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Influence maximization (IM) is perhaps one of the most actively studied problems in network science. It is
a combinatorial optimization problem in which, given a directed social network with influence weights, a
spreading model, and a positive integer k, it is required to identify the set of seed nodes of size k which can
make the largest influence in the network. We proposed an exact ILP model in our recent work and itera-
tive solution approach to solve the IM problem under the so-called deterministic linear threshold spreading
model. Since the solution describes how the diffusion happens for different time constraints, it is of interest
to investigate how the various characteristics of the underlying graph relates to the result. In this paper,
we present two new centrality metrics, computed from the input network structure, and use them to mini-
mize the number of possible seed nodes. The solver chooses among the potential seed nodes and solves the
problem, reducing the solution time. Benchmarking results are shown and discussed to demonstrate the
efficiency of the proposed method.

Povzetek: Predlagana sta nova centralnostna kazalnika za optimizacijo izbire začetnih vozlišč v determin-
ističnem linearnem modelu praga, kar izboljša učinkovitost in čas rešitve problema maksimizacije vpliva v
omrežjih.

1 Introduction

Influence maximization Influence maximization (IM) is
a combinatorial optimization problem. It studies a social
network represented as a graph G = (V,E,W ), where V
is the set of nodes in G, E is the set of directed edges in G
and W : E → R+ is a non-negative weight function. The
goal of the problem is to find a k ≥ 1 sized set of so-called
seed nodes v1, . . . , vk ∈ V with the maximum influence in
graph G in such a way that a weighted directed graph G, a
diffusion (or spreading) model and the integer k are given
[13].
The following notations will be used: n = |V |, for a node

j ∈ V the set of its out-neighbors is denoted by Nout(j),
and for j ∈ V the set of in-neighbors is denoted byNin(j).
Let S ⊂ V of size 0 < k ≤ n be the set of seeds and
the function σ(S) is the number of influenced nodes started
from S ⊂ V seeds by executing the diffusion model. The
formal definition of the optimization problem is therefore

max
S⊂V,|S|=k

σ(S).

Diffusion models are usually used with stochastic param-
eters to solve influence maximization [13]. Thus, σ(S) is
the expected number of influenced nodes. The nodes with
influenced and uninfluenced states will also be called as ac-
tive and inactive nodes, respectively.

Diffusion models Several relevant diffusion models can
be found in the literature, among which the indepen-
dent cascade model [9], triggering model [13], time-aware
model [16] and the linear threshold model [10] are the most
popular ones. Our model is based on the linear threshold
model (LTM) which solves the problem by iterating over a
t ∈ N value, starting with t = 1. Let 0 < θi < 1 be the
threshold value for each i ∈ V that determines how easy it
is to make the vertex active. The steps of the LTM is shown
in Algorithm 1.

Algorithm 1 Linear threshold diffusion model
Step 1 Let t = 1, 0 < k ≤ n be fixed and V0 be a seed set

which containing k nodes, V1 = ∅.

Step 2 If ∑
j∈N̂(i)

bj,i ≥ θi

holds for all i ∈ V uninfluenced nodes, then put node
i into the set Vt. Mark those nodes as active at the end
of this step.

Step 3 If there is no chance to influenced more node that
is Vt = ∅ holds, then STOP. V = V0 ∪ . . . ∪ Vt−1 and
σ(V0) = |V| by this time.
Otherwise, let t := t+ 1 and go back to Step 2.
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The value of σ in the LTM is determined by executing
R runs using θi values uniform at random, then taking the
average value of the influence to obtain the expected value
of σ.

Deterministic linear threshold model In our work we
used the deterministic linear threshold model (DLTM). It
differs in that the θi values of the nodes are fixed, and thus
no need for running the diffusion model multiple times.
Note, that in [10] the original LT model is also determin-
istic. DLTM has been investigated also in the recent years,
see e.g. in [1, 17, 12, 31, 19]. One of the key properties
of DLTM is that the submodularity property does not hold
[2], so there is no guarantee of the efficiency of the greedy
algorithm.
Note that the IM under DLTM is a bilevel optimization

problem since we need to find the maximum number of ac-
tive nodes together with the minimum time t. Even using
state-of-the-art optimization methods it is not possible to
solve this kind of problem. Hence, an iterative solution
method needs to be applied using the binary linear program
which details are given in the next paragraph.

Integer LP model In the following, we present an inte-
ger linear programming (ILP) model, which is the result of
our previous work [5]. This served as inspiration, since al-
though it gives the global optimum of the problem, we only
obtain results for small graphs within a reasonable run-time.
Assuming that T > 1 is a given integer constant and that
T = {2, . . . , T } is the set of time periods describing the
diffusion process, the ILP model is as follows.

max
n∑

i=1

xi,T (1)

n∑
i=1

xi,1 ≤ k (2)∑
j∈N(i)

bj,ixj,t−1 ≥ θi(xi,t − xi,t−1) ∀(i ∈ V, t ∈ T )

(3)∑
j∈N(i)

bj,ixj,t−1 ≤ θi + xi,t − ε ∀(i ∈ V, t ∈ T ) (4)

xi,t−1 ≤ xi,t ∀(i ∈ V, t ∈ T ) (5)
n∑

i=1

xi,T −1 + 1 ≤
n∑

i=1

xi,T (6)

x ∈ {0, 1}n×T (7)

The objective function (1) maximizes the number of ac-
tive nodes in the last time epoch T . Constraint (2) limits the
number of seed nodes that can be initially selected. A node
becomes active at a time t if the sum of the weights of the
edges coming from its already active neighbours exceeds
the threshold value of the vertex, defined by (3). Further-
more, the difference training on the right-hand side of this
ensures that any node can be chosen as a seed at t = 1.

This is related to the constraint (4) that the node is affected
if the sum of the weights of the edges from the active neigh-
bors exceeds the threshold of the vertex at time t. A small
ε > 0 is required to ensure that the node is activated even if
the sum of the weights of the edges arriving from the active
neighbors equals the threshold value of the vertex1. The
constraint (5) is that the state of the vertices cannot change
backwards, i.e., once a node becomes active, it remains to
be active. The equation (6) determines that at time T the
number of influenced nodes should be greater than or equal
to the number of active nodes at the preceding time in T −1.
Finally, constraint (7) describes that the solution matrix x is
binary, i.e., one vertex is either influenced or uninfluenced
at t ∈ T .

Centrality in general A centrality measure shows the
nodes’ importance in a graph which is based on the location
of the nodes within the graph. Accurately, if given a graph
G(V,E,W ), a centrality measure C : V → R+ which
assigns a non-negative centrality value to every node. The
order of the nodes formed by the centrality values is usually
more important than the centrality value itself [6, 27]. There
are two main categories of centralities. One is based on
shortest path, which includes closeness [26] and between-
ness [8], among others. The other one is based on neigh-
borhoods, where the centrality metrics, just to mention the
most frequently used ones, are degree [28], eigenvector [3]
and PageRank [4]. The centrality metric we have created
is also based on neighborhoods what we describe below in
Section 3.

2 Related work
The influence maximization is still an actively researched
area of great interest and thus has a huge scientific literature.
In this section, we would like to present the related works
that are relevant, i.e., those based on the deterministic linear
threshold model.
A fast algorithm for finding the most influential people

was proposed in [22]. First, they were looking for com-
munities of the graph and examining their limited number
to reduce implementation time. The nodes to be excluded
were selected using centrality measurements, community
detection and new set computation. They then bounded the
search space of the input network using the new set. The
main advantage of the algorithm is that it reduces the num-
ber of nodes to be tested without compromising quality in
order to reduce execution time.
The threshold-based greedy approach was presented in

[14] for solving IM under DLTM. The greedy approach al-
lows to obtain very good results compared to other com-
binatorial algorithms. It can be also used with the genetic
algorithm and significantly improve its efficiency.

1An important note: we assume that the sum of the weights of the
incoming edges is at most 1.
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A new hybrid centrality metric based on closeness (har-
monic) and decay measures was proposed in [29]. Two
main application areas were presented. One hybridization
was used to solve the coverage problem, while the other
tries to find the most ideal node to reach the most people in
the population, using the deterministic threshold model. In
both cases, the centrality metric is based on a formulation
of the weighted centrality measure of nodes.
The complexity of the IM under DLTM is studied in [18].

It is shown that for DLTM, active nodes are not approx-
imable in n1−ε -factor polynomial time unless P=NP. In
contrast, they are well approximable in the linear threshold
model and the independent cascade model. It has also been
demonstrated that for a given set of seeds, the number of
influenced nodes can be determined in polynomial time.
The fact that the DLTM has no polynomial time n1−ε

approximation unless P=NP, even when a person needs at
most two active neighbors to become active was shown in
[17]. However, there exists an ε/(ε− 1) polynomial-time
approximation in the case where one of the neighbours has
already become active and the person is can be activated.
It is shown to be the best approximation under plausible
Complexity-Theoretic assumptions.
In [11], the authors have created Targeted and Budgeted

Influence Maximization for DLTM. They advanced a scal-
able algorithm that allows some optional methods to solve
the problem, it is the TArgeted and BUdgeted Potential
Greedy (TABU-PG) algorithm. It is an iterative and heuris-
tics algorithm that relies on investing in potential future
gains when choosing seed nodes.
In [30], the selection of top-k nodes is investigated based

on the measure corresponding to the social network un-
der consideration. It relies on the Shapley measure to ef-
ficiently compute an approximate solution to the problem.
Although explicitly not using DLTM, the algorithm is gen-
eral in a sense that it does not exploit the submodular prop-
erty of the function.

3 New centralities
Two new centrality measures are proposed. Both of them
are specifically developed for solving IM problem under
DLTM. What makes them distinguished from other cen-
tralities is that they take into account not only the direc-
tion and the weight of the graph edges, but also the weight,
i.e. threshold, of the nodes. To make it easier to understand
our metrics and calculation, we have made a small graph,
which is shown in Figure 1.

3.1 Influenceability
Our first centrality is the influenceability, denoted by Iin,
which measures how to easy activate a node. To calculate
this, we examine the incoming edges from the neighbours,
namely which edges and combinations of edges are able
to reach or exceed the threshold value of the node. We
define the weighted incidence, denoted by wto as follows.

Take the number of edge combinations that are able to ac-
tivate the node by dividing by the number of edges in the
edge combination and all occurrences of a given number of
edge combinations. Finally, sum the wto values and obtain
I(p)
in =

∑
wto(i), where i ∈ V (G).

Table 1 shows the calculation of I(p)
in for vertex 8 of the

graph in Figure 1. The in-neighbors of vertex 8 are nodes
9, 4 and 3. Note that vertex 4 can influence vertex 8 by
itself, so combinations where vertex 4 is included will cer-
tainly be able to influence vertex 8.

Table 1: The I(p)
in value of node 8 of the graph in Fig. 1.

combinations of edges sum θ wto(8)

9 → 8 0.05 0.27 0
4 → 8 0.27 0.27 1/(1 · 3)
3 → 8 0.18 0.27 0

9 → 8, 4 → 8 0.31 0.27 1/(2 · 3)
9 → 8, 3 → 8 0.23 0.27 0
4 → 8, 3 → 8 0.44 0.27 1/(2 · 3)

9 → 8, 4 → 8, 3 → 8 0.49 0.27 1/(3 · 1)

I(p)
in (8) = 1

Table 2 shows the calculated I(p)
in values for the vertices

of the small graph in Fig. 1.

Table 2: The I(p)
in values for the graph in Fig. 1.

node: 1 2 3 4 5 6 7 8 9
I(p)
in : 0 1 1 0 1 1.5 1.5 1 0

The final centrality metrics are obtained by combining
with the measure of node and its neighbors. The influence-
ability value of a node is obtained by adding to the value
of I(p)

in the approximation of the influenceability of its in-
neighbours:

Iin(i) = I(p)
in (i) +

∑
j∈Nin(i)

I(p)
in (j)

|Nout(j)| − 1
∀(i ∈ V ) (8)

Note that if |Nout(j)| ≤ 1, then let |Nout(j)| = 2 for the
divisor to be 1.

3.2 Ability-to-influence
The second centrality is the ability-to-influence, denoted by
Iout. This indicates the influencing role of the node on its
neighbors. Specifically, we look at all the combinations
of incoming edges to the neighbourhood which include the
edge from the investigated node. Of these, we count the
ones whose sum of weights reaches the threshold value of
the node and calculate the weighted incidence value for this
case, denote wfrom. As calculated for the influenceabil-
ity, we divide the number of infecting edges by the number
of edges in the edge combination and all occurrences of a
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Figure 1: Example graph

given number of edge combinations. Finally, summarized
wfrom for each investigated combinations of edges.
The calculation of I(p)

out value for node 4 is shown in Ta-
ble 3. To do this, we need to look at the neighbours of node
4, i.e., the edges coming into the vertices 8 and 2. We have
seen the combinations of edges coming into vertex 8 in Ta-
ble 1, but only those that involve the edge coming from ver-
tex 4 are needed.
To calculate this efficiently, we create a table with rows

and columns representing the vertices of the graph. Row i
and column j show the role of vertex j in the contamination
of vertex i. The column sum of the table gives the I(p)

out

value of the vertices. We see this counting table in Table 4
which also shows the calculated I(p)

out values for the vertices
of the small graph in Fig. 1.

Table 3: The I(p)
out value for node 4 of the graph in Fig. 1.

combinations of edges sum θ wfrom(4)

4 → 8 0.27 0.27 1/(1 · 1)
9 → 8, 4 → 8 0.31 0.27 1/(2 · 2)
4 → 8, 3 → 8 0.44 0.27 1/(2 · 2)

9 → 8, 4 → 8, 3 → 8 0.49 0.27 1(3 · 1)

4 → 2 0.34 0.31 1/(1 · 1)

I(p)
out(4) = 2.83

The ability-to-influence value of a vertex is obtained by
adding to the value of I(p)

out the approximation of the ability-
to-influence of its out-neighbors:

Iout(i) = I(p)
out(i)+

∑
j∈Nout(i)

I(p)
out(j)

|Nin(j)| − 1
∀(i ∈ V ) (9)

Note that if |Nin(j)| ≤ 1, then let |Nout(j)| = 2 for the
divisor to be 1.

3.3 Potential seed selection
Using the two centrality values, we want to determine
which vertices can be seeds. Therefore, first, the centrality

Table 4: The I(p)
out values for the graph in Fig. 1.

1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0 0 0 1.00 0 0 0 0 0
3 0 0 0 0 0 0 1.00 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1.00 0
6 1.50 0 0 0 1.50 0 0 0 0
7 1.50 0 0 0 0 1.50 0 0 0
8 0 0 0.58 1.83 0 0 0 0 0.58
9 0 0 0 0 0 0 0 0 0

I(p)
out 3.00 0.00 0.58 2.83 1.50 1.50 1.00 1.00 0.58

values are normalized between 0 and 1 in a way that all the
elements are divided with the maximum. Such normaliza-
tion is denoted in each case by ||.||. Then, we sort the nodes
according to their centrality value. We put them in descend-
ing order according to their ability-to-influence value, since
seed vertices should have good ability-to-influence’s value.
Conversely, we rank the vertices in ascending order accord-
ing to their influenceability value, since seed vertices are
unlikely to be easily infected. We take the weighted sum of
the two order values for each node to get I. This is shown
in equation (10):

I(i) = α ·ord(||Iout(i)||)+(1−α) ·ord(||Iin(i)||), (10)

for all i ∈ V .

The normalized values of influenceability and ability-to-
influence for the graph in Figure 1 are shown in Table 5.
Also, the I values are calculated from them.

Finally, to form the set of potential seed nodes, choose
the subset of V (G) according to I. This is controlled by a
parameter 0 < r < 1, thus the cardinality of the candidate
seeds set is r · |V (G)|.
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Table 5: The value of ||Iin||, ||Iout|| and I(i)with α = 0.0
and α = 0.8 for the graph in Figure 1.
node ||Iin|| ||Iout|| I(i), α = 0.0 I(i), α = 0.8

1 0.0 1.0 1 1.0
2 0.33 0.11 3 7.8
3 0.83 0.20 7 7.0
4 0.0 0.61 2 2.0
5 0.67 0.55 5 3.4
6 0.83 0.45 8 4.8
7 1.0 0.29 9 6.6
8 0.67 0.45 6 5.2
9 0.33 0.20 4 7.2

4 Algorithms
Before details are given about our new heuristic method it
needs to be emphasized that due to the nature of our prob-
lem, namely finding the maximum number of influenced
nodes with minimum diffusion time steps, all algorithms
work iteratively and use the ILP model (1) − (7) and their
stopping criteria is to run until infeasibility. This usually
leads to a long running time.

4.1 Proposed heuristic: IAtI

Here we describe our proposal for a heuristic which selects
a candidate seeder set of graph nodes based on the new cen-
trality metrics introduced in Section 3. Since it is using the
Influenceability and the Ability-to-Influence measures we
refer to it as IAtI-heuristic.
The method is described in Algorithm 2. In its precon-

dition phase, in Step 1 and 2 it calculates the two central-
ity metrics and the combination of them using the formulae
given in Section 3. In Step 3 the algorithm collects the set
of possible seed nodes. It is a parameter 0 < r < 1 which
controls the ratio of the nodes to be selected. Higher r value
leads to higher probability for the seed nodes corresponding
to the global optimum to be selected into the candidate set.
However, high r value also leads to higher execution time,
thus it needs to be set up with care. Steps 4 − 6 describe
the iterative part of the algorithm. This is essentially the
same as the algorithm we proposed in our recent work [5].
Note that the algorithm usually iterates until the ILP model
becomes infeasible, as there is no other stopping criteria,
unless all the nodes become active; the reader is referred to
[5] for the theoretical proofs.

Discussion on parameters’ choice for IAtI Now that we
have Algorithm 2, let us see how to set up its parameters
in order to have high chance to include the seed nodes of
the global optimum and exclude those which might not be
good candidates. As we have calculated the centrality met-
rics for the small test graph from Figure 1 as well as the
globally optimal solution using k = 2 seed nodes, the scat-
terplot shown in Figure 2 clearly suggests that we shall aim

Algorithm 2 IAtI-heuristic(r, α)
Input A directed graph G with edge weights and node

threshold values.

Step 1 Calculate I(p)
in and I(p)

out for all i ∈ V and then Iin
and Iout using Eq. (8) and (9), respectively.

Step 2 Form I for each vertex according to the Equation
(10) using the input parameter α.

Step 3 Define S ⊆ V (G) to be the set of possible seeds:
choose the top r · |V (G)| number of nodes from I.

Step 4 Let T := 2 and start the iteration.

Step 5 Solve the ILP defined by {(1) - (7)} for the diffusion
time value T , so that the seed vertices can be chosen
exclusively from the set S.

Step 6 If all the nodes are influenced or the solution be-
comes infeasible then stop the iteration. Otherwise,
let T = T + 1 and go back to Step 5.

for larger ability-to-influence value together with low influ-
enceability. The explanation is that the seed nodes of the
global optimum are colored red (node 4 and 1). Larger cir-
cle represents later activation in the diffusion in the globally
optimal solution2. Obviously, this landscape of the central-
ity values is quite simple as our small test graph is of spe-
cial structure. Discussion some larger graphs will be given
in Section 5.3.
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Figure 2: Visualization of the new centralitites for the small
test graph

2It must be emphasized here that the size of the circles on Figure 2
represents the activation time in the globally optimal solution. For non-
optimal T value we might obtain different times.
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Two different α values were used from which potential
seeds were selected in equal proportions. In the first case,
the weight of the ability-to-influence property is set to a
higher value, so α = 0.8 and select elements with a ratio
r = 0.2 which are the best elements according to I. More-
over, we add the vertices with ability-to-influence value
equal to 1. This is necessary because it has the highest
chance of infection, yet in many cases it will not be the seed.
There could be several reasons for this, for example another
node could reach the same global optimum or such a node
could be a neighbour of the seed that could infect the seed.
In any case, choosing these nodes gives a better chance for
finding the global optimum. Denote this set by S1. In the
second case, we select based on the influenceability value
alone, so α = 0 and added nodes with 0 influenceability
value. This is because nodes with an influence value of
0 can never be influenced unless they become seed nodes
themselves. Therefore, any vertex with an influence value
of 0 is chosen to be a seed vertex. The resulting set is de-
noted by S2. Finally, take the intersection of S1 and S2 and
obtain the set S. The seed nodes are chosen from this set S.

4.2 Greedy
Although the so-called submodularity property does not
hold for the DLTM, the greedy approach is still a favor-
able method for solving the IM problem. We have adapted
the greedy strategy into our ILP framework. For the for-
mal description of the method the reader is referred to the
Algorithm 3 in the Appendix.

5 Numerical experiments

5.1 Computational environment
The implementation of the above proposed new cen-
tralities was done in R version 4.1.2 using its igraph
1.3.5 package. The numerical experiments were exe-
cuted with Gurobi 10.0 called from AMPL [7] using
non-default options: threads=8 lpmethod=0 cuts=0
mipgapabs=1e-2. The computer used had Intel Core
i7-10700 CPU at 2.90GHz with 16GB memory running
Ubuntu 22.04.2. Note that we used multi-core setup of
Gurobi (i.e., for solving the ILP models), whereas R was
used with single threading. In the R implementation of the
new centrality metrics we used the different apply func-
tionalities to process matrices and lists efficiently.

5.2 Test graphs
Synthetic random graphs To generate random test
graphs we used the LFR scheme, which creates networks
with prescribed community structures [15]. Note that this
procedure only provides the graphs of social-network type,
the edge weights and node thresholds needed to be assigned
in the second phase. Similarly to our earlier work [5], the
following procedure was used.

Table 6: A selection of real-world test graphs
name N M dmax

soc-dolphins [20] 62 159 5
ca-sandi-auths 86 124 12
retweet [25, 24] 96 117 17
ca-netscience [21] 379 914 34

– Regarding the edge weights: nodes with in-weights
larger than 1 (given by the LFR method) were nor-
malized to 1; and we applied a multiplication with a
factor rw which was a uniform at random number in
the interval [0.6, 1].

– The nodes’ threshold values were generated uniform
at random in the interval [0.05, 0.6].

– From the LFR method three parameters were fixed:
mixing parameter µw = 0.1, minimal community size
minc = 5, maximal community sizemaxc = 42.

– Three parameters were varied in the experiments:
number of nodesn, the average degree avgk, andmax-
imum degreemaxk.

Real-world graphs We have tested our proposed method
on a small set of real-world graphs [23], see Table 6 for
the details. Note that the last column indicates the max-
imum degree of the given graph. For our problem setup
dmax needs to be relatively small, since the exact ILP solver
as well as our heuristic does not scale efficiently. Never-
theless, for these four social networks we did the following
experiments.
The real graphs were undirected and unweighted graphs.

The mutual parameter was used which makes the graphs
directed by doubling the undirected edges. We then created
3 groups according to the percentage of edges that were
deleted randomly and how we generated weight of edges
and threshold values. These groups and their correspond-
ing generating parameters are shown in Table 7. The edges
and weights were generated uniform at random in the given
interval. As for the weights of the edges, similar to the LFR
graphs, nodes with weights greater than 1 were normalized
to 1 and multiplied by a factor rw which were randomly
chosen from the interval [0.6, 1].

Table 7: The parameters used to generate real-world test
graphs
group % of edges deleted threshold weights

#1 45 [0.05, 0.5] [0.01, 0.6]
#2 50 [0.1, 0.5] [0.05, 0.5]
#3 50 [0.07, 0.55] [0.075, 0.55]
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5.3 Results
For all the test graphs we ran the new IAtI-heuristic and
compare its results with those obtained by Greedy. For
reference we also solved the smaller sized problems with
Gurobi to get the global optimal solution. Note that we
fixed the seed set size to 2.

LFR graphs The results are reported in Table 8 (includ-
ing the globally optimal solution) and 9 (without global op-
tima3). If the obtained results (with respect to σ and T )
were different, then the better solution is emphasized as
boldface. For the smaller sized problems we can see that
there were 3 cases when neither our heuristic nor the greedy
approach was able to find the global optimum, see Table 8.
Greedy found better solutions than our heuristic in seven
cases. Also in 7 cases (that is 23%) our heuristic missed
the global optimum. On the other hand, Greedy lost the
global optimum in 11 cases (37% of the cases). Regarding
the running time, the greedy approach is far the quickest
method. On the other hand, IAtI-heuristic is faster that the
exact method, usually around 4−12 times.

Table 8: Benchmarking results for the LFR graphs; time in
seconds
graph parameters IAtI-heuristic greedy global opt.
n avgk maxk σ T time σ T time σ∗ T ∗ time

100 3 8 87 13 22.2 87 13 11.9 87 13 164.2
100 4 8 74 17 77.1 74 17 7.6 74 17 1442.3
100 4 10 100 15 11.7 100 15 5.5 100 15 20.6
100 5 8 88 24 339.1 88 24 12.4 88 24 4287.9
100 5 10 89 10 168.7 89 10 5.9 89 10 1742.7
100 6 8 88 17 348.1 88 17 9.6 88 17 4353.3
105 3 8 58 11 8.9 58 11 5.4 58 11 92.0
105 4 8 57 10 15.5 57 10 2.4 57 10 169.0
105 4 10 80 15 16.0 79 14 6.2 80 15 42.2
105 5 8 85 16 20.1 85 16 7.4 85 16 86.9
105 5 10 66 20 41.7 66 20 8.7 66 20 108.0
105 6 8 61 14 27.7 61 14 4.8 61 12 119.5
110 3 8 75 20 110.0 75 20 10.7 75 15 655.8
110 4 8 96 23 411.9 87 15 9.4 96 23 5510.2
110 4 10 91 16 20.9 91 16 10.1 91 16 188.0
110 5 8 90 18 38.9 90 18 9.4 90 18 313.7
110 5 10 70 15 236.5 70 15 7.1 70 15 430.7
110 6 8 95 15 221.0 95 19 16.6 95 15 1085.0
115 3 8 56 13 6.6 56 13 4.6 56 13 59.3
115 4 8 49 18 13.5 45 14 6.4 49 18 170.5
115 4 10 43 11 12.3 49 13 4.2 49 13 64.3
115 5 8 25 18 24.9 21 7 1.1 25 18 219.5
115 5 10 78 20 81.7 68 14 6.3 78 20 193.1
115 6 8 49 13 18.2 46 11 4.3 49 13 292.7
120 3 8 86 26 59.7 86 25 23.4 86 25 1402.6
120 4 8 77 17 30.9 75 15 6.9 77 17 307.2
120 4 10 113 20 36.4 113 14 18.2 113 14 274.9
120 5 8 70 12 97.0 70 14 9.6 70 11 469.5
120 5 10 82 11 67.6 83 17 9.9 83 17 326.7
120 6 8 98 15 113.7 98 17 12.5 98 15 1160.0

For the larger graphs, reported in Table 9 we can see that
the in terms of running time Greedy is much faster than our
heuristic. Greedy was only 7 cases found better solution
than our heuristic. On the other hand IAtI-heuristic was
in 13 cases more successful than the greedy approach and
among these cases there are several ones where it obtained
much better solution.

3Due to the long running time for the larger graphs the globally optimal
solutions are not available.

Table 9: Benchmarking results for the LFR graphs, globally
optimal solution not available; time in seconds

graph parameters IAtI-heuristic greedy
n avgk maxk σ T time σ T time

125 3 8 116 17 35.5 116 17 13.4
125 4 8 102 24 407.1 102 24 25.6
125 4 10 93 22 115.0 98 27 25.1
125 5 8 81 15 303.7 81 15 16.9
125 5 10 99 19 220.9 99 18 29.4
125 6 8 104 13 406.1 104 14 15.2
130 3 8 121 28 604.7 121 28 90.4
130 4 8 96 14 266.5 84 10 11.7
130 4 10 51 9 80.6 51 10 5.9
130 5 8 130 20 116.5 130 19 16.3
130 5 10 114 16 355.2 116 16 27.1
130 6 8 130 15 54.2 130 15 11.9
135 3 8 129 19 22.7 135 18 10.6
135 4 8 117 13 215.9 117 13 22.7
135 4 10 93 14 65.4 93 14 15.8
135 5 8 74 21 864.4 55 16 12.1
135 5 10 81 13 234.5 81 13 15.5
135 6 8 113 23 1059.6 97 18 36.3
140 3 8 57 11 17.6 57 11 18.4
140 4 8 116 20 247.9 114 16 13.3
140 4 10 82 17 32.5 82 17 14.0
140 5 8 93 18 369.2 72 16 22.7
140 5 10 111 17 172.8 111 17 21.9
140 6 8 130 32 1283.5 103 17 17.5
145 3 8 70 16 34.6 70 16 14.0
145 4 8 100 21 273.4 100 21 45.2
145 4 10 60 18 123.8 76 19 17.2
145 5 8 58 20 134.7 44 14 7.8
145 5 10 110 21 621.5 108 20 30.0
145 6 8 101 25 885.1 101 25 31.1
150 3 8 72 12 107.1 72 12 17.2
150 4 8 66 13 167.3 66 12 9.8
150 4 10 84 16 78.6 83 17 13.9
150 5 8 123 21 290.5 118 19 28.2
150 5 10 89 27 1067.1 89 27 61.5
150 6 8 130 22 1207.6 124 18 20.6

To discuss a particular example at which the IAtI-heuritic
lost the globally optimal solution, whereas Greedy was able
to find it, see Figure 3. The scatterplot show the two central-
ities of the nodes together with their activation time at the
optimal T ∗. The empty circles correspond to those nodes
which were not selected by our heuristic to be candidates
for seeds. As shown by the red circles, we can see that IAtI
dropped the optimal seed set, as only those were selected to
be candidates which are shown with dark-blue color. Note
that Greedy, instead, found those red-colored nodes. The
seed nodes chosen by the IAtI-heuristic are shown as yel-
low colored circles. It would be possible to parameterize
the IAtI-heuristic in such a way that it would include the
optimal seeds in the candidate set. Figure 3 suggests that in
that case the cardinality of the candidate seed set would be
necessary larger which would result in much longer running
time.
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Figure 3: Visualization of the new centralitites for the
LFR.135.3.8 graph

Real-world graphs Our experiments on some selected
real world graphs are reported in Table 10. As in the ear-
lier tables it is shown in boldface if a method obtained a
better solution than the other one. We can observe that the
trend of the IAtI-heuristic being much slower than Greedy
remains to be the case also here. There was only once case
when the greedy approach found a better solution than our
heuristic. On the other hand, IAtI-heuristic was able to find
better solution in 5 cases (out of 12), which corresponds to
42%.

Table 10: Results for the small real-world graphs; time in
second

IAtI-heuristic greedy
graph σ T time σ T time

soc-dolphins #1 45 18 11.9 41 10 5.1
ca-sandi-auths #1 34 9 6.9 30 9 1.7
retweet #1 22 7 5.5 22 7 0.9
ca-netscience #1 63 9 319.5 63 9 183.6
soc-dolphins #2 34 9 6.9 24 5 0.5
ca-sandi-auths #2 13 5 5.5 12 4 0.3
retweet #2 19 6 4.8 19 6 0.7
ca-netscience #2 25 7 3047.7 25 6 13.8
soc-dolphins #3 27 8 5.5 27 8 1.5
ca-sandi-auths #3 14 5 7.6 14 5 0.5
retweet #3 17 6 4.9 17 6 0.6
ca-netscience #3 41 11 300.1 30 5 10.2

Finally, let us demonstrate again the seed node selection
strategy of the IAtI-heuristic on the ca-sandi-auths graph as

shown in Figure 4. The red colored circles represent the
nodes found by the Greedy approach, leading to a subop-
timal result. The red circle on the left was exluded by the
IAtI-heuristic from the possible set of seed nodes. As be-
fore, the candidate set of seed nodes are colored with dark-
blue. Among them, there are the two optimal seed nodes
shown as yellow circles. Note that there are quite many
nodes with 0 influenceability value. Those are definitely
selected by IAtI as possible seed nodes as they are impossi-
ble to be activated by other nodes. As we can observe, one
of them is indeed part of the optimal seed set.
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Figure 4: Visualization of the new centralitites for the ca-
sandi-auths #1 real graph

6 Conclusion
We proposed two new centrality metrics for the influence
maximization under deterministic linear threshold model.
These metrics take into account the structure of the input
network, more precisely the weight of edges, the combina-
tions of edges and the threshold value of vertices. This is a
great advantage of our method, because it is not usual to in-
clude the node’s threshold in the centrality measure. Using
the two centrality metrics, we selected vertices that have
a high probability of being seed nodes. The solver now
selects seed vertices only among these. This reduces the
computational complexity of the task and therefore, com-
pared to running the ILP solver on the unrestricted model,
it speeds up the procedure. Using those metrics, we cre-
ated the so-called IAtI algorithm. This was compared with
Greedy and in some cases with the global optimum, also.
The IAtI algorithm is slower thanGreedy, but inmany cases
it gives a better solution and in most cases it finds the global
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optimum. Although most real-world networks are sparse
graphs, for which our method works well, the disadvan-
tage of this method is that it takes a lot of computing time
to generate and use edge combinations for large degree of
nodes. Thus, it may take a long time for pre-processing and
is therefore, in its current form, not scalable. Our future
work is to develop a version of the method that can handle
graphs including nodes with relatively large degree.
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Appendix
The description of the greedy approach is given in Algo-
rithm 3.

Algorithm 3 Greedy algorithm using the ILP model
Step 1 Let k := 1 be the number of seed nodes.

Step 2 Let T := 2 and start the iteration with diffusion
time.

Step 3 Solve the ILP defined by {(1) - (7)} for the diffusion
time value T .

Step 4 If all the nodes are influenced or themodel becomes
infeasible then the optimum is found and stop the itera-
tion with T and go to Step 5. Otherwise, let T = T +1
and go back to Step 3.

Step 5 If k = |S| where S is set of seeds, then the stop the
algorithm. Otherwise, fix the selected seed nodes for
the remaining iterations. Let k := k+1 and go to Step
2.
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