
https://doi.org/10.31449/inf.v48i4.4804 Informatica 48 (2024) 521–532 521

Study on Using Reinforcement Learning for the Monotone Boolean

Reconstruction

Hasmik Sahakyan1,3*, Gyula Katona2 and Levon Aslanyan1
1Institute for Informatics and Automation Problems of the National Academy of Sciences, P.Sevak street 1, Yerevan

0014, Armenia
2Alfréd Rényi lnstitute of Mathematics, Budapest, Reáltanoda u.13-15 PF 127, 1364, Hungary
3French University in Armenia, D.Anhaght street 10/1, Yerevan 0037, Armenia

E-mail: hsahakyan@sci.am, katona.gyula.oh@renyi.hu, lasl@sci.am
*Corresponding author

Keywords: Monotone Boolean functions, reinforcement learning, combinatorial optimization

Received: April 14, 2023

This paper investigates the feasibility of using reinforcement learning to solve combinatorial optimization

problems, in particular, the problem of query-based monotone Boolean function reconstruction. The

monotone Boolean function reconstruction problem is a typical combinatorial problem that reconstructs

the function unambiguously with a minimum number of queries about the value of the function at the

defined points, based on the monotonicity of the function. The Shannon complexity of the problem is of

the order of 2𝑛/√𝑛, and the solution algorithm relies on complex constructions, which also add

complexity in the form of memory and time. Additionally, there are problems of partial reconstruction,

e.g., in the mining of associative rules, which do not fit into the developed solution formats. This

necessitates exploring heuristic domains to attract additional resources to solve the problem. To this end,

all elements of reinforcement learning - environment, agent, policy, etc. - are designed, and both exact

and approximate algorithms are given to perform the necessary structural data transformations, as well

as to calculate the reward, the value, and other operational data of the algorithm. The focal point of the

considerations is a subclass of monotone Boolean functions related to the well-known shadow

minimization theorem of layer-by-layer characterized functions. Preliminary experiments have been

started and they require follow-up intensive actions.

Povzetek: V raziskavi so avtorji preučili uporabo okrepljenega učenja za rekonstruiranje monotone

Booleanove funkcije z minimalnim številom poizvedb. Predlagali so algoritme za točno in približno

reševanje problema ter izvedli začetne simulacije.

1 Introduction
Many problems with monotone Boolean functions

(MBFs) appear not only in logical and physical level

design of systems, but also in artificial intelligence

models, computation learning theory, hypergraph theory,

and other areas. MBFs are used to encode extremely

important constructions in various combinatorial

optimization problems; they provide a natural way to

describe satisfiable subsets of finite constraint collections.

Extreme points of MBFs correspond to maximal

compatible subsets of constraints, such as sets of linear

inequalities, closed sets of frequent elements in

association rule searches, etc. A number of applications

(e.g., wireless sensor networks, dead-end tests of tables,

data mining [2,3]) are based on MBF optimization, where

MBFs are represented not in direct form, but by using

chains and anti-chains [29]. Other similar applications can

be added to this description [6,8,17].

There are a number of effective tools and methods for

analyzing MBFs, and new approaches are constantly

being sought, investigated, and applied. Well-known open

problems include the reconstruction of bounded classes of

Boolean functions with randomization of queries and

functions, and the use of cube-splitting and chain-splitting

of the Boolean domain [2].

A well-known problem concerning MBFs is the

identification problem – the recognition of an unknown

MBF of 𝑛 variables by using membership queries.

Hansel’s algorithm [15], based on partitioning the binary

cube into special non-intersecting chains, provides

optimal reconstruction in the sense of Shannon

complexity. In practical implementations, it is not

necessary to build and store all chains in computer

memory; according to [27,28,31], this can be done with

simple procedures and an algebra that provides all the

necessary answers to questions concerning the chains and

queries mapped to these chains.
The problem of recognition of monotone Boolean

functions with 𝑛 variables, for 𝑛 = 2, ⋯ ,4 is investigated

in [4], where the authors compare the complexity of

different types of optimal (relative to the depth or the

number of realizable nodes) decision trees with

hypotheses.

mailto:hsahakyan@sci.am
mailto:katona.gyula.oh@renyi.hu
mailto:lasl@sci.am

522 Informatica 48 (2024) 521–532 H. Sahakyan et al.

PAC (probably approximately correct) type learning

algorithms of MBFs are considered in a number of papers

[25,32]. An algorithm that learns any monotone Boolean

function 𝑓 of 𝑛 variables, to any constant accuracy, under

the uniform distribution, in time polynomial in 𝑛 and in

the decision tree size of 𝑓 is achieved in [32].

In order to obtain solutions and approximations using

MBF classes, it is necessary to reconstruct the function

itself from examples/values of points. One of the key tools

here is the well-known Kruskal-Katona theorem [13,14],

which describes the exact optimal monotone construction

for a given set of parameters. In this way, KK-MBF class

of MBFs is formed, being a special and attractive class for

recognition.

In recent years, machine learning (ML) has been seen

as an additional technological resource for solving

combinatorial optimization problems (CO) [18,22,33].

Numerous machine learning techniques have been used to

solve various combinatorial optimization problems, such

as reinforcement learning to train a deep Q-net [18] which

is applied to the Traveling Salesman Problem (TSP)

[16,26], graph convolution networks [22], pointer

networks and learning-to-prune framework [33], decision

trees and neural networks to classify discrete images with

different structural properties using projection data [12],

and others.

In this paper, we investigate the possibility of using

ML to train an MBF recognition heuristic that uses

structures of Boolean function classes and stepwise

recognition based on membership queries, as well as

similarity and approximation studies between MBF

classes and fragments. Among machine learning

techniques, we distinguish and apply Reinforcement

Learning (RL) – an approach similar to the query-based

recognition. In order to apply RL to combinatorial

optimization problems, the problem must be modelled as

a sequential decision-making process, where the agent

interacts with the environment by performing a sequence

of actions in order to find a solution. A fundamental

question arises here, which requires a detailed analysis –

whether it is possible to apply RL effectively for

considered CO problem. Subjects for discussion include

the compilation of acceptable sets of states and actions,

possible and useful reward definitions, complexity

aspects, and certainly, validation and estimation of

approximations. These questions constitute the main

topics of investigation of our present study. We propose

an RL structure to solve the MBF recognition problem

through a model (actions, states, and rewards) and an RL-

MBF algorithm. Experiments involve simulations with a

traditional RL algorithm SARSA, using instances of

typical MBF classes.

The rest of the paper is organised as follows. Section

2 presents necessary definitions, preliminaries, and basic

theoretical concepts of the RL and MBF recognition,

respectively. Section 3 and 4 describe the proposed

technique and model, RL structure and components for the

MBF recognition, and RL MBF algorithm and data

structures, respectively. Discussions and evaluation of the

model are given in Section 5. The paper ends with some

concluding remarks.

2 Preliminaries

2.1 Monotone Boolean function

recognition

Let 𝐵𝑛 = {(𝑥1, ⋯ , 𝑥𝑛) | 𝑥𝑖 ∈ {0,1}, 𝑖 = 1, ⋯ , 𝑛} denote

the set of vertices of the 𝑛-dimensional binary (unit) cube.

Vertices of 𝐵𝑛 are obtained by assigning values to the

binary variables 𝑥1, ⋯ , 𝑥𝑛. Let 𝛼 = (𝛼1, ⋯ , 𝛼𝑛) and

𝛽 = (𝛽1, ⋯ , 𝛽𝑛) be two vertices of 𝐵𝑛. Then, 𝛼 precedes

𝛽 (denoted as 𝛼 ≼ 𝛽) if and only if 𝛼𝑖 ≤ 𝛽𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

If at the same time 𝛼 ≠ 𝛽 then 𝛼 strictly precedes 𝛽

(denoted as 𝛼 ≺ 𝛽). 𝛼 and 𝛽 are comparable if 𝛼 ≼ 𝛽 or

𝛽 ≼ 𝛼, otherwise, they are incomparable. A set of

incomparable vertices in 𝐵𝑛 is also called a Sperner

family. A (growing) chain is a sequence of vertices such

that the 𝑖-th vertex in the sequence is obtained from the

(𝑖 − 1)-th vertex by replacing a “0” component with “1”.

The Hamming distance between 𝛼 and 𝛽 is the number

of positions at which 𝛼𝑘 ≠ 𝛽𝑘, 1 ≤ 𝑘 ≤ 𝑛.

For a given vertex 𝛼 of 𝐵𝑛, we define two intervals of

vertices as:

[𝛼, 1̃] = {𝛽 ∈ 𝐵𝑛|𝛼 ≼ 𝛽 ≼ 1̃}

[0̃, 𝛼] = {𝛽 ∈ 𝐵𝑛|0̃ ≼ 𝛽 ≼ 𝛼}

where 1̃ and 0̃ are vertices of 𝐵𝑛 with all components

being 1s and 0s, respectively.

Boolean function 𝑓: 𝐵𝑛 → {0,1} is called monotone if

for every two vertices 𝛼, 𝛽 ∈ 𝐵𝑛 , if 𝛼 ≺ 𝛽 then 𝑓(𝛼) ≤
𝑓(𝛽). Vertices of 𝐵𝑛, where 𝑓 takes value “1” are called

units or true points of the function; vertices, where 𝑓 takes

value “0” are called zeros or false points of the function.

𝛼1 is a lower unit (or minimal true point) of the function

if 𝑓(𝛼1) = 1, and 𝑓(𝛼) = 0 for every 𝛼 ∈ 𝐵𝑛 , such that

𝛼 ≺ 𝛼1. 𝛼0 is an upper zero (maximal false point) of the

function if 𝑓(𝛼0) = 0, and 𝑓(𝛼) = 1 for every 𝛼 ∈ 𝐵𝑛

such that 𝛼0 ≺ 𝛼. min 𝑇(𝑓) and max 𝐹(𝑓) denote the

sets of minimal true points and maximal false points,

respectively. Obviously, min 𝑇(𝑓) and max 𝐹(𝑓) are

Sperner families in 𝐵𝑛.

Formally, the work with MBFs started in 1987, with

the issue of counting their number [9]. The first

algorithmic and complexity-related considerations belong

to [19], where, in particular, the valuable concept of

resolving subsets was introduced. The final asymptotic

estimate about the number of MBFs of 𝑛 variables was

obtained in [20]. The technique on how to introduce and

analyze MBFs, basically, is presented in

[13,14,15,1,2,31,27,28,11].

The Hansel chain structure [15] was invented in 1966

and plays one of the central roles in MBF-related

algorithmic techniques. The method is based on the

partitioning of 𝐵𝑛 into (𝑛
⌊𝑛/2⌋

) pairwise non-intersecting

chains (Hansel chains), arranged symmetrically about the

middle layers of 𝐵𝑛, which have the following properties:

1) The number of chains of the length 𝑛 − 2𝑝 + 1 is

(𝑛
𝑝

) − (𝑛
𝑝−1

) for 0 ≤ 𝑝 ≤ ⌊𝑛/2⌋; 2) For any three elements

𝛼𝑖1 ≺ 𝛼𝑖2 ≺ 𝛼𝑖3 of a chain of length 𝑛 − 2𝑝 + 1, their

Study on Using Reinforcement Learning for the Monotone… Informatica 48 (2024) 521–532 523

relative complement 𝛽 belongs to a chain of length 𝑛 −
2𝑝 − 1.

The next valuable step to this was done by Tonoyan

[31], who invented a set of simple procedures (chain

algebra) that serve all the actual queries about Hansel

chains, providing a technical solution to all the problems

related to algorithms with Hansel chains, without

constructing and keeping them in computer memory. In

continuation, [27] presented a slightly modified and

simplified version by using two tools: enumeration of all

chains, and a procedure of finding the 𝑖-th vertex of the 𝑗-

th chain. An optimised procedure is used to propagate

newly found values to the chains, by a divide-and-conquer

manner.

In the MBF recognition problem using membership

queries, the goal is to determine an unknown MBF of 𝑛

variables using as few queries as possible. The function

can be fully recognized by finding all its upper zeros

(and/or lower units) [19]. The Shannon complexity of

finding all upper zeros (lower units) of an arbitrary

monotone Boolean function of 𝑛 variables is

(𝑛
⌊𝑛/2⌋

) + (𝑛
⌊𝑛/2⌋+1

) [15].

General steps in any optimal in the sense of Shannon

function algorithm of recognition of monotone Boolean

function 𝑓 are the following:

1. Partitioning 𝐵𝑛 into Hansel chains;

2. Choosing a chain 𝑗 (usually, chains are in increasing

order of length) and a vertex 𝛼 on 𝑗 and querying

𝑓(𝛼); On each chain, its “undetermined values”

constitute an interval, and 𝛼 is chosen as the middle

point of the interval. Then the query response 𝑓(𝛼)

determines values in one half of the interval;

3. Propagating 𝑓(𝛼) to other chains/vertices of 𝐵𝑛

whenever it is possible using the monotonicity of 𝑓;

4. Repeating steps 2-3 until 𝑓 is fully recognized (i.e.,

𝑓(𝛼) is obtained on all 𝛼 ∈ 𝐵𝑛).

Another recognition structure is used in [28]. For even

𝑛, 𝐵𝑛 is split according to two variables and the

recognition in every sub-cube starts from its two middle

layers. For odd 𝑛, firstly 𝐵𝑛 is split according to one

variable, then as each sub-cube now has even size, the

procedure for even sizes is applied. This provides optimal

recognition of all MBFs in the sense of Shannon

complexity. Unfortunately, while simple and attractive,

this approach cannot be used in practical algorithms for

arbitrary functions. Finally, it is worth mentioning the

work [11] that considers not the Shannon complexity but

the individual complexity of MBF given by its resolving

set size. The core consideration is that for a given vertex

𝛼, if 𝑓(𝛼) = 0, an upper-zero of 𝑓 can be found in no more

than 𝑛 queries. The same holds with a lower-one when

𝑓(𝛼) = 1. This gives a recognition complexity bounded

by 𝑛 times the resolving set size of 𝑓.

In general, tasks related to the recognition of MBFs

may have different formulations. One task is to recognize

a particular unknown function, knowing that it belongs to

the class of MBFs or to one of its subclasses. Another task

is to start with partial knowledge about the unknown

function. One more case is when the number of queries is

restricted by some number 𝐾 and the goal is to maximize

the recognized part of the function.

Similar problems can be formulated for specific

classes of Boolean functions. Examples of classes are as

follows:

KK-MBF Kruskal-Katona MBF arises as a result

of the shadow minimization theorem

[21,13,14]. KK-MBF intersects the

layers of the cube along their initial

segments of lexicographic order. The

complement of the KK-MBF area in

𝐵𝑛 has a similar property; it is related

to the initial segments of co-

lexicographic order. Partial KK-MBF

is a partial MBF, where 0s of the

function form initial segments of co-

lexicographic order, and 1s form

initial segments of lexicographic order

on layers.

Symmetric MBF This is a trivial class of functions that

take constant value on the cube layers.

Examples are majority functions,

parity functions, and others. Partial

symmetric MBF is when the function

is not determined on some layers of

the cube.

Threshold MBF Functions are defined by a linear

inequality of weighted sums of

variables.

Matroid MBF Monotone Boolean function 𝑓 is

called a matroid function if for each

𝛼, 𝛽 ∈ min 𝑇(𝑓) with 𝛼𝑖 = 1, 𝛽𝑖 = 0,

there exists a coordinate 𝑗 with 𝛼𝑗 = 0,

𝛽𝑗 = 1 such that vertex 𝛼′, obtained

from 𝛼 by replacing 𝛼𝑖 with 0 and 𝛼𝑗

with 1, belongs to min 𝑇(𝑓).

The combinatorial complexity of reconstruction in

subclasses is not well studied. It is known that symmetric

functions, with zeros and ones separated by two middle

layers of the cube, are the most difficult functions for

query-based reconstruction when only the monotonicity of

the function is given. If it is known that the function

belongs to the class of symmetric functions, the

reconstruction can be done by 𝑙𝑜𝑔𝑛 queries. The same

function also belongs to 𝐾𝐾 − 𝑀𝐵𝐹, and the

combinatorial complexity in this case does not exceed

𝑛𝑙𝑜𝑔𝑛.

Other known and investigated classes of important

MBFs, such as 2-monotonic positive functions 𝑘-tight

functions, can be found in [7,24].

2.2 Reinforcement learning

Reinforcement learning (RL) [30,23] is an algorithmic

implementation of the natural learning process in which

there is a systematic and analytical interaction with the

environment. The basic elements of RL are the

environment and the learner agent that interacts with it.

When interacting with the environment, the agent

performs actions, and the environment responds through a

reward. Accordingly, RL algorithms distinguish the

524 Informatica 48 (2024) 521–532 H. Sahakyan et al.

following main elements: policy, which is a mapping of

environmental situations/states to actions and is the core

of the reinforcement learning agent; reward, which

characterizes the immediate reaction of the environment

to the action; the value of state 𝑠 or the value of state-

action pair (𝑠, 𝑎). The value function 𝑉(𝑠) is the

expectation of future rewards when starting from state 𝑠

and following some policy 𝜋; and the action-value

function 𝑄(𝑠, 𝑎), which is the expectation of future

rewards when starting from state 𝑠, taking action 𝑎 and

following some policy 𝜋.

RL algorithms can be divided into policy-based and

value-based methods. In the case of policy-based methods,

the policy is approximated directly, whereas value-based

methods focus on approximating a value function, which

is a measure of policy quality for some state-action pair in

the given environment. Value-based methods first

compute the action-value function 𝑄(𝑠, 𝑎) as the expected

reward of the policy, given state 𝑠 and taking action 𝑎. The

agent’s policy then corresponds to the choice of action that

maximizes 𝑄(𝑠, 𝑎) for that state. The main difference

between the value-based approaches is how to estimate

𝑄(𝑠, 𝑎) accurately and efficiently.

Another important element of RL algorithms is the

model of the environment, which may be unknown or

partially known. The nature of RL elements - deterministic

or stochastic, representation by function, table, or table

being filled, presence of an environment model, nature of

the applied policy, etc. – defines, in many respects, its

mathematical model and problems of implementation.

RL is based on the concept of Markov decision-

making processes (MDP) [5]. MDPs are structured from

finite sets of actions, states, policies and a state transition

model. A learner agent interacts with the environment in a

sequence of steps in time (t): (i) the agent receives a

representation of the current environment (some state); (ii)

chooses and performs an action according to its policy;

(iii) receives a reinforcement/reward; and (iv) enters a new

state of the environment. The goal in MDP and

reinforcement learning is to learn a policy 𝜋 that

maximizes the expected sum of future rewards.

The epsilon-soft (𝜀-soft) is an example of action

selection policy in RL, where the probability of all actions

given a state 𝑠 is greater than some minimum value. The

epsilon-greedy (𝜀-greedy) policy is a specific instance of

an 𝜀-soft, where the policy is applied according to the

following equation:

𝜋(𝑠) = {
𝑎∗ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖
𝑎𝑎 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

where 𝜋(𝑠) is the decision policy for the current state 𝑠,

𝑎∗ is the best estimated action for the state 𝑠 at the current

time, and 𝑎𝑎 is a random action selected with probability

𝜖 [30].

In practice it is rare that an agent learns optimal policy;

only an approximation can be achieved in various learning

algorithms. The available memory is an important

constraint; large amount of memory is often required to

build up approximations of value functions, policies, and

models. In tasks with small, finite state sets, it is possible

to form these approximations using learning tables with

one entry for each state (or state–action pair). In many

cases of practical interest, however, there are far more

states than could possibly be entries in a table. In these

cases the functions must be approximated.

The online nature of reinforcement learning allows

optimal policies to be approximated in ways that prioritize

learning to make good decisions for frequently

encountered states, at the expense of less effort for

infrequently encountered states. This is one key property

that distinguishes reinforcement learning from other

approaches to approximately solving MDPs.

SARSA, a counterpart of Q-learning approach [30], is

one of the common approximate value-based methods. It

is based on temporal difference learning, where update

estimates are partially based on other learned estimates,

without waiting for a final outcome. SARSA iteratively

makes the following update of the action-value on

transition to the next state:

𝑄𝑡+1 ≔ 𝑄𝑡(𝑠, 𝑎) + 𝛼[𝑟(𝑠, 𝑎) + 𝛾𝑄𝑡(𝑠′, 𝑎′) − 𝑄𝑡(𝑠, 𝑎)]

where 𝑠 is the state and 𝑎 is the action at the current step

𝑡, respectively; 𝑠′ is the state and 𝑎′ is the action at the

next step 𝑡 + 1. 𝑄𝑡(𝑠, 𝑎) is the action-value at time 𝑡 for

the state-action pair (𝑠, 𝑎). 𝑄𝑡+1 is the update at time 𝑡 +
1 by performing action 𝑎 in state 𝑠; 𝑟(𝑠, 𝑎) is the reward

received for the pair (𝑠, 𝑎); 𝛼 and 𝛾 are the parameters,

where 𝛾 is the scalar discount factor, 0 < 𝛾 ≤ 1, that

describes the agent preference between current and future

reward; 𝛼 is the learning rate, which controls overlap

speed of new information.

In general, agent–environment interaction is naturally

broken down into a sequence of separate episodes, and

each action affects only the finite number of rewards

subsequently received during the episode. The time steps

of each episode are numbered starting anew from zero.

SARSA Algorithm

Algorithm parameters: step size 𝛼 ∈ (0,1], small 𝜖 > 0;

Initialize 𝑄(𝑠, 𝑎) arbitrary for each pair (𝑠, 𝑎); except that

𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒, 𝑎) must be 0 for all 𝑎;

Loop for each episode

Observe state 𝑠;

Select 𝑎 using policy derived from 𝑄, e.g., 𝜖 –greedy;

Repeat

Take action 𝑎;

Receive reward 𝑅(𝑠, 𝑎);

Observe the next state 𝑠′;
Select the new action 𝑎′ using policy derived from 𝑄,

e.g., 𝜖 –greedy;

Update 𝑄(𝑠, 𝑎) with

𝑄(𝑠, 𝑎) ≔

𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)];
𝑠 ≔ 𝑠′, 𝑎 ≔ 𝑎′

Until 𝑠 is terminal

3 RL components for MBF

recognition
The idea of using RL for MBF recognition is to replace

the difficult task of determining the next vertex of the

Study on Using Reinforcement Learning for the Monotone… Informatica 48 (2024) 521–532 525

binary cube 𝐵𝑛 in combinatorial algorithms (to query the

function value) with using examples, parameters learning

and mimicking the best behaviour. The whole RL

framework is composed of combinatorial preparations and

learning heuristics. To understand the role of

combinatorial and heuristic procedures in the overall RL

structure, consider the data structures of the SARSA

algorithm given in Figure 1.

Data in part a) of Error! Reference source not

found. is algorithmic in nature. We call this the Reward

table. In the preparatory stage of the problem, it is

necessary to define adequate reward values for all state-

action pairs (𝑠, 𝑎) (assuming that we have the state and

action sets). The reward values will not be changed during

the whole performance. The new state 𝑠′ is also definite,

in the sense that being in state 𝑠 and performing action 𝑎

will lead to 𝑠′, defined by deterministic or stochastic

transition rules. In this part, we will intensively use

technologies largely implemented in algorithmic studies

of MBF recognition. The table ℝ can be completely or

partially filled, containing only the values that have

already been calculated by that moment.

Often, also in MBF recognition, the task of filling ℝ is

solved by searching or using other discrete, combinatorial

considerations.

Data in part b) is in the operative domain controlled

by the learning process. Initially, this data is initialized

with zero values and then learned step-by-step. The

learning is based on the learning method (given in [30] for

SARSA), which is also based on the learning policy.

On the one hand, policy uses the table ℚ, the part of it

that is already updated, and on the other hand, it is

extended with a “planning” step that assigns some

arbitrary actions randomly. This is a kind of balance

between known and unknown rewards. SARSA, having

the current state 𝑠, selects action 𝑎 using the policy

derived from ℚ, obtains (𝑟, 𝑠′) from the reward table, and

selects the next action 𝑎′ by the policy, and on this basis

learns and updates the new value of ℚ.

We conclude: the learning part of SARSA is universal;

it works with the policy function 𝜋 and the value table ℚ,

and these areas as well as the learning procedure are

independent of the subject domain under consideration.

The complementary part related to the reward table ℝ

defines one-step-rewards, which in our case is a

combinatorial computational problem. Then, the concept

of learning is to integrate these one-step-rewards into

longer chains of predictions, thus intending to achieve the

learning goal. For needs of learning over MBF classes, it

is now clear that we will apply the combinatorial

technique developed in this area.

3.1 MDP model on MBF reconstruction

In a typical MBF recognition problem using membership

queries, the goal is to determine an unknown MBF 𝑓 of 𝑛

variables by as few queries as possible. We can also

consider the problem of determining whether an unknown

Boolean function belongs to the class of monotone

functions. Another case is when the number of queries is

limited to some number 𝐾 and the goal is to maximize the

recognized part of the function.

In the following, we will point out a number of

individual problems of this type that may arise in RL MBF

applications, and their mathematical formulations.

Suppose that the vertices of 𝐵𝑛 are enumerated. Let 𝑥𝑗

denote binary variables such that 𝑥𝑗 takes value 1 if the 𝑗-

th vertex of 𝐵𝑛 is chosen to ask the value of the function,

and 0 otherwise. 𝑐𝑗 expresses the informativeness of the 𝑗-

th vertex, i.e., the number of new evaluations of the

function obtained by propagating the value of the 𝑗-th

vertex.

The formalism of these steps, depending on the

particular objectives, may be given as follows:

1) 𝑚𝑖𝑛 ∑ 𝑥𝑗𝑗 , subject to ∑ 𝑐𝑗𝑗 = 2𝑛, this is the case

when the function is to be entirely recovered and

the goal is to minimize the number of queries;

2) 𝑚𝑖𝑛 ∑ 𝑥𝑗𝑗 , subject to ∑ 𝑐𝑗𝑗 ≥ 𝑁, this is the case

when a certain part of the function is to be

recovered by the minimum number of queries;

3) 𝑚𝑎𝑥 ∑ 𝑐𝑗𝑗 , subject to ∑ 𝑥𝑗𝑗 = 𝐾, this is the case

when the number of queries is restricted and the

goal is to maximize the recognized part of the

function.

Note that the values of 𝑐𝑗 become known only after

the vertices are selected. But regardless of the order of

selection, ∑ 𝑐𝑗𝑗 will have the same value at the end.

In order to apply RL to MBF recognition we need to

reformulate it in terms of MDP, i.e., define the

environment, states, actions, rewards, transition, and

policy.

Figure 1: Basic data structures used in typical SARSA

526 Informatica 48 (2024) 521–532 H. Sahakyan et al.

3.1.1 Environment

The basis of the RL environment for the MBF

reconstruction considered in this paper, is the 𝑛-

dimensional binary cube, its vertex set 𝐵𝑛, and the related

sub-cube structure. The environment may need additional

tools /known concepts/ such as Sperner systems, Hansel

chains, Hamming distance, lexicographic order, and

others.

3.1.2 States

The states represent some /partial/ knowledge about the

solution, such us nested parts of the looked-for MBF,

which we call fragments. An initial fragment can be the

empty set, or we can start with some non-empty fragment.

Thus, formally, each state 𝑠 is a partially defined

monotone Boolean function 𝑓𝑠, given through a pair

(𝑇𝑓𝑠 , 𝐹𝑓𝑠) of some sets of true and false vertices.
An agent must travel through the remaining

(undetermined) vertices of the cube and decide (according

to the policy) which vertex to choose as a query. Thus,

actions are vertices chosen to ask the value of the function.

3.1.3 Rewards

Since the agent's instrument of interaction with the

environment is a query 𝛼 ∈ 𝐵𝑛, the response of the

environment should characterize how successful the query

is, having a predetermined partial monotone Boolean

function available when the query is performed. Thus, the

reward will express the “informativeness” of the chosen

vertex-action 𝛼 in the sense of spreading the value 𝑓(𝛼)

to other vertices due to the monotonicity of 𝑓.

3.1.4 Transition/update

Depending on the chosen vertex and the function value,

new state 𝑠′ will be determined, which is a new partially

defined function 𝑓𝑠′ given through a new pair (𝑇𝑓𝑠′, 𝐹𝑓𝑠′),

such that 𝑇𝑓𝑠 ⊆ 𝑇𝑓𝑠′ and 𝐹𝑓𝑠 ⊆ 𝐹𝑓𝑠′.

3.1.5 Terminal state

The process will be continued until the termination

criterion is reached, which according to the defined

objectives is as follows:

1) 𝑓 is completely recovered,

2) 𝑓 is recovered by a certain percentage,

3) a certain number of steps are done.

3.1.6 Policy

Environment models, when known, are used for planning,

by which we mean an arbitrary approach of deciding to

apply actions by considering possible future situations

before they actually occur. Methods for solving

reinforcement learning problems that use models and

planning are called model-based methods, in contrast to

methods without models that learn by trial and error.

The goal of all reinforcement learning algorithms is to

find a policy (the way of choosing actions), which would

consistently allow the agent to gain a lot of rewards. For

MBF recognition, the goal is to find a policy to get as

many known values of the function as possible (ideally,

this will be the whole function).

Initially, we will start with the following: being in any

state 𝑠, actions are chosen from the area 𝐵𝑛\ (𝑇𝑓𝑠 ∪ 𝐹𝑓𝑠),

using 𝜀-greedy method. According to MBFs structure,

vertices of ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 are true vertices, and vertices of

⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 are false vertices of 𝑓. It is then natural to

exclude this part from further consideration. Thus,

another policy may be: being in any state 𝑠, choose actions

from the area 𝐵𝑛\(⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪ ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠) using 𝜀-

greedy method.

Moreover, special policies may be defined that exploit

structures of MBF, and are based on Hamming distances

between selected points in 𝑇𝑓𝑠 and 𝐹𝑓𝑠.

3.2 Initial fragments, policies, updates, and

rewards

We consider three types of initial fragments.

3.2.1 Partially defined monotone Boolean

functions given by Sperner families

The input fragment (corresponding to the initial state 𝑠) is

given through a pair of feasible/compatible Sperner

families (𝑇𝑓𝑠 , 𝐹𝑓𝑠), one for the lower units, and one for

the upper zeros of a partially defined monotone Boolean

function 𝑓𝑠, as shown in Figure 2 a).

Policy 1 - actions are selected in 𝐵𝑛\ (𝑇𝑓𝑠 ∪ 𝐹𝑓𝑠) using 𝜀-

greedy method.

Actions

Action 𝑎 in a given state 𝑠 is a vertex 𝛼 in

𝐵𝑛\ (𝑇𝑓𝑠 ∪ 𝐹𝑓𝑠), chosen to ask the value 𝑓(𝛼).

New states

Depending on 𝑓(𝛼) the following operations are to be

performed:

For 𝑓(𝛼) = 1

i. if 𝛼 is not comparable with any vertex of 𝑇𝑓𝑠,

then 𝛼 is added to 𝑇𝑓𝑠 , thus the new state 𝑠′ is

defined by the pair (𝑇𝑓𝑠′, 𝐹𝑓𝑠′), where

𝑇𝑓𝑠′ = 𝑇𝑓𝑠 ∪ {𝛼} and 𝐹𝑓𝑠′ = 𝐹𝑓𝑠

ii. if 𝛼 precedes some vertex/vertices 𝛽 of 𝑇𝑓𝑠,

then 𝛼 is added to 𝑇𝑓𝑠 and all vertices greater than 𝛼

are removed from 𝑇𝑓𝑠 , thus

𝑇𝑓𝑠′ = (𝑇𝑓𝑠 ∪ {𝛼})\{𝛽|𝛽 ∈ 𝑇𝑓𝑠 𝑎𝑛𝑑 𝛽 ≻ 𝛼}

iii. if there is a vertex 𝛽 of 𝑇𝑓𝑠 that precedes 𝛼, then

the partial solution /state/ is not changed,

𝑇𝑓𝑠′ = 𝑇𝑓𝑠 and 𝐹𝑓𝑠′ = 𝐹𝑓𝑠

For 𝑓(𝛼) = 0

iv. if 𝛼 is not comparable with any vertex of 𝐹𝑓′ then

𝛼 is added to 𝐹𝑓𝑠′, thus

𝐹𝑓𝑠′ = 𝐹𝑓𝑠 ∪ {𝛼}, 𝑇𝑓𝑠′ = 𝑇𝑓𝑠

Study on Using Reinforcement Learning for the Monotone… Informatica 48 (2024) 521–532 527

Figure 2: Partial MBF given by Sperner systems 𝑇𝑓𝑠 and

𝐹𝑓𝑠

v. if there is a vertex/vertices 𝛽 of 𝐹𝑓𝑠 that precedes

𝛼, then 𝛼 is added to 𝐹𝑓𝑠 and all vertices that

precede 𝛼 are removed from 𝐹𝑓𝑠, thus

𝐹𝑓𝑠′ = 𝐹𝑓𝑠 ∪ {𝛼}\{𝛽|𝛽 ∈ 𝐹𝑓𝑠 𝑎𝑛𝑑 𝛽 ≺ 𝛼}

vi. if 𝑓 𝛼 precedes some vertex 𝛽 of 𝐹𝑓𝑠, then the

partial solution /state/ is not changed, 𝑇𝑓𝑠′ = 𝑇𝑓𝑠

and 𝐹𝑓𝑠′ = 𝐹𝑓𝑠.

An illustration is given in Figure 2 b).

Rewards

We will use approximate reward calculations based on

Hamming distances between the vertex 𝛼 and the vertices

of 𝑇𝑓𝑠 and 𝐹𝑓𝑠.

Reward 1

The reward is 0 for the cases iii and vi, otherwise, it is the

average Hamming distance, when averaged over all

distances from 𝛼 to the vertices of 𝑇𝑓𝑠 and 𝐹𝑓𝑠:

𝑅 =
∑ 𝜌(𝛼, 𝛾)𝛾∈(𝑇𝑓𝑠∪ 𝐹𝑓𝑠)

|𝑇𝑓𝑠 ∪ 𝐹𝑓𝑠|

Reward 2

The reward is 0 for the cases iii and vi, otherwise, it is the

average Hamming distance, when the average is over the

two farthest distances from 𝛼 in 𝑇𝑓𝑠 and 𝐹𝑓𝑠:

𝑅 =

max
𝛾∈𝑇𝑓𝑠

𝜌(𝛼, 𝛾) + max
𝛾∈𝐹𝑓𝑠

𝜌(𝛼, 𝛾)

2

3.2.2 Partially defined monotone Boolean

functions given by bunch of intervals

The input fragment (corresponding to the initial state 𝑠) is

given through a pair of bunches of intervals

(⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 , ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠); initially, 𝑇𝑓𝑠, 𝐹𝑓𝑠 are

feasible/compatible Sperner families, one for the lower

units, and one for the upper zeros of a partially defined

monotone Boolean function 𝑓𝑠.

Policy 2 - actions are selected in 𝐵𝑛\ (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪

⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠) using 𝜀-greedy method.

We have two options:

1. Keep all intervals ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 and

⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠), - this requires extra memory;

2. Exclude all vertices greater than any vertex of

𝑇𝑓𝑠, and lower than any vertex of 𝐹𝑓𝑠 – this

requires extra computations.

Actions

Action 𝑎 in given state 𝑠 is a vertex 𝛼 in 𝐵𝑛\

 (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪ ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠), chosen to ask the value

𝑓(𝛼).

New states

Depending on 𝑓(𝛼) the following operations are to be

performed (𝑇𝑓𝑠′ and/or 𝐹𝑓𝑠′ may not be Sperner families):

i. if 𝑓(𝛼) = 1 then 𝑇𝑓𝑠′ ≔ 𝑇𝑓𝑠 ∪ {𝛼} and 𝐹𝑓𝑠′ ≔

𝐹𝑓𝑠,

ii. if 𝑓(𝛼) = 0 then 𝐹𝑓𝑠′ ≔ 𝐹𝑓𝑠 ∪ {𝛼} and 𝑇𝑓𝑠′ ≔

𝑇𝑓𝑠,

the new state is (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠′ , ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠′).

Rewards

Reward 1

𝑅 = |(⋃ [𝛼, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠𝛼∈𝑇𝑓𝑠′) ∪ (⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠′ \

(∪ ⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠 |

Reward 2

𝑅 =

|(⋃ [𝛼, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠𝛼∈𝑇𝑓𝑠′) ∪ (⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠′
\(∪ ⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠 |

|𝐵𝑛\ (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 ∪ ⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠)|

=

|(⋃ [𝛼, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠𝛼∈𝑇𝑓𝑠′)| + |(⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠′
\(∪ ⋃ [0̃, 𝛼])𝛼∈𝐹𝑓𝑠 |

2𝑛 − | (⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠)| − |⋃ [0̃, 𝛼]𝛼∈𝐹𝑓𝑠 |

Reward 3

For obtaining an approximate value for the reward, we can

apply Bonferroni inequalities [35,36] for approximating

the value of corresponding inclusion-exclusion formula.

For example, 𝑅 = |[𝛼′, 1̃]\ ⋃ [𝛼, 1̃]𝛼∈𝑇𝑓𝑠 | can be

approximated in the following way.

We suppose that ℎ1, ℎ2, … , ℎ𝑞 are the smallest vertices

of 𝑇𝑓𝑠 that are greater than 𝛼′.

Denote 𝐻𝑝 = [ℎ𝑝, 1̃] for 𝑝 = 1, ⋯ , 𝑞. The exact

reward value can be expressed by the inclusion-exclusion

formula:

𝑅 = 2|𝛼′| − |⋃ 𝐻𝑝
𝑞
𝑝=1 | = 2|𝛼′| − ∑ |𝐻𝑝|𝑝

528 Informatica 48 (2024) 521–532 H. Sahakyan et al.

+ ∑ |𝐻𝑖 ∩ 𝐻𝑗| − ∑ |𝐻𝑖 ∩ 𝐻𝑗 ∩ 𝐻𝑘|𝑖<𝑗<𝑘𝑖<𝑗

+ ⋯ (−1)𝑞|𝐻1 ∩ 𝐻2 ∩ … ∩ 𝐻𝑞|¸

where |𝛼′| denotes the size of the interval [𝛼′, 1̃], and 2|𝛼′|

is the number of vertices in [𝛼′, 1̃].

The sum of some first terms in the formula is

alternately an upper bound and a lower bound, which is

the key for approximations.

3.2.3 Points on chains

The input fragment is composed as follows: split 𝐵𝑛 into

Hansel chains (Figure illustrates the Hansel chains in 𝐵5),

and compose a list 𝐿 = (𝑙1, 𝑙2, ⋯ , 𝑙
(𝑛

⌊𝑛/2⌋)
) of their lengths;

for example, 𝐿 = (6,4,4,4,4,2,2,2,2,2) for 𝐵5. Take at

random two numbers in [1, 𝑙𝑗] for each chain 𝑗. The

smaller number will indicate the initial maximal false

point, and the larger number will indicate the initial

minimal true point of the chain.

Compose 𝑇𝑓𝑠 and 𝐹𝑓𝑠 from the initial minimal true and

maximal false points of the chains, respectively. Let

(𝛼𝑗 , 𝛽𝑗), 𝛼𝑗 ≺ 𝛽𝑗 , be the current maximal false and

minimal true vertices of the 𝑗-th chain. Compose intervals

[𝛼𝑗 , 𝛽𝑗] on the chains and call them “uncertainty intervals”

of the chains.

Policy 3 - actions are chosen in ⋃ [𝛼𝑗, 𝛽𝑗]𝑗 using 𝜀-greedy

method.

Actions

Action 𝑎 in given state 𝑠 is a vertex 𝛾 in ⋃ [𝛼𝑗, 𝛽𝑗]𝑗 chosen

to query the value 𝑓(𝛾).

New states

Let 𝛾 belongs to [𝛼𝑗, 𝛽𝑗]

i. if 𝑓(𝛾) = 1 then 𝛾 replaces the true point 𝛼𝑗 of the

chain, 𝛼′𝑗 ≔ 𝛾, resulting a new smaller uncertainty

interval [𝛼′𝑗 , 𝛽′𝑗], 𝛽′𝑗 = 𝛽𝑗 . Moreover, 𝑓(𝛾) can be

spread to the vertices of the uncertainty intervals of

all chains, thus replacing their true points (for

simplicity we may omit this);

ii. if 𝑓(𝛾) = 0 then 𝛾 replaces the false point 𝛽𝑗 of the

chain, 𝛽′𝑗 ≔ 𝛾, resulting a new smaller uncertainty

interval [𝛼′𝑗 , 𝛽′𝑗], 𝛼′𝑗 = 𝛼𝑗. Moreover, 𝑓(𝛾) can be

spread to the vertices of the uncertainty intervals of

all chains, thus replacing their false points (for

simplicity we may omit this).

We note that any optimal MBF recognition algorithm

that works with Hansel chains chooses the middle points

of the intervals to ask the value of the function. But the

goal here is to determine the most informative point for a

given function depending on its structure.

Figure 3: Hansel chains in 𝐵5

Rewards

The reward for action 𝛼 in state 𝑠 depends on the

“informativeness” of the vertex.

Reward 1

The reward is the difference between the summary lengths

of the new and previous uncertainty intervals:

𝑅 = | ⋃ [𝛼𝑗, 𝛽𝑗]𝑗 \ ⋃ [𝛼′𝑗 , 𝛽′𝑗]𝑗 |

Policy 4 - actions are chosen starting from the largest

intervals using 𝜀-greedy method.

Actions

An action 𝑎 in a given state 𝑠 is a vertex 𝛾 in the largest

[𝛼𝑗 , 𝛽𝑗] chosen to ask the value 𝑓(𝛾).

New states and rewards can be defined as for the previous

case.

4 RL MBF algorithm
In this section we describe an RL algorithm for the case

when states are defined by Sperner families, and the

objective is to maximize the recognized part of the

function, when the number of queries is restricted by some

natural number 𝐾,

𝑚𝑎𝑥 ∑ 𝑐𝑗𝑗

subject to ∑ 𝑥𝑗𝑗 = 𝐾.

The proposed algorithm is based on SARSA method.

The policy 𝜋 and the reward function 𝑅 can be any of those

defined in the previous section.

RL-MBF algorithm is composed of several parts:

Set parameters 𝛼, 𝛾, policy 𝜋, reward function 𝑅, number

of episodes N (episodes will be explained in Section 4.2)

Initialize RL-MBF variables and constants, including the

cube size 𝑛, and integers 𝑘, 𝑙, 0 ≤ 𝑘, 𝑙 ≤ 𝑛 to characterise

Sperner families

Study on Using Reinforcement Learning for the Monotone… Informatica 48 (2024) 521–532 529

Generate initial state 𝑠 (consists of two Sperner families,

one is for 𝑘 minimal true points, and another is for 𝑙
maximal false points)

Get feasibility area (this is “feasible” part of 𝐵𝑛 for

selecting valid query vertices, thus, excluded initial two

Sperner families, or Sperner families along with the

corresponding intervals, according to the policy 𝜋)

Create root vertex in Q-graph according to the initial state

𝑠;

Repeat for each episode

Select vertex 𝛼 /action 𝑎/ in the feasibility area

according to the policy 𝜋

Repeat

Query the value 𝑓(𝛼)

Get new state 𝑠′ (according to the value 𝑓(𝛼) and

the policy 𝜋)

Calculate Reward for (𝑠, 𝑎) (according to

Reward function 𝑅)

Update feasibility area (remove the “difference”

according to the policy 𝜋)

Select new vertex 𝛼′ /action 𝑎′/ in the feasibility

area according to the policy 𝜋

Update Q-table (update Q-graph using 𝑠, 𝑎, 𝑠′, 𝑎′
according to SARSA)

Calculate cumulative reward

𝑠: = 𝑠′
𝑎: = 𝑎′

until 𝐾 steps are done

until N episodes are done

4.1 Functions used in RL-MBF

In this section we describe some of the functions used in

RL-MBF algorithm.

Let 𝛼 = (𝑎1, ⋯ , 𝑎𝑛) and 𝛽 = (𝑏1, ⋯ , 𝑏𝑛) be vertices

of 𝐵𝑛. 𝛼 precedes lexicographically 𝛽 if either there exists

an integer 𝑘, 1 ≤ 𝑘 ≤ 𝑛, such that 𝑎𝑘 < 𝑏𝑘 and 𝑎𝑖 = 𝑏𝑖

for 𝑖 < 𝑘, or 𝛼 = 𝛽. The vectors of 𝐵𝑛 are in a

lexicographic order in the sequence 𝛼0, 𝛼1, ⋯ , 𝛼2𝑛−1 if 𝛼𝑖

precedes lexicographically 𝛼𝑗, for 0 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 1.

The serial number of the vertex 𝛼 = (𝑎1, ⋯ , 𝑎𝑛) is the

natural number 𝑎12𝑛−1 + 𝑎22𝑛−2 + ⋯ + 𝑎𝑛20, whose

binary representation is 𝑎1𝑎2 ⋯ 𝑎𝑛. When the vectors of

𝐵𝑛 are in a lexicographic order, their serial numbers form

the sequence 0,1, ⋯ ,2𝑛 − 1.

Generate initial state 𝒔 and Get feasibility area (for

Policy 1)

𝑇𝑓𝑠 ≔ ∅; 𝐹𝑓𝑠 ≔ ∅; 𝐹 = {0,1, ⋯ , 2𝑛 − 1}; 𝑘, 𝑙;

𝑡: = 0;

repeat

𝑟:= random number in 𝐹;

find vertex 𝛼𝑟, with the serial number 𝑟;

if 𝛼𝑟 is not comparable with any vertex of 𝑇𝑓𝑠

then

𝑇𝑓𝑠 ≔ 𝑇𝑓𝑠 ∪ {𝛼𝑟};

𝐹 ≔ 𝐹\{𝑟};

𝑡 = 𝑡 + 1;

until 𝑡 = 𝑘

𝑡: = 0;

repeat

 𝑟:= random number in 𝐹;

find vertex 𝛼𝑟 with the serial number 𝑟;

if 𝛼𝑟 is not comparable with any vertex of 𝐹𝑓𝑠

and is not greater of any vertex of 𝑇𝑓𝑠

then

𝐹𝑓𝑠 ≔ 𝐹𝑓𝑠 ∪ {𝛼𝑟};

𝐹 ≔ 𝐹\{𝑟};

𝑡 = 𝑡 + 1;

until 𝑡 = 𝑙
𝑠 ≔ 𝑇𝑓𝑠 ∪ 𝐹𝑓𝑠;

Generate initial state 𝒔 and Get feasibility area (for

Policy 2)

�̂�𝑓𝑠 ≔ ∅; �̌�𝑓𝑠 ≔ ∅; 𝐹 = {0, ⋯ , 2𝑛 − 1}; 𝑘, 𝑙;

repeat

 𝑟= random number in 𝐹;

find vertex 𝛼𝑟 with the serial number 𝑟;

�̂�𝑓𝑠 ≔ �̂�𝑓𝑠 ∪ [𝛼𝑟 , 1̃];

𝐹 ≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓[𝛼𝑟 , 1̃]};

until 𝑘 steps are done

repeat

𝑟:= random number in 𝐹;

find vertex 𝛼𝑟 with the serial number 𝑟;

�̌�𝑓𝑠 ≔ �̌�𝑓𝑠 ∪ [0̃, 𝛼𝑟];

𝐹 ≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 [0̃, 𝛼𝑟]};

until 𝑙 steps are done

𝑠 ≔ �̂�𝑓𝑠 ∪ �̌�𝑓𝑠;

Get new state 𝒔′ and Update feasibility area (for Policy

2)

If 𝑓(𝛼) = 1

then

�̂�𝑓𝑠′ ≔ �̂�𝑓𝑠 ∪ [𝛼, 1̃];

temp≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 [𝛼, 1̃]};

diff:= 𝐹\temp; 𝐹 ≔temp;

else

�̌�𝑓𝑠′ ≔ �̌�𝑓𝑠 ∪ [0̃, 𝛼];

temp≔ 𝐹\{𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 [0̃, 𝛼]};

diff:= 𝐹\temp;

𝐹 ≔temp;

RL-MBF algorithm, as well as functions used can be

described in a similar way for the case, where states are

defined by points on chains.

4.2 Data structure for Q-table

As mentioned earlier, agent–environment interaction is

broken down into separate episodes, and each action

affects only the finite number of rewards subsequently

received during the episode.

In the case of MBF recognition, each episode starts

with the same initial fragment (e.g. two initial Sperner

families along with the corresponding intervals) and has

fixed length 𝐾. Theoretically, an action can be any vertex

of 𝐵𝑛, excluding the vertices of the initial fragment, and a

530 Informatica 48 (2024) 521–532 H. Sahakyan et al.

state can be any partial monotone Boolean function

containing the initial fragment.

Within a single episode, a sequence of steps leads to a

sequence of states that correspond to a series of nested

partial monotone Boolean functions. Thus, “feasibility”

area for choosing actions becomes more restricted from

state to state. In terms of the reward table 𝑅, states are

assigned to the rows of the table, and actions are assigned

to the columns. Each state has its area of “feasible” actions

(a subset of columns). At each step of an episode, being in

a state 𝑠 and performing an action 𝑎, if 𝑎 is a new action

for the state 𝑠, then cell (𝑠, 𝑎) is filled with the computed

reward value 𝑅(𝑠, 𝑎), otherwise, the cell is already filled

with the reward value. For the first episode, 𝑅 is initially

empty, and at each step exactly one cell is filled.

Regarding the state-action table 𝑄, at each step of an

episode, being in state 𝑠 and performing action 𝑎, if 𝑎 is a

new action for the state 𝑠, then cell (𝑠, 𝑎) is assigned 0,

otherwise 𝑄(𝑠, 𝑎) is updated according to the method used

(e.g., SARSA). For the first episode, the table is initially

empty.

Given the features of MBF, i.e. the nested structure of

states and the restriction of the range of feasible actions

from state to state, instead of storing Reward- and Value-

tables we create an oriented weighted graph 𝑄-graph as

follows.

States are assigned to vertices and state-action pairs are

assigned to edges. One vertex is mentioned as the root

vertex that corresponds to the initial state; the root has no

incoming edges.

Each episode is an oriented path in 𝑄-graph, starting

from the root and having length 𝐾. Each edge (𝑠, 𝑎) is

assigned two weights; one is the reward 𝑅(𝑠, 𝑎), the other

is the state-action value 𝑄(𝑠, 𝑎). For the first episode, the

entire path is newly created; 𝑅(𝑠, 𝑎) are computed

according to the reward function, and 𝑄(𝑠, 𝑎) are assigned

0, then 𝑄(𝑠, 𝑎) are updated according to the SARSA

formula.

Obviously, paths for different episodes can overlap

(i.e., the same state can be reached by different sequences

of actions), possibly, making cycles.

In the current episode, being in some state 𝑠 and

choosing action 𝑎, we search among the outgoing edges

from 𝑠; if edge (𝑠, 𝑎) already exists, then the pair has

already met, and 𝑅(𝑠, 𝑎) and 𝑄(𝑠, 𝑎) have been calculated.

If edge (𝑠, 𝑎) does not exist, we first look for vertex 𝑠′,
if it exists we add edge (𝑠, 𝑎) from 𝑠 to 𝑠′, if it does not

exist then we create new vertex 𝑠′ and add edge from 𝑠 to

𝑠′. Then we calculate 𝑅(𝑠, 𝑎) according to the reward

function, assign 𝑄(𝑠, 𝑎) to 0, and then update it according

to SARSA formula.

In order to organize the search process for vertex 𝑠 and

edges originating from 𝑠, as well as Reward and Q tables,

we introduce the following structure.

We create an array “Vertex_list”, each element 𝑣 of

which has its name “𝑣.name” and its set of outgoing edges

“𝑣.edge_list”. “𝑣.name” keeps states, and “𝑣.edge_list”

keeps all outgoing edges from 𝑣. Initially, “Vertex_list”

consists of the root vertex 𝑣0; “𝑣0.name” is the initial state,

“𝑣0.edge.list” is empty.

Each element “edge: of “𝑣.edge_list”, in its turn, has

its own name “edge.name”, which is the chosen vertex-

action, its reward “edge.reward”, and its Q-value

“edge.value”.

Update is organized in the following way.

Update Q(𝒔, 𝒂, 𝒔′, 𝒂′)

If 𝑎 does not exist in “𝑠.edge_list”, and 𝑠′ does not

exist in “Vertex_list”, then create a new graph vertex 𝑠′ in

“Vertex_list” with “𝑠′. name”= 𝑠′, and add outgoing edge

𝑎 from 𝑠 to 𝑠′ by adding (𝑠, 𝑎) into the “𝑠.edge_list” of 𝑠;

with “edge.value” 0; and “edge.reward” - calculated

according to the reward function.

If 𝑎 does not exist in “𝑠.edge_list”, but 𝑠′ exists in

“Vertex_list”, then add new edge 𝑎 from 𝑠 to 𝑠′ by adding

𝑠′ into the “𝑠.edge_list”; calculate “edge.reward”

according to the reward function. Update “edge.value”

according to:

𝑄(𝑠, 𝑎) ≔ 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)].

5 Discussions and evaluation of the

model
 The RL modeling of the MBF recognition problem passes

through the stages of defining all the elements of RL for

the MBF domain, as well as the algorithmic

implementation of the computational processes of these

components. Exact models based on Sperner families and

Hansel chains are used, as well as approximate versions of

both concepts and their computations are proposed.

Hansel models require at least twice the amount of regular

memory and reduce the spatial analysis of structures to

chain analysis using simple division and the algebra of

Hansel chains. The approximations in the calculations

associated with Sperner systems turn to inclusion-

exclusion type formulas when computing the cardinality

of a bundle of intervals, where the sums of the initial sum

segments provide lower and upper cardinality estimates in

the required precision.

Coarser heuristics are also possible, due to the need to

reduce the resulting computational complexity. The

simplest heuristics address different kinds of query

distances or propagation of points from vertices to current

Sperner systems. The whole technique of this block

proposes replacing the ideal environment with another,

less intelligent and less precise one, with the hope that the

necessary computation is simplified and that the RL

process converges in a reasonable time frame.

The preliminary experiments conducted involved

functions of small dimensionality and mainly focused on

clarifying the possibilities of approaches with Sperner and

Hansel systems. However, a sufficient volume of

experiments has not yet been conducted, and the available

volume of trials does not allow to obtain reasonable

conclusions to be drawn about the effectiveness of one

approach or the other. At this stage, a Proof of Concept

type result has been established, and an experimental

computing environment has been deployed for further

work on the basis of the Armenian-French supercomputer

Study on Using Reinforcement Learning for the Monotone… Informatica 48 (2024) 521–532 531

of the Institute for Informatics and Automation Problems

of the National Academy of Sciences of Armenia.

6 Conclusion and future work
This paper investigated the feasibility of using

reinforcement learning to solve combinatorial

optimization problems, particularly the query-based

reconstruction of monotone Boolean functions.

Acknowledgments
This paper is partially supported by grant №21T-1B314 of

the Science Committee of MESCS RA.

References
[1] L. Aslanyan, “The discrete isoperimetry problem

and related extremal problems for discrete spaces”,

Problemy kibernetiki, vol.36, pp. 85–128, 1979.

[2] L. Aslanyan and H. Sahakyan, “The splitting

technique in monotone recognition”, Discrete

Applied Mathematics, vol.216, pp. 502–512, 2017.

[3] L. Aslanyan, H. Sahakyan, V. Romanov, G. Da

Costa, and R. Kacimi, “Large network target

coverage protocols”, In 2019 Computer Science

and Information Technologies (CSIT), pp. 57–64,

IEEE, 2019.

[4] M. Azad, I. Chikalov, S. Hussain, M. Moshkov, B.

Zielosko, “Decision Trees with Hypotheses

for Recognition of Monotone Boolean Functions

and for Sorting”, In: Decision Trees with

Hypotheses. Synthesis Lectures on Intelligent

Technologies. Springer, Cham, 2022.

https://doi.org/10.1007/978-3-031-08585-7_6.

[5] R. Bellman, “A Markovian decision process”,

Journal of Mathematics and Mechanics, vol.6, pp.

679–684, 1957. ISSN 0022-2518.

[6] A. Blum, “Learning a function of r relevant

variables (open problem)”, In Proceedings of the

16th Annual Conference on Learning Theory and

7th Kernel Workshop, pp. 731-733, 2003.

[7] E. Boros, P. L. Hammer, T. Ibaraki and K.

Kawakami, “Identifying 2-monotonic positive

Boolean functions in polynomial time, ISA’91,

Algorithms, edited by W. L. Hsu and R. C. T. Lee,

Springer Lecture Notes in Computer Science, vol.

557, pp. 104-115, 1991.

[8] N. Bshouty and Ch. Tamon, “On the Fourier

spectrum of monotone functions”. Journal of the

ACM (JACM) vol. 43, no. 4, pp. 747-770, 1996.

[9] R. Dedekind, “Über Zerlegungen von Zahlen durch

ihre größten gemeinsamen Teiler, Festschrift

Hoch”, Braunschweig u. ges. Werke, II, pp.103-

148, 1897.

[10] P. Frankl and G.OH Katona, “On strengthenings of

the intersecting shadow theorem”, Journal of

Combinatorial Theory, Series A, 184:105510,

2021.

[11] D. N. Gainanov, “On one criterion of the optimality

of an algorithm for evaluating monotonic Boolean

functions”, Computational Mathematics and

Mathematical Physics, vol. 24, pp. 176–181, 1984.

[12] M. Gara, T.S. Tasi, P. Balázs, “Machine Learning

as a Preprocessing Phase in Discrete

Tomography”, Lecture Notes in Computer

Science, vol. 7346, 2012.

[13] G. Katona, “A theorem of finite sets”, In: Theory

of Graphs. Academic Press - Akadémiai Kiadó,

New York; Budapest, pp. 187-207, 1968.

[14] G. Katona, “A theorem of finite sets”, In Classic

Papers in Combinatorics, pp. 381–401. Springer,

2009.

[15] G. Hansel, “Sur le nombre des fonctions

booléennes monotones de n variables”, C. R. Acad.

Sci., 262:1088–1090, 1966.

[16] Y. Hu, Y. Yao, W. Lee, “A reinforcement learning

approach for optimizing multiple traveling

salesman problems over graphs”, Knowl-Based

Syst 204:106244, 2020.

[17] J.C. Jackson, , H.K.Lee, , R.A. Servedio, , A.Wan,

“Learning random monotone DNF”,

In Approximation, Randomization and

Combinatorial Optimization. Algorithms and

Techniques. APPROX RANDOM 2008. Lecture

Notes in Computer Science, vol 5171. Springer,

Berlin, Heidelberg, 2008.

https://doi.org/10.1007/978-3-540-85363-3_38

[18] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, L. Song.

“Learning combinatorial optimization algorithms

over graphs”, Advances in Neural Information

Processing Systems, 30:6351–6361, 2017.

[19] V. K. Korobkov, “On monotone functions of the

algebra of logic”, Problemy kibernetiki, vol.13, pp.

5–28, 1965.

[20] D. Korshunov, “On the number of monotone

boolean functions”, Problemy kibernetiki, vol. 38,

pp. 5–109, 1981.

[21] J. Kruskal, “The number of simplices in a

complex”, Mathematical Optimization

Techniques, University of California Press, pp.

251–278, 1963.

[22] Zh. Li, Q. Chen, and V. Koltun, “Combinatorial

optimization with graph convolutional networks

and guided tree search”, Advances in neural

information processing systems, vol. 31, 2018.

[23] N. Mazyavkina, S. Sviridov, S. Ivanov, and E.

Burnaev, “Reinforcement learning for

combinatorial optimization: A survey”, Computers

and Operations Research, vol. 134, 2021.

[24] S. Muroga, “Threshold Logic and Its

Applications”, Wiley-Interscience, 1971.

[25] R. O’Donnell and R. Servedio, “Learning

monotone functions from random examples in

polynomial time”, Citeseer, 2005.

[26] A. L. C. Ottoni, E. G. Nepomuceno, M.S. d.

Oliveira, et al., “Reinforcement learning for the

traveling salesman problem with Refueling”,

Complex & Intelligent Systems, 8, pp.2001–2015,

2022, https://doi.org/10.1007/s40747-021-00444-

4.

https://link.springer.com/bookseries/558
https://link.springer.com/bookseries/558
https://doi.org/10.1007/s40747-021-00444-4
https://doi.org/10.1007/s40747-021-00444-4

532 Informatica 48 (2024) 521–532 H. Sahakyan et al.

[27] N. A. Sokolov, “On optimal deciphering of

monotone functions of logic algebra”, Journal of

Computational Mathematics and Math. Physics,

22(12), pp.1878–1887, 1982.

[28] N. A. Sokolov, “Optimal reconstruction of

monotone Boolean functions” Computational

Mathematics and Mathematical Physics, 27(6),

pp.181–187, 1987.

[29] B.Schröder, “Ordered sets”. Springer 29 (2003):

30.

[30] R. S. Sutton and A.G. Barto, “Reinforcement

learning”, The MIT Press, London, 2nd edition,

2018.

[31] G. P. Tonoyan, “Chain partitioning of n-cube

vertices and deciphering of monotone Boolean

functions”, Computational Mathematics and

Mathematical Physics, 19(6), 1979.

[32] L. Valiant, “A theory of the learnable”,

Communications of the ACM, 27(11), pp.1134-

1142, 1984.

[33] O. Vinyals, M. Fortunato, N. Jaitly, “Pointer

networks”, NeurIPS, pp. 2692–2700, 2015.

[34] H. Sahakyan, L. Aslanyan and V. Ryazanov, “On

the Hypercube Subset Partitioning Varieties” 2019

Computer Science and Information Technologies

(CSIT), Yerevan, Armenia, 2019, pp. 83-88, doi:

10.1109/CSITechnol.2019.8895211.

[35] K.Dohmen, “Improved Bonferroni Inequalities

with Applications: Inequalities and Identities of

Inclusion-Exclusion Type”. Berlin: Springer-

Verlag, 2003.

[36] J. Galambos, J. and I. Simonelli, “Bonferroni-

TypeInequalities with Applications”. New York:

Springer-Verlag, 1996.

http://www.amazon.com/exec/obidos/ASIN/0387947760/ref=nosim/ericstreasuretro
http://www.amazon.com/exec/obidos/ASIN/0387947760/ref=nosim/ericstreasuretro

