boolean 

functions with 𝑛 variables, for 𝑛 =  2, ⋯ ,4 is investigated 

in [4], where the authors compare the complexity of 

different types of optimal (relative to the depth or the 

number of realizable nodes) decision trees with 

hypotheses.  
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PAC (probably approximately correct) type learning 

algorithms of MBFs are considered in a number of papers 

[25,32]. An algorithm that learns any monotone Boolean 

function 𝑓 of 𝑛 variables, to any constant accuracy, under 

the uniform distribution, in time polynomial in 𝑛 and in 

the decision tree size of 𝑓 is achieved in [32]. 

In order to obtain solutions and approximations using 

MBF classes, it is necessary to reconstruct the function 

itself from examples/values of points. One of the key tools 

here is the well-known Kruskal-Katona theorem [13,14], 

which describes the exact optimal monotone construction 

for a given set of parameters. In this way, KK-MBF class 

of MBFs is formed, being a special and attractive class for 

recognition. 

In recent years, machine learning (ML) has been seen 

as an additional technological resource for solving 

combinatorial optimization problems (CO) [18,22,33]. 

Numerous machine learning techniques have been used to 

solve various combinatorial optimization problems, such 

as reinforcement learning to train a deep Q-net [18] which 

is applied to the Traveling Salesman Problem (TSP) 

[16,26], graph convolution networks [22], pointer 

networks and learning-to-prune framework [33], decision 

trees and neural networks to classify discrete images with 

different structural properties using projection data [12], 

and others. 

In this paper, we investigate the possibility of using 

ML to train an MBF recognition heuristic that uses 

structures of Boolean function classes and stepwise 

recognition based on membership queries, as well as 

similarity and approximation studies between MBF 

classes and fragments. Among machine learning 

techniques, we distinguish and apply Reinforcement 

Learning (RL) – an approach similar to the query-based 

recognition. In order to apply RL to combinatorial 

optimization problems, the problem must be modelled as 

a sequential decision-making process, where the agent 

interacts with the environment by performing a sequence 

of actions in order to find a solution. A fundamental 

question arises here, which requires a detailed analysis –

whether it is possible to apply RL effectively for 

considered CO problem. Subjects for discussion include 

the compilation of acceptable sets of states and actions, 

possible and useful reward definitions, complexity 

aspects, and certainly, validation and estimation of 

approximations. These questions constitute the main 

topics of investigation of our present study. We propose 

an RL structure to solve the MBF recognition problem 

through a model (actions, states, and rewards) and an RL-

MBF algorithm. Experiments involve simulations with a 

traditional RL algorithm SARSA, using instances of 

typical MBF classes. 

The rest of the paper is organised as follows. Section 

2 presents necessary definitions, preliminaries, and basic 

theoretical concepts of the RL and MBF recognition, 

respectively. Section 3 and 4 describe the proposed 

technique and model, RL structure and components for the 

MBF recognition, and RL MBF algorithm and data 

structures, respectively. Discussions and evaluation of the 

model are given in Section 5. The paper ends with some 

concluding remarks. 

2 Preliminaries 

2.1 Monotone Boolean function 

recognition 

Let 𝐵𝑛 = {(𝑥1, ⋯ , 𝑥𝑛) | 𝑥𝑖 ∈ {0,1}, 𝑖 = 1, ⋯ , 𝑛} denote 

the set of vertices of the 𝑛-dimensional binary (unit) cube. 

Vertices of  𝐵𝑛 are obtained by assigning values to the 

binary variables 𝑥1, ⋯ , 𝑥𝑛. Let 𝛼 = (𝛼1, ⋯ , 𝛼𝑛) and 

𝛽 = (𝛽1, ⋯ , 𝛽𝑛) be two vertices of 𝐵𝑛. Then, 𝛼 precedes 

𝛽 (denoted as 𝛼 ≼ 𝛽) if and only if 𝛼𝑖 ≤ 𝛽𝑖  for 1 ≤ 𝑖 ≤ 𝑛. 

If at the same time 𝛼 ≠  𝛽 then 𝛼 strictly precedes 𝛽 

(denoted as 𝛼 ≺ 𝛽). 𝛼 and 𝛽 are comparable if 𝛼 ≼ 𝛽 or 

𝛽 ≼ 𝛼, otherwise, they are incomparable. A set of 

incomparable vertices in 𝐵𝑛 is also called a Sperner 

family. A (growing) chain is a sequence of vertices such 

that the 𝑖-th vertex in the sequence is obtained from the 

(𝑖 − 1)-th vertex by replacing a “0” component with “1”. 

The Hamming distance between 𝛼 and 𝛽 is the number 

of positions at which 𝛼𝑘 ≠ 𝛽𝑘, 1 ≤ 𝑘 ≤ 𝑛.  

For a given vertex 𝛼 of 𝐵𝑛, we define two intervals of 

vertices as: 

[𝛼, 1̃] = {𝛽 ∈ 𝐵𝑛|𝛼 ≼ 𝛽 ≼ 1̃} 

[0̃, 𝛼] = {𝛽 ∈ 𝐵𝑛|0̃ ≼ 𝛽 ≼ 𝛼} 

where 1̃ and 0̃ are vertices of 𝐵𝑛 with all components 

being 1s and 0s, respectively.  

Boolean function 𝑓: 𝐵𝑛 → {0,1} is called monotone if 

for every two vertices 𝛼, 𝛽 ∈ 𝐵𝑛 , if  𝛼 ≺ 𝛽 then 𝑓(𝛼) ≤
𝑓(𝛽). Vertices of 𝐵𝑛, where 𝑓 takes value “1” are called 

units or true points of the function; vertices, where 𝑓 takes 

value “0” are called zeros or false points of the function. 

𝛼1 is a lower unit (or minimal true point) of the function 

if 𝑓(𝛼1) = 1, and 𝑓(𝛼) = 0 for every 𝛼 ∈ 𝐵𝑛 , such that 

𝛼 ≺ 𝛼1. 𝛼0 is an upper zero (maximal false point) of the 

function if 𝑓(𝛼0) = 0, and 𝑓(𝛼) = 1 for every 𝛼 ∈ 𝐵𝑛 

such that  𝛼0 ≺ 𝛼. min 𝑇(𝑓) and max 𝐹(𝑓) denote the 

sets of minimal true points and maximal false points, 

respectively. Obviously, min 𝑇(𝑓) and max 𝐹(𝑓) are 

Sperner families in 𝐵𝑛. 

Formally, the work with MBFs started in 1987, with 

the issue of counting their number [9]. The first 

algorithmic and complexity-related considerations belong 

to [19], where, in particular, the valuable concept of 

resolving subsets was introduced. The final asymptotic 

estimate about the number of MBFs of 𝑛 variables was 

obtained in [20]. The technique on how to introduce and 

analyze MBFs, basically, is presented in 

[13,14,15,1,2,31,27,28,11]. 

The Hansel chain structure [15] was invented in 1966 

and plays one of the central roles in MBF-related 

algorithmic techniques. The method is based on the 

partitioning of 𝐵𝑛 into ( 𝑛
⌊𝑛/2⌋

)  pairwise non-intersecting 

chains (Hansel chains), arranged symmetrically about the 

middle layers of 𝐵𝑛, which have the following properties: 

1) The number of chains of the length 𝑛 − 2𝑝 + 1 is  

(𝑛
𝑝

) − ( 𝑛
𝑝−1

) for 0 ≤ 𝑝 ≤ ⌊𝑛/2⌋; 2) For any three elements 

𝛼𝑖1 ≺ 𝛼𝑖2 ≺ 𝛼𝑖3 of a chain of length 𝑛 − 2𝑝 + 1, their 
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relative complement 𝛽 belongs to a chain of length 𝑛 −
2𝑝 − 1. 

The next valuable step to this was done by Tonoyan 

[31], who invented a set of simple procedures (chain 

algebra) that serve all the actual queries about Hansel 

chains, providing a technical solution to all the problems 

related to algorithms with Hansel chains, without 

constructing and keeping them in computer memory. In 

continuation, [27] presented a slightly modified and 

simplified version by using two tools: enumeration of all 

chains, and a procedure of finding the 𝑖-th vertex of the 𝑗-

th chain. An optimised procedure is used to propagate 

newly found values to the chains, by a divide-and-conquer 

manner. 

In the MBF recognition problem using membership 

queries, the goal is to determine an unknown MBF of 𝑛 

variables using as few queries as possible. The function 

can be fully recognized by finding all its upper zeros 

(and/or lower units) [19].  The Shannon complexity of 

finding all upper zeros (lower units) of an arbitrary 

monotone Boolean function of 𝑛 variables is  

( 𝑛
⌊𝑛/2⌋

) + ( 𝑛
⌊𝑛/2⌋+1

) [15]. 

General steps in any optimal in the sense of Shannon 

function algorithm of recognition of monotone Boolean 

function 𝑓 are the following: 

1. Partitioning 𝐵𝑛 into Hansel chains; 

2. Choosing a chain 𝑗 (usually, chains are in increasing 

order of length) and a vertex 𝛼 on 𝑗 and querying 

𝑓(𝛼); On each chain, its “undetermined values” 

constitute an interval, and 𝛼 is chosen as the middle 

point of the interval. Then the query response 𝑓(𝛼) 

determines values in one half of the interval;  

3. Propagating 𝑓(𝛼) to other chains/vertices of 𝐵𝑛 

whenever it is possible using the monotonicity of 𝑓; 

4. Repeating steps 2-3 until 𝑓 is fully recognized (i.e., 

𝑓(𝛼) is obtained on all 𝛼 ∈ 𝐵𝑛). 

Another recognition structure is used in [28]. For even 

𝑛, 𝐵𝑛 is split according to two variables and the 

recognition in every sub-cube starts from its two middle 

layers. For odd 𝑛, firstly 𝐵𝑛 is split according to one 

variable, then as each sub-cube now has even size, the 

procedure for even sizes is applied. This provides optimal 

recognition of all MBFs in the sense of Shannon 

complexity. Unfortunately, while simple and attractive, 

this approach cannot be used in practical algorithms for 

arbitrary functions. Finally, it is worth mentioning the 

work [11] that considers not the Shannon complexity but 

the individual complexity of MBF given by its resolving 

set size. The core consideration is that for a given vertex 

𝛼, if 𝑓(𝛼) = 0, an upper-zero of 𝑓 can be found in no more 

than 𝑛 queries. The same holds with a lower-one when 

𝑓(𝛼) = 1. This gives a recognition complexity bounded 

by 𝑛 times the resolving set size of 𝑓. 

In general, tasks related to the recognition of MBFs 

may have different formulations. One task is to recognize 

a particular unknown function, knowing that it belongs to 

the class of MBFs or to one of its subclasses. Another task 

is to start with partial knowledge about the unknown 

function. One more case is when the number of queries is 

restricted by some number 𝐾 and the goal is to maximize 

the recognized part of the function. 

Similar problems can be formulated for specific 

classes of Boolean functions. Examples of classes are as 

follows: 

KK-MBF Kruskal-Katona MBF arises as a result 

of the shadow minimization theorem 

[21,13,14]. KK-MBF intersects the 

layers of the cube along their initial 

segments of lexicographic order. The 

complement of the KK-MBF area in 

𝐵𝑛 has a similar property; it is related 

to the initial segments of co-

lexicographic order. Partial KK-MBF 

is a partial MBF, where 0s of the 

function form initial segments of co-

lexicographic order, and 1s form 

initial segments of lexicographic order 

on layers. 

Symmetric MBF This is a trivial class of functions that 

take constant value on the cube layers. 

Examples are majority functions, 

parity functions, and others. Partial 

symmetric MBF is when the function 

is not determined on some layers of 

the cube. 

Threshold MBF Functions are defined by a linear 

inequality of weighted sums of 

variables.  

Matroid MBF Monotone Boolean function 𝑓 is 

called a matroid function if for each 

𝛼, 𝛽 ∈ min 𝑇(𝑓) with  𝛼𝑖 = 1, 𝛽𝑖 = 0, 

there exists a coordinate 𝑗 with 𝛼𝑗 = 0, 

𝛽𝑗 = 1 such that vertex 𝛼′, obtained 

from 𝛼  by replacing 𝛼𝑖 with 0 and 𝛼𝑗 

with 1, belongs to min 𝑇(𝑓). 

The combinatorial complexity of reconstruction in 

subclasses is not well studied. It is known that symmetric 

functions, with zeros and ones separated by two middle 

layers of the cube, are the most difficult functions for 

query-based reconstruction when only the monotonicity of 

the function is given. If it is known that the function 

belongs to the class of symmetric functions, the 

reconstruction can be done by 𝑙𝑜𝑔𝑛 queries. The same 

function also belongs to 𝐾𝐾 − 𝑀𝐵𝐹, and the 

combinatorial complexity in this case does not exceed 

𝑛𝑙𝑜𝑔𝑛. 

Other known and investigated classes of important 

MBFs, such as 2-monotonic positive functions 𝑘-tight 

functions, can be found in [7,24]. 

2.2 Reinforcement learning 

Reinforcement learning (RL) [30,23] is an algorithmic 

implementation of the natural learning process in which 

there is a systematic and analytical interaction with the 

environment. The basic elements of RL are the 

environment and the learner agent that interacts with it. 

When interacting with the environment, the agent 

performs actions, and the environment responds through a 

reward. Accordingly, RL algorithms distinguish the 



524 Informatica 48 (2024) 521–532 H. Sahakyan et al. 

following main elements: policy, which is a mapping of 

environmental situations/states to actions and is the core 

of the reinforcement learning agent; reward, which 

characterizes the immediate reaction of the environment 

to the action; the value of state 𝑠 or the value of state-

action pair (𝑠, 𝑎). The value function 𝑉(𝑠) is the 

expectation of future rewards when starting from state 𝑠 

and following some policy 𝜋; and the action-value 

function 𝑄(𝑠, 𝑎), which is the expectation of future 

rewards when starting from state 𝑠, taking action 𝑎 and 

following some policy 𝜋. 

RL algorithms can be divided into policy-based and 

value-based methods. In the case of policy-based methods, 

the policy is approximated directly, whereas value-based 

methods focus on approximating a value function, which 

is a measure of policy quality for some state-action pair in 

the given environment. Value-based methods first 

compute the action-value function 𝑄(𝑠, 𝑎) as the expected 

reward of the policy, given state 𝑠 and taking action 𝑎. The 

agent’s policy then corresponds to the choice of action that 

maximizes 𝑄(𝑠, 𝑎) for that state. The main difference 

between the value-based approaches is how to estimate 

𝑄(𝑠, 𝑎) accurately and efficiently. 

Another important element of RL algorithms is the 

model of the environment, which may be unknown or 

partially known. The nature of RL elements - deterministic 

or stochastic, representation by function, table, or table 

being filled, presence of an environment model, nature of 

the applied policy, etc. – defines, in many respects, its 

mathematical model and problems of implementation. 

RL is based on the concept of Markov decision-

making processes (MDP) [5]. MDPs are structured from 

finite sets of actions, states, policies and a state transition 

model. A learner agent interacts with the environment in a 

sequence of steps in time (t): (i) the agent receives a 

representation of the current environment (some state); (ii) 

chooses and performs an action according to its policy; 

(iii) receives a reinforcement/reward; and (iv) enters a new 

state of the environment. The goal in MDP and 

reinforcement learning is to learn a policy 𝜋 that 

maximizes the expected sum of future rewards. 

The epsilon-soft (𝜀-soft) is an example of action 

selection policy in RL, where the probability of all actions 

given a state 𝑠 is greater than some minimum value. The 

epsilon-greedy (𝜀-greedy) policy is a specific instance of 

an 𝜀-soft, where the policy is applied according to the 

following equation: 

𝜋(𝑠) = {
𝑎∗ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖 
𝑎𝑎  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖         

 

where 𝜋(𝑠) is the decision policy for the current state 𝑠, 

𝑎∗ is the best estimated action for the state 𝑠 at the current 

time, and 𝑎𝑎 is a random action selected with probability 

𝜖 [30]. 

In practice it is rare that an agent learns optimal policy; 

only an approximation can be achieved in various learning 

algorithms. The available memory is an important 

constraint; large amount of memory is often required to 

build up approximations of value functions, policies, and 

models. In tasks with small, finite state sets, it is possible 

to form these approximations using learning tables with 

one entry for each state (or state–action pair). In many 

cases of practical interest, however, there are far more 

states than could possibly be entries in a table. In these 

cases the functions must be approximated.  

The online nature of reinforcement learning allows 

optimal policies to be approximated in ways that prioritize 

learning to make good decisions for frequently 

encountered states, at the expense of less effort for 

infrequently encountered states. This is one key property 

that distinguishes reinforcement learning from other 

approaches to approximately solving MDPs. 

SARSA, a counterpart of Q-learning approach [30], is 

one of the common approximate value-based methods. It 

is based on temporal difference learning, where update 

estimates are partially based on other learned estimates, 

without waiting for a final outcome. SARSA iteratively 

makes the following update of the action-value on 

transition to the next state:  

𝑄𝑡+1 ≔ 𝑄𝑡(𝑠, 𝑎) + 𝛼[𝑟(𝑠, 𝑎) + 𝛾𝑄𝑡(𝑠′, 𝑎′) − 𝑄𝑡(𝑠, 𝑎)] 
 

where 𝑠 is the state and 𝑎 is the action at the current step 

𝑡, respectively; 𝑠′ is the state and 𝑎′ is the action at the 

next step 𝑡 + 1. 𝑄𝑡(𝑠, 𝑎) is the action-value at time 𝑡 for 

the state-action pair (𝑠, 𝑎). 𝑄𝑡+1 is the update at time 𝑡 +
1 by performing action 𝑎 in state 𝑠; 𝑟(𝑠, 𝑎) is the reward 

received for the pair (𝑠, 𝑎); 𝛼 and 𝛾 are the parameters, 

where 𝛾 is the scalar discount factor, 0 < 𝛾 ≤ 1, that 

describes the agent preference between current and future 

reward; 𝛼 is the learning rate, which controls overlap 

speed of new information. 

In general, agent–environment interaction is naturally 

broken down into a sequence of separate episodes, and 

each action affects only the finite number of rewards 

subsequently received during the episode. The time steps 

of each episode are numbered starting anew from zero. 

 

SARSA Algorithm 

Algorithm parameters: step size 𝛼 ∈ (0,1], small 𝜖 > 0; 

Initialize 𝑄(𝑠, 𝑎) arbitrary for each pair (𝑠, 𝑎); except that 

𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒, 𝑎) must be 0 for all 𝑎; 

Loop for each episode 

Observe state 𝑠; 

Select 𝑎 using policy derived from 𝑄, e.g.,  𝜖 –greedy; 

Repeat 

Take action 𝑎; 

Receive reward 𝑅(𝑠, 𝑎);  

Observe the next state 𝑠′;  
Select the new action 𝑎′ using policy derived from 𝑄, 

e.g.,  𝜖 –greedy; 

Update 𝑄(𝑠, 𝑎) with 

𝑄(𝑠, 𝑎) ≔  

𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]; 
𝑠 ≔ 𝑠′, 𝑎 ≔ 𝑎′  

Until 𝑠 is terminal 

3 RL components for MBF 

recognition 
The idea of using RL for MBF recognition is to replace 

the difficult task of determining the next vertex of the 
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binary cube 𝐵𝑛 in combinatorial algorithms (to query the 

function value) with using examples, parameters learning 

and mimicking the best behaviour. The whole RL 

framework is composed of combinatorial preparations and 

learning heuristics. To understand the role of 

combinatorial and heuristic procedures in the overall RL 

structure, consider the data structures of the SARSA 

algorithm given in Figure 1. 

Data in part a) of Error! Reference source not 

found. is algorithmic in nature. We call this the Reward 

table. In the preparatory stage of the problem, it is 

necessary to define adequate reward values for all state-

action pairs (𝑠, 𝑎) (assuming that we have the state and 

action sets). The reward values will not be changed during 

the whole performance. The new state 𝑠′ is also definite, 

in the sense that being in state 𝑠 and performing action 𝑎 

will lead to 𝑠′, defined by deterministic or stochastic 

transition rules. In this part, we will intensively use 

technologies largely implemented in algorithmic studies 

of MBF recognition. The table ℝ can be completely or 

partially filled, containing only the values that have 

already been calculated by that moment. 

Often, also in MBF recognition, the task of filling ℝ is 

solved by searching or using other discrete, combinatorial 

considerations. 

Data in part b) is in the operative domain controlled 

by the learning process. Initially, this data is initialized 

with zero values and then learned step-by-step. The 

learning is based on the learning method (given in [30] for 

SARSA), which is also based on the learning policy. 

On the one hand, policy uses the table ℚ, the part of it 

that is already updated, and on the other hand, it is 

extended with a “planning” step that assigns some 

arbitrary actions randomly. This is a kind of balance 

between known and unknown rewards. SARSA, having 

the current state 𝑠, selects action 𝑎 using the policy 

derived from ℚ, obtains (𝑟, 𝑠′) from the reward table, and 

selects the next action 𝑎′ by the policy, and on this basis 

learns and updates the new value of ℚ.  

We conclude: the learning part of SARSA is universal; 

it works with the policy function 𝜋 and the value table ℚ, 

and these areas as well as the learning procedure are 

independent of the subject domain under consideration. 

The complementary part related to the reward table ℝ 

defines one-step-rewards, which in our case is a 

combinatorial computational problem. Then, the concept 

of learning is to integrate these one-step-rewards into 

longer chains of predictions, thus intending to achieve the 

learning goal. For needs of learning over MBF classes, it 

is now clear that we will apply the combinatorial 

technique developed in this area. 

 

3.1 MDP model on MBF reconstruction 

In a typical MBF recognition problem using membership 

queries, the goal is to determine an unknown MBF 𝑓 of 𝑛 

variables by as few queries as possible. We can also 

consider the problem of determining whether an unknown 

Boolean function belongs to the class of monotone 

functions. Another case is when the number of queries is 

limited to some number 𝐾 and the goal is to maximize the 

recognized part of the function. 

In the following, we will point out a number of 

individual problems of this type that may arise in RL MBF 

applications, and their mathematical formulations. 

Suppose that the vertices of 𝐵𝑛 are enumerated. Let 𝑥𝑗 

denote binary variables such that 𝑥𝑗 takes value 1 if the 𝑗-

th vertex of 𝐵𝑛 is chosen to ask the value of the function, 

and 0 otherwise. 𝑐𝑗 expresses the informativeness of the 𝑗-

th vertex, i.e., the number of new evaluations of the 

function obtained by propagating the value of the 𝑗-th 

vertex.  

The formalism of these steps, depending on the 

particular objectives, may be given as follows: 

1) 𝑚𝑖𝑛 ∑ 𝑥𝑗𝑗 , subject to ∑ 𝑐𝑗𝑗 = 2𝑛, this is the case 

when the function is to be entirely recovered and 

the goal is to minimize the number of queries; 

2) 𝑚𝑖𝑛 ∑ 𝑥𝑗𝑗 , subject to  ∑ 𝑐𝑗𝑗 ≥ 𝑁, this is the case 

when a certain part of the function is to be 

recovered by the minimum number of queries; 

3) 𝑚𝑎𝑥 ∑ 𝑐𝑗𝑗 , subject to ∑ 𝑥𝑗𝑗 = 𝐾, this is the case 

when the number of queries is restricted and the 

goal is to maximize the recognized part of the 

function.  

Note that the values of 𝑐𝑗 become known only after 

the vertices are selected. But regardless of the order of 

selection, ∑ 𝑐𝑗𝑗  will have the same value at the end. 

In order to apply RL to MBF recognition we need to 

reformulate it in terms of MDP, i.e., define the 

environment, states, actions, rewards, transition, and 

policy. 

 

 

 

 

Figure 1: Basic data structures used in typical SARSA 
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3.1.1 Environment 

The basis of the RL environment for the MBF 

reconstruction considered in this paper, is the 𝑛-

dimensional binary cube, its vertex set 𝐵𝑛, and the related 

sub-cube structure. The environment may need additional 

tools /known concepts/ such as Sperner systems, Hansel 

chains, Hamming distance, lexicographic order, and 

others. 

3.1.2 States 

The states represent some /partial/ knowledge about the 

solution, such us nested parts of the looked-for MBF, 

which we call fragments. An initial fragment can be the 

empty set, or we can start with some non-empty fragment. 

Thus, formally, each state 𝑠 is a partially defined 

monotone Boolean function 𝑓𝑠, given through a pair 

(𝑇𝑓𝑠 , 𝐹𝑓𝑠) of some sets of true and false vertices.  
An agent must travel through the remaining 

(undetermined) vertices of the cube and decide (according 

to the policy) which vertex to choose as a query. Thus, 

actions are vertices chosen to ask the value of the function.  

3.1.3 Rewards  

Since the agent's instrument of interaction with the 

environment is a query 𝛼 ∈ 𝐵𝑛, the response of the 

environment should characterize how successful the query 

is, having a predetermined partial monotone Boolean 

function available when the query is performed. Thus, the 

reward will express the “informativeness” of the chosen 

vertex-action 𝛼 in the sense of spreading the value 𝑓(𝛼) 

to other vertices due to the monotonicity of 𝑓. 

3.1.4 Transition/update 

Depending on the chosen vertex and the function value, 

new state 𝑠′ will be determined, which is a new partially 

defined function 𝑓𝑠′ given through a new pair (𝑇𝑓𝑠′, 𝐹𝑓𝑠′), 

such that 𝑇𝑓𝑠 ⊆ 𝑇𝑓𝑠′ and 𝐹𝑓𝑠 ⊆ 𝐹𝑓𝑠′.  

3.1.5 Terminal state 

The process will be continued until the termination 

criterion is reached, which according to the defined 

objectives is as follows: 

1) 𝑓 is completely recovered,  

2) 𝑓 is recovered by a certain percentage, 

3) a certain number of steps are done. 

3.1.6 Policy 

Environment models, when known, are used for planning, 

by which we mean an arbitrary approach of deciding to 

apply actions by considering possible future situations 

before they actually occur. Methods for solving 

reinforcement learning problems that use models and 

planning are called model-based methods, in contrast to 

methods without models that learn by trial and error. 

The goal of all reinforcement learning algorithms is to 

find a policy (the way of choosing actions), which would 

consistently allow the agent to gain a lot of rewards. For 

MBF recognition, the goal is to find a policy to get as 

many known values of the function as possible (ideally, 

this will be the whole function). 

Initially, we will start with the following: being in any 

state 𝑠, actions are chosen from the area 𝐵𝑛\ (𝑇𝑓𝑠 ∪  𝐹𝑓𝑠), 

using 𝜀-greedy method.  According to MBFs structure, 

vertices of ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠  are true vertices, and vertices of 

⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠  are false vertices of 𝑓. It is then natural to 

exclude this part from further consideration. Thus, 

another policy may be: being in any state 𝑠, choose actions 

from the area 𝐵𝑛\(⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪ ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 ) using 𝜀-

greedy method. 

Moreover, special policies may be defined that exploit 

structures of MBF, and are based on Hamming distances 

between selected points in  𝑇𝑓𝑠 and 𝐹𝑓𝑠. 

3.2 Initial fragments, policies, updates, and 

rewards 

We consider three types of initial fragments. 

3.2.1 Partially defined monotone Boolean 

functions given by Sperner families 

The input fragment (corresponding to the initial state 𝑠) is 

given through a pair of feasible/compatible Sperner 

families  (𝑇𝑓𝑠 , 𝐹𝑓𝑠), one for the lower units, and one for 

the upper zeros of a partially defined monotone Boolean 

function 𝑓𝑠, as shown in Figure 2 a). 

 

Policy 1 - actions are selected in 𝐵𝑛\ (𝑇𝑓𝑠 ∪  𝐹𝑓𝑠) using 𝜀-

greedy method. 

Actions 

Action 𝑎 in a given state 𝑠 is a vertex 𝛼 in 

𝐵𝑛\ (𝑇𝑓𝑠 ∪  𝐹𝑓𝑠), chosen to ask the value 𝑓(𝛼).   

New states 

Depending on 𝑓(𝛼) the following operations are to be 

performed: 

For 𝑓(𝛼) = 1  

i. if  𝛼 is not comparable with any vertex of 𝑇𝑓𝑠, 

then 𝛼 is added to 𝑇𝑓𝑠 , thus the new state 𝑠′ is 

defined by the pair (𝑇𝑓𝑠′, 𝐹𝑓𝑠′), where  

𝑇𝑓𝑠′ = 𝑇𝑓𝑠 ∪ {𝛼} and 𝐹𝑓𝑠′ = 𝐹𝑓𝑠 

ii. if  𝛼 precedes some vertex/vertices 𝛽 of 𝑇𝑓𝑠, 

then 𝛼 is added to 𝑇𝑓𝑠 and all vertices greater than 𝛼 

are removed from 𝑇𝑓𝑠 , thus 

𝑇𝑓𝑠′ = (𝑇𝑓𝑠 ∪ {𝛼})\{𝛽|𝛽 ∈ 𝑇𝑓𝑠  𝑎𝑛𝑑 𝛽 ≻ 𝛼} 

iii. if there is a vertex 𝛽 of 𝑇𝑓𝑠 that precedes 𝛼, then 

the partial solution /state/ is not changed, 

𝑇𝑓𝑠′ = 𝑇𝑓𝑠 and 𝐹𝑓𝑠′ = 𝐹𝑓𝑠 

For 𝑓(𝛼) = 0  

iv. if 𝛼 is not comparable with any vertex of 𝐹𝑓′ then 

𝛼 is added to 𝐹𝑓𝑠′, thus 

𝐹𝑓𝑠′ = 𝐹𝑓𝑠 ∪ {𝛼}, 𝑇𝑓𝑠′ = 𝑇𝑓𝑠 
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Figure 2: Partial MBF given by Sperner systems 𝑇𝑓𝑠 and 

𝐹𝑓𝑠 

 

 

v. if there is a vertex/vertices 𝛽 of 𝐹𝑓𝑠 that precedes 

𝛼, then 𝛼 is added to 𝐹𝑓𝑠 and all vertices that 

precede 𝛼 are removed from 𝐹𝑓𝑠, thus 

𝐹𝑓𝑠′ = 𝐹𝑓𝑠 ∪ {𝛼}\{𝛽|𝛽 ∈ 𝐹𝑓𝑠  𝑎𝑛𝑑 𝛽 ≺ 𝛼} 

vi. if 𝑓 𝛼 precedes some vertex 𝛽 of 𝐹𝑓𝑠, then the 

partial solution /state/ is not changed, 𝑇𝑓𝑠′ = 𝑇𝑓𝑠 

and 𝐹𝑓𝑠′ = 𝐹𝑓𝑠. 

An illustration is given in Figure 2 b). 

 

Rewards 

We will use approximate reward calculations based on 

Hamming distances between the vertex 𝛼 and the vertices 

of 𝑇𝑓𝑠 and 𝐹𝑓𝑠. 

 

Reward 1 

The reward is 0 for the cases iii and vi, otherwise, it is the 

average Hamming distance, when averaged over all 

distances from 𝛼 to the vertices of 𝑇𝑓𝑠 and  𝐹𝑓𝑠: 

 

𝑅 =
∑ 𝜌(𝛼, 𝛾)𝛾∈(𝑇𝑓𝑠∪ 𝐹𝑓𝑠)

|𝑇𝑓𝑠 ∪  𝐹𝑓𝑠|
 

Reward 2 

The reward is 0 for the cases iii and vi, otherwise, it is the 

average Hamming distance, when the average is over the 

two farthest distances from 𝛼 in 𝑇𝑓𝑠  and  𝐹𝑓𝑠: 

 

𝑅 =

max
𝛾∈𝑇𝑓𝑠

𝜌(𝛼, 𝛾) + max
𝛾∈𝐹𝑓𝑠

𝜌(𝛼, 𝛾)

2
 

 

3.2.2 Partially defined monotone Boolean 

functions given by bunch of intervals 

The input fragment (corresponding to the initial state 𝑠) is 

given through a pair of bunches of intervals 

(⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 , ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 ); initially, 𝑇𝑓𝑠, 𝐹𝑓𝑠 are 

feasible/compatible Sperner families, one for the lower 

units, and one for the upper zeros of a partially defined 

monotone Boolean function 𝑓𝑠.   

Policy 2 - actions are selected in 𝐵𝑛\ (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪

⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 ) using 𝜀-greedy method. 

We have two options: 

 

1. Keep all intervals ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠  and 

⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 ), - this requires extra memory; 

2. Exclude all vertices greater than any vertex of 

𝑇𝑓𝑠, and lower than any vertex of 𝐹𝑓𝑠 – this 

requires extra computations.  

 

Actions 

Action 𝑎 in given state 𝑠 is a vertex 𝛼 in 𝐵𝑛\

 (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪ ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 ), chosen to ask the value 

𝑓(𝛼). 

 

New states 

Depending on 𝑓(𝛼) the following operations are to be 

performed (𝑇𝑓𝑠′  and/or 𝐹𝑓𝑠′ may not be Sperner families):  

i. if 𝑓(𝛼) = 1  then 𝑇𝑓𝑠′ ≔ 𝑇𝑓𝑠 ∪ {𝛼} and 𝐹𝑓𝑠′ ≔

𝐹𝑓𝑠,  

ii. if 𝑓(𝛼) = 0  then 𝐹𝑓𝑠′ ≔ 𝐹𝑓𝑠 ∪ {𝛼}  and 𝑇𝑓𝑠′ ≔

𝑇𝑓𝑠, 

the new state is (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠′ , ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠′ ). 

Rewards 

 

Reward 1 

𝑅 = |(⋃ [𝛼, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠𝛼∈𝑇𝑓𝑠′ ) ∪ (⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠′ \

(∪ ⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠 |  

 

Reward 2 

𝑅 = 

|(⋃ [𝛼, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠𝛼∈𝑇𝑓𝑠′ ) ∪ (⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠′
\(∪ ⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠 |

|𝐵𝑛\ (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪ ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 )|
 

 
= 

|(⋃ [𝛼, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠𝛼∈𝑇𝑓𝑠′ )| + |(⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠′
\(∪ ⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠 |

2𝑛 − | (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 )| − |⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 |
 

 

Reward 3 

For obtaining an approximate value for the reward, we can 

apply Bonferroni inequalities [35,36] for approximating 

the value of corresponding inclusion-exclusion formula. 

For example, 𝑅 = |[𝛼′, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 | can be 

approximated in the following way. 

We suppose that ℎ1, ℎ2, … , ℎ𝑞  are the smallest vertices 

of 𝑇𝑓𝑠 that are greater than 𝛼′.  

Denote 𝐻𝑝 = [ℎ𝑝, 1̃] for 𝑝 = 1, ⋯ , 𝑞. The exact 

reward value can be expressed by the inclusion-exclusion 

formula: 

𝑅 = 2|𝛼′| − |⋃ 𝐻𝑝
𝑞
𝑝=1 | = 2|𝛼′| − ∑ |𝐻𝑝|𝑝   
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+ ∑ |𝐻𝑖 ∩ 𝐻𝑗| − ∑ |𝐻𝑖 ∩ 𝐻𝑗 ∩ 𝐻𝑘|𝑖<𝑗<𝑘𝑖<𝑗   

+ ⋯ (−1)𝑞|𝐻1 ∩ 𝐻2 ∩ … ∩ 𝐻𝑞|¸ 

where |𝛼′| denotes the size of the interval [𝛼′, 1̃], and 2|𝛼′| 

is the number of vertices in [𝛼′, 1̃]. 

The sum of some first terms in the formula is 

alternately an upper bound and a lower bound, which is 

the key for approximations. 

 

3.2.3 Points on chains  

The input fragment is composed as follows: split 𝐵𝑛 into 

Hansel chains (Figure  illustrates the Hansel chains in 𝐵5), 

and compose a list 𝐿 = (𝑙1, 𝑙2, ⋯ , 𝑙
( 𝑛

⌊𝑛/2⌋)
) of their lengths; 

for example, 𝐿 = (6,4,4,4,4,2,2,2,2,2)  for 𝐵5. Take at 

random two numbers in [1, 𝑙𝑗] for each chain 𝑗. The 

smaller number will indicate the initial maximal false 

point, and the larger number will indicate the initial 

minimal true point of the chain.  

Compose 𝑇𝑓𝑠 and 𝐹𝑓𝑠 from the initial minimal true and 

maximal false points of the chains, respectively. Let 

(𝛼𝑗 , 𝛽𝑗), 𝛼𝑗 ≺ 𝛽𝑗  , be the current maximal false and 

minimal true vertices of the 𝑗-th chain. Compose intervals 

[𝛼𝑗 , 𝛽𝑗] on the chains and call them “uncertainty intervals” 

of the chains. 

 

Policy 3 - actions are chosen in ⋃ [𝛼𝑗, 𝛽𝑗]𝑗  using 𝜀-greedy 

method. 

 

Actions 

Action 𝑎 in given state 𝑠 is a vertex 𝛾 in ⋃ [𝛼𝑗, 𝛽𝑗]𝑗  chosen 

to query the value 𝑓(𝛾). 

 

New states 

Let 𝛾 belongs to [𝛼𝑗, 𝛽𝑗] 

i. if 𝑓(𝛾) = 1 then 𝛾 replaces the true point 𝛼𝑗 of the 

chain, 𝛼′𝑗 ≔ 𝛾, resulting a new smaller uncertainty 

interval [𝛼′𝑗 , 𝛽′𝑗], 𝛽′𝑗 = 𝛽𝑗 . Moreover, 𝑓(𝛾) can be 

spread to the vertices of the uncertainty intervals of 

all chains, thus replacing their true points (for 

simplicity we may omit this); 

ii. if 𝑓(𝛾) = 0 then 𝛾 replaces the false point 𝛽𝑗 of the 

chain, 𝛽′𝑗 ≔ 𝛾, resulting a new smaller uncertainty 

interval [𝛼′𝑗 , 𝛽′𝑗], 𝛼′𝑗 = 𝛼𝑗. Moreover, 𝑓(𝛾) can be 

spread to the vertices of the uncertainty intervals of 

all chains, thus replacing their false points (for 

simplicity we may omit this). 

 

We note that any optimal MBF recognition algorithm 

that works with Hansel chains chooses the middle points 

of the intervals to ask the value of the function. But the 

goal here is to determine the most informative point for a 

given function depending on its structure. 

Figure 3: Hansel chains in 𝐵5 

 

 

Rewards 

The reward for action 𝛼 in state 𝑠 depends on the 

“informativeness” of the vertex.  

Reward 1 

The reward is the difference between the summary lengths 

of the new and previous uncertainty intervals: 

𝑅 = | ⋃ [𝛼𝑗, 𝛽𝑗]𝑗 \ ⋃ [𝛼′𝑗 , 𝛽′𝑗]𝑗 |  

 

Policy 4 - actions are chosen starting from the largest 

intervals using 𝜀-greedy method. 

Actions 

An action 𝑎 in a given state 𝑠 is a vertex 𝛾 in the largest 

[𝛼𝑗 , 𝛽𝑗] chosen to ask the value 𝑓(𝛾). 

New states and rewards can be defined as for the previous 

case. 

4 RL MBF algorithm 
In this section we describe an RL algorithm for the case 

when states are defined by Sperner families, and the 

objective is to maximize the recognized part of the 

function, when the number of queries is restricted by some 

natural number 𝐾, 

𝑚𝑎𝑥 ∑ 𝑐𝑗𝑗   

subject to ∑ 𝑥𝑗𝑗 = 𝐾.  

 

The proposed algorithm is based on SARSA method. 

The policy 𝜋 and the reward function 𝑅 can be any of those 

defined in the previous section.  

 

RL-MBF algorithm is composed of several parts: 

Set parameters 𝛼, 𝛾, policy 𝜋, reward function 𝑅, number 

of episodes N (episodes will be explained in Section 4.2) 

Initialize RL-MBF variables and constants, including the 

cube size 𝑛, and integers  𝑘, 𝑙, 0 ≤ 𝑘, 𝑙 ≤ 𝑛 to characterise 

Sperner families  
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Generate initial state 𝑠 (consists of two Sperner families, 

one is for 𝑘 minimal true points, and another is for 𝑙 
maximal false points) 

Get feasibility area (this is “feasible” part of 𝐵𝑛 for 

selecting valid query vertices, thus, excluded initial two 

Sperner families, or Sperner families along with the 

corresponding intervals, according to the policy 𝜋) 

Create root vertex in Q-graph according to the initial state 

𝑠; 

Repeat for each episode  

Select vertex 𝛼 /action 𝑎/ in the feasibility area 

according to the policy 𝜋 

Repeat 

Query the value 𝑓(𝛼) 

Get new state 𝑠′ (according to the value 𝑓(𝛼) and 

the policy 𝜋) 

Calculate Reward for (𝑠, 𝑎) (according to 

Reward function 𝑅)  

Update feasibility area (remove the “difference” 

according to the policy 𝜋) 

Select new vertex 𝛼′ /action 𝑎′/ in the feasibility 

area according to the policy 𝜋 

Update Q-table (update Q-graph using 𝑠, 𝑎, 𝑠′, 𝑎′ 
according to SARSA) 

Calculate cumulative reward 

𝑠: = 𝑠′  
𝑎: = 𝑎′  

until 𝐾 steps are done 

until N episodes are done 

 

4.1 Functions used in RL-MBF 

In this section we describe some of the functions used in 

RL-MBF algorithm.  

Let 𝛼 = (𝑎1, ⋯ , 𝑎𝑛) and 𝛽 = (𝑏1, ⋯ , 𝑏𝑛) be vertices 

of 𝐵𝑛. 𝛼 precedes lexicographically 𝛽 if either there exists 

an integer 𝑘, 1 ≤  𝑘 ≤  𝑛, such that 𝑎𝑘 < 𝑏𝑘  and 𝑎𝑖 = 𝑏𝑖  

for 𝑖 < 𝑘, or 𝛼 = 𝛽. The vectors of 𝐵𝑛 are in a 

lexicographic order in the sequence 𝛼0, 𝛼1, ⋯ , 𝛼2𝑛−1  if 𝛼𝑖 

precedes lexicographically 𝛼𝑗, for 0 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 1. 

The serial number of the vertex 𝛼 = (𝑎1, ⋯ , 𝑎𝑛) is the 

natural number 𝑎12𝑛−1 + 𝑎22𝑛−2 + ⋯ + 𝑎𝑛20, whose 

binary representation is 𝑎1𝑎2 ⋯ 𝑎𝑛. When the vectors of 

𝐵𝑛 are in a lexicographic order, their serial numbers form 

the sequence  0,1, ⋯ ,2𝑛 − 1. 

 

Generate initial state 𝒔 and Get feasibility area (for 

Policy 1) 

𝑇𝑓𝑠 ≔ ∅; 𝐹𝑓𝑠 ≔ ∅; 𝐹 = {0,1, ⋯ , 2𝑛 − 1}; 𝑘, 𝑙; 

𝑡: = 0; 

repeat 

𝑟:= random number in 𝐹;  

find vertex 𝛼𝑟, with the serial number 𝑟;  

if 𝛼𝑟 is not comparable with any vertex of 𝑇𝑓𝑠 

then 

𝑇𝑓𝑠 ≔ 𝑇𝑓𝑠 ∪ {𝛼𝑟}; 

𝐹 ≔ 𝐹\{𝑟}; 

𝑡 = 𝑡 + 1; 

until 𝑡 = 𝑘  

𝑡: = 0;  

repeat 

  𝑟:= random number in 𝐹; 

find vertex 𝛼𝑟 with the serial number 𝑟; 

if 𝛼𝑟 is not comparable with any vertex of 𝐹𝑓𝑠 

and is not greater of any vertex of 𝑇𝑓𝑠 

then 

𝐹𝑓𝑠 ≔ 𝐹𝑓𝑠 ∪ {𝛼𝑟}; 

𝐹 ≔ 𝐹\{𝑟}; 

𝑡 = 𝑡 + 1;  

until 𝑡 = 𝑙 
𝑠 ≔ 𝑇𝑓𝑠 ∪ 𝐹𝑓𝑠; 

 

Generate initial state 𝒔 and Get feasibility area (for 

Policy 2) 

�̂�𝑓𝑠 ≔ ∅; �̌�𝑓𝑠 ≔ ∅; 𝐹 = {0, ⋯ , 2𝑛 − 1}; 𝑘, 𝑙; 

repeat 

  𝑟= random number in 𝐹; 

find vertex 𝛼𝑟 with the serial number  𝑟; 

�̂�𝑓𝑠 ≔ �̂�𝑓𝑠 ∪ [𝛼𝑟 , 1̃]; 

𝐹 ≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓[𝛼𝑟 , 1̃]}; 

until 𝑘 steps are done 

 

repeat 

𝑟:= random number in 𝐹; 

find vertex 𝛼𝑟 with the serial number 𝑟; 

�̌�𝑓𝑠 ≔ �̌�𝑓𝑠 ∪ [0̃, 𝛼𝑟]; 

𝐹 ≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 [0̃, 𝛼𝑟]}; 

until 𝑙 steps are done 

𝑠 ≔ �̂�𝑓𝑠 ∪ �̌�𝑓𝑠; 

 

Get new state 𝒔′ and Update feasibility area (for Policy 

2) 

If 𝑓(𝛼) = 1  

then 

�̂�𝑓𝑠′ ≔ �̂�𝑓𝑠 ∪ [𝛼, 1̃]; 

temp≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 [𝛼, 1̃]}; 

diff:= 𝐹\temp; 𝐹 ≔temp; 

else 

�̌�𝑓𝑠′ ≔ �̌�𝑓𝑠 ∪ [0̃, 𝛼];  

temp≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 [0̃, 𝛼]};  

diff:= 𝐹\temp; 

𝐹 ≔temp;  

 

RL-MBF algorithm, as well as functions used can be 

described in a similar way for the case, where states are 

defined by points on chains. 

4.2 Data structure for Q-table 

As mentioned earlier, agent–environment interaction is 

broken down into separate episodes, and each action 

affects only the finite number of rewards subsequently 

received during the episode.   

In the case of MBF recognition, each episode starts 

with the same initial fragment (e.g. two initial Sperner 

families along with the corresponding intervals) and has 

fixed length 𝐾. Theoretically, an action can be any vertex 

of 𝐵𝑛, excluding the vertices of the initial fragment, and a 
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state can be any partial monotone Boolean function 

containing the initial fragment.   

Within a single episode, a sequence of steps leads to a 

sequence of states that correspond to a series of nested 

partial monotone Boolean functions. Thus, “feasibility” 

area for choosing actions becomes more restricted from 

state to state. In terms of the reward table 𝑅, states are 

assigned to the rows of the table, and actions are assigned 

to the columns. Each state has its area of “feasible” actions 

(a subset of columns). At each step of an episode, being in 

a state 𝑠 and performing an action 𝑎, if 𝑎 is a new action 

for the state 𝑠, then cell (𝑠, 𝑎) is filled with the computed 

reward value 𝑅(𝑠, 𝑎), otherwise, the cell is already filled 

with the reward value. For the first episode, 𝑅 is initially 

empty, and at each step exactly one cell is filled.    

Regarding the state-action table 𝑄, at each step of an 

episode, being in state 𝑠 and performing action 𝑎, if 𝑎 is a 

new action for the state 𝑠, then cell (𝑠, 𝑎) is assigned 0, 

otherwise 𝑄(𝑠, 𝑎) is updated according to the method used 

(e.g., SARSA). For the first episode, the table is initially 

empty. 

Given the features of MBF, i.e. the nested structure of 

states and the restriction of the range of feasible actions 

from state to state, instead of storing Reward- and Value- 

tables we create an oriented weighted graph 𝑄-graph as 

follows. 

States are assigned to vertices and state-action pairs are 

assigned to edges. One vertex is mentioned as the root 

vertex that corresponds to the initial state; the root has no 

incoming edges.  

Each episode is an oriented path in 𝑄-graph, starting 

from the root and having length 𝐾. Each edge (𝑠, 𝑎) is 

assigned two weights; one is the reward 𝑅(𝑠, 𝑎), the other 

is the state-action value 𝑄(𝑠, 𝑎). For the first episode, the 

entire path is newly created; 𝑅(𝑠, 𝑎) are computed 

according to the reward function, and 𝑄(𝑠, 𝑎) are assigned 

0, then 𝑄(𝑠, 𝑎) are updated according to the SARSA 

formula. 

Obviously, paths for different episodes can overlap 

(i.e., the same state can be reached by different sequences 

of actions), possibly, making cycles. 

In the current episode, being in some state 𝑠 and 

choosing action 𝑎, we search among the outgoing edges 

from 𝑠; if edge (𝑠, 𝑎) already exists, then the pair has 

already met, and 𝑅(𝑠, 𝑎) and 𝑄(𝑠, 𝑎) have been calculated. 

If edge (𝑠, 𝑎) does not exist, we first look for vertex 𝑠′, 
if it exists we add edge (𝑠, 𝑎) from 𝑠 to 𝑠′, if it does not 

exist then we create new vertex 𝑠′ and add edge from 𝑠 to 

𝑠′. Then we calculate 𝑅(𝑠, 𝑎) according to the reward 

function, assign 𝑄(𝑠, 𝑎) to 0, and then update it according 

to SARSA formula. 

In order to organize the search process for vertex 𝑠  and 

edges originating from 𝑠, as well as Reward and Q tables, 

we introduce the following structure. 

We create an array “Vertex_list”, each element 𝑣 of 

which has its name “𝑣.name” and its set of outgoing edges 

“𝑣.edge_list”. “𝑣.name” keeps states, and “𝑣.edge_list” 

keeps all outgoing edges from 𝑣. Initially, “Vertex_list” 

consists of the root vertex 𝑣0; “𝑣0.name” is the initial state, 

“𝑣0.edge.list” is empty.  

Each element “edge: of  “𝑣.edge_list”, in its turn, has 

its own name “edge.name”, which is the chosen vertex-

action, its reward “edge.reward”, and  its Q-value 

“edge.value”. 

Update is organized in the following way.  

Update Q(𝒔, 𝒂, 𝒔′, 𝒂′) 

If 𝑎 does not exist in “𝑠.edge_list”, and 𝑠′ does not 

exist in “Vertex_list”, then create a new graph vertex 𝑠′  in 

“Vertex_list” with  “𝑠′. name”= 𝑠′, and add outgoing edge 

𝑎 from 𝑠 to 𝑠′ by adding (𝑠, 𝑎) into the “𝑠.edge_list” of 𝑠; 

with “edge.value” 0; and “edge.reward” - calculated 

according to the reward function. 

If 𝑎 does not exist in “𝑠.edge_list”, but 𝑠′ exists in 

“Vertex_list”, then add new edge 𝑎 from 𝑠 to 𝑠′ by adding 

𝑠′ into the “𝑠.edge_list”;  calculate “edge.reward” 

according to the reward function. Update “edge.value” 

according to: 

𝑄(𝑠, 𝑎) ≔ 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]. 
 

5 Discussions and evaluation of the 

model  
 The RL modeling of the MBF recognition problem passes 

through the stages of defining all the elements of RL for 

the MBF domain, as well as the algorithmic 

implementation of the computational processes of these 

components. Exact models based on Sperner families and 

Hansel chains are used, as well as approximate versions of 

both concepts and their computations are proposed. 

Hansel models require at least twice the amount of regular 

memory and reduce the spatial analysis of structures to 

chain analysis using simple division and the algebra of 

Hansel chains. The approximations in the calculations 

associated with Sperner systems turn to inclusion-

exclusion type formulas when computing the cardinality 

of a bundle of intervals, where the sums of the initial sum 

segments provide lower and upper cardinality estimates in 

the required precision.  

Coarser heuristics are also possible, due to the need to 

reduce the resulting computational complexity. The 

simplest heuristics address different kinds of query 

distances or propagation of points from vertices to current 

Sperner systems. The whole technique of this block 

proposes replacing the ideal environment with another, 

less intelligent and less precise one, with the hope that the 

necessary computation is simplified and that the RL 

process converges in a reasonable time frame.  

The preliminary experiments conducted involved 

functions of small dimensionality and mainly focused on 

clarifying the possibilities of approaches with Sperner and 

Hansel systems. However, a sufficient volume of 

experiments has not yet been conducted, and the available 

volume of trials does not allow to obtain reasonable 

conclusions to be drawn about the effectiveness of one 

approach or the other. At this stage, a Proof of Concept 

type result has been established, and an experimental 

computing environment has been deployed for further 

work on the basis of the Armenian-French supercomputer 
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of the Institute for Informatics and Automation Problems 

of the National Academy of Sciences of Armenia.  

  

6 Conclusion and future work 
This paper investigated the feasibility of using 

reinforcement learning to solve combinatorial 

optimization problems, particularly the query-based 

reconstruction of monotone Boolean functions. 
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