
https://doi.org/10.31449/inf.v48i2.4870 Informatica 48 (2024) 213–222 213 

Utilizing an Ensemble Machine Learning Framework for Handling 

Concept Drift in Spatiotemporal Data Streams Classification 

Ature Angbera*1,2, Huah Yong Chan*1  
1Universiti Sains Malaysia, School of Computer Sciences, Pulau Pinang 11800, Malaysia 
2Joseph Sarwuan Tarka University, Department of Computer Science, Makurdi, Nigeria 

E-mail: angberaature@student.usm.my, hychan@usm.my 

Keywords: spatiotemporal data stream, concept drift, ensemble learning, machine learning, spatiotemporal data 

classification  

Received: May 18, 2023 

The number of systems and devices broadcasting spatiotemporal data has recently significantly increased. 

Streaming data analytics provides the foundation of various spatiotemporal data services and functions. 

The non-stationary characteristics of these platforms and the constantly altering trends of the 

spatiotemporal data streams present concept drift issues for spatiotemporal data analytics. As a result, 

when concept drift occurs, it harms the model. The model's performance will eventually decline. The 

learning algorithms need the proper adaptive techniques to deal with concept drift on the spatiotemporal 

data streams with accurate predictions. This paper proposes an average weighted performance ensemble 

model (AWPEM). The AWPEM framework is for drift adaptation for spatiotemporal data stream 

classification. The framework is evaluated using real-world spatiotemporal data and compared to other 

state-of-the-art methods. The results show that the proposed framework outperforms other methods in 

terms of classification accuracy and robustness to concept drift. Further research will focus on enhancing 

the adaptability of the proposed framework to diverse and dynamic spatiotemporal data environments, 

exploring mechanisms for automated parameter tuning, investigating computational efficiency and 

scalability to large-scale spatiotemporal datasets. 

Povzetek: Za večjo robustnost učnih sistemov je razvit ansambel WPEM, povprečno uteženi performančni 

ansambel za prilagoditev konceptualnim spremembam pri klasifikaciji spatiotemporalnih podatkovnih 

tokov. 

 

1 Introduction 

In recent years, it has become evident that the volume of 

data generated by technologies such as social media, 

sensor data, and other sources is rapidly increasing. 

Particularly, spatiotemporal data is streamed and vastly 

outpaces analysis tools' memory and processing power. 

There are currently 2.7 zeta bytes of data in the digital 

realm, which is growing daily [1]. The amount of data 

produced by systems like email and network monitoring 

[2], forecasting air quality grade [3], assessing credit risk 

[4], and analysing mobile users' behaviour changes [5]  are 

unfit for disc storage because they are so huge. In light of 

this, streaming algorithms are made to process data as it 

comes in, online, and without storing a sizable amount of 

data in the main memory. As a result, real-time analytics 

on non-stationary data have recently caught researchers' 

attention. Spatiotemporal data streams are data collections 

that flow continuously and alter as they enter a system. 

According to [6], data streams can be enormous, timely 

ordered, changing quickly, and potentially endless in 

duration. Due to the periodic data changes in the streaming 

spatiotemporal data, the typical mining method is faced 

with the problem of concept drift [7]. The mining 

algorithm needs to be upgraded. Concept drift is a  

problematic issue in online learning since it significantly 

affects the consistency of streaming data classification [8]. 

If it goes undiscovered, concept drift can negatively 

impact the accuracy of predictions. We can handle 

distributional changes and maintain great accuracy of the 

prediction over time by employing concept drift detection 

models. 

Assume that X and Y are the random variables 

representing the streaming observations and the labels that 

go with them. According to [9], concept drift is analogous 

to a change in the joint probability P(Y, X) at different 

time steps  𝑡, 𝑧 ∈  {1, … , 𝑇}, that is: 

𝑃𝑡(𝑌, 𝑋)  ≠ 𝑃𝑧(𝑌, 𝑋) 

⇔  𝑃𝑡(𝑌|𝑋)𝑃𝑡(𝑋)  ≠  𝑃𝑧(𝑌|𝑋)𝑃𝑧(𝑋)  
At time step t, 𝑃𝑡(𝑌, 𝑋) is referred to as the active 

concept. We also distinguish between drift in actual and 

drift in virtual concepts. A shift in 𝑃( 𝑋), that is: 𝑃𝑡( 𝑋)  ≠
 𝑃𝑧(𝑋), is referred to as virtual concept drift (X). Virtual 

concept drift is, therefore, unrelated to the target 

distribution and has no impact on the decision boundary 

[9]. Real concept drift, also known as concept shift, on the 

other hand, refers to a change in the conditional target 

distribution, that is: 𝑃𝑡(𝑌|𝑋)  ≠  𝑃𝑧(𝑌|𝑋). Real concept 

drift moves the decision border, which could affect 

predictions in the future [9]. In order to prevent severe 
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declines in prediction performance, it is imperative to spot 

changes in 𝑃(𝑌|𝑋) in a timely manner.  

Sadly, concept drift does not exhibit a consistent trend 

in actual practice. Instead, we might see significant 

variations in concept drift's length and intensity. To 

achieve this, we distinguish various categories of concept 

drift as sudden or abrupt, gradual or reoccurring [1]. 

Figure 1 depicts the types or categories of concept drift in 

streaming data. 

 
Figure 1: Types of concept drift [1] 

 

This study investigates a precise and trustworthy 

concept drift approach in spatiotemporal data streams. The 

work suggests an average weighted performance 

ensemble model (AWPEM) for efficient concept drift 

detection and enhanced classification in spatiotemporal 

crime. The suggested model is an ensemble learning 

framework built on base learners and integrates two 

cutting-edge drift adaptation strategies. The two drift 

adaptation approaches employed are adaptive random 

forest (ARF) [10] and streaming random patches (SRP) 

[11]. As drift detectors, three popular drift detection 

approaches are used: adaptive windowing (ADWIN) [12], 

early drift detection method (EDDM) [13], and drift 

detection method (DDM) [14]. In order to build a strong 

spatiotemporal crime classification ensemble model with 

improved drift adaptability capability, the fundamental 

learners are combined and weighted based on their real-

time success. The following are the study's ultimate goals: 

i. Concept drift adaption techniques are 

examined. 

ii. It suggests the AWPEM, a novel drift 

adaption technique, to solve the performance 

issues with the current concept drift 

techniques in spatiotemporal data streaming. 

iii. Using two datasets, it assesses the proposed 

AWPEM framework for spatiotemporal 

crime predictions with concept drift 

detection and adaptation. 

2 Related work 
This part reviews previous efforts on spatiotemporal 

dataset (crime as a use case) analysis and provides an 

overview of cutting-edge techniques for concept drift 

detection and adaptation. 

2.1 Spatiotemporal crime analysis 

The interest in spatiotemporal modelling is a rising 

subject of open research [15]. The dynamic interaction 

between space and time allows for discovering relevant 

patterns through spatial-temporal data mining [16]. In [17] 

present a predictive strategy based on spatial analysis and 

auto-regressive models to effectively anticipate crime 

patterns in each place and automatically identify high-risk 

crime locations in urban areas. The algorithm's output is a 

spatiotemporal crime forecasting model, which includes 

several crime-prone areas and related crime predictors. 

Each of these predictor’s functions as a predictive model 

to estimate the likelihood that crimes will occur to the 

extent it is allocated. In [18], the XGBoost machine 

learning algorithm was used to predict crime using actual 

crime and environmental data. The predictions were then 

interpreted using the SHAP method. With the aid of past 

crime statistics and environmental variables, XGBoost 

forecasts future crime. The prediction was then analyzed 

using SHAP, a machine learning interpreter, to show each 

variable's contributions from a global and local 

perspective. A cutting-edge deep learning technique called 

“Geographic-Semantic Ensemble Neural Network 

(GSEN),” which stacks a geographic prediction neural 

network with a semantic prediction neural network, was 

proposed [19]. The GSEN model combines the 

“Predictive Recurrent Neural Network (PredRNN), Graph 

Convolutional Predictive Recurrent Neural Network (GC-

PredRNN),” and Ensemble Layer structures for 

spatiotemporal crime classifications in order to capture 

spatiotemporal dynamics from a variety of angles. The 

Fuzzy K-Nearest Neighbor algorithm and geospatial 

operations were utilised to create a crime prediction model 

in [20], and the study recommended integrating a Safe 

Route Travel app with a Crime Mapping system. Based on 

prior crime data, the model forecasts the type of crime a 

location is most likely to experience. In [21] suggested 

using deep inception-residual networks (DIRNet) to 

develop precise forecasts of theft-related crime based on 

data from non-emergency service requests (311 events). 

The outcomes demonstrated that the DIRNet outperforms 

alternative prediction models, averaging an F1 of 71% on 

average. 

For spatiotemporal crime predictions, the strategies 

mentioned above produce excellent results. However, 

these are static machine-learning models created for 

offline learning. They are unable to adapt to real-time 

changes in spatiotemporal data. Due to this drawback, 

they are useless when used in real-world crime prediction 

systems. 

2.2 Methods of concept drift 

Concept drift problems are typically encountered in 

spatiotemporal streaming data analysis when data 

distribution changes over time due to the non-stationary 

environment. Concept drift problems often cause 

spatiotemporal crime prediction models to perform 

poorly, which has profound security implications. 

According to the rate at which the data distribution 
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changes, concept drifts are categorized into abrupt and 

gradual drifts [12]. An efficient crime prediction model 

should swiftly adjust to the discovered drifts to address 

concept drift and retain high prediction accuracy [5], [22]. 

 

i. Detection of Concept Drift 

A well-known prototype result-based methodology called 

the drift detection method (DDM) establishes 

dual parameters, a "warning level" and a "drift level," to 

track changes in the prototype's “error rate and standard 

deviation” for drift detection [18]. The concept drift 

presence is noticed by a substantial rise in the prototype's 

overall error rate and DDM standard deviation. Although 

a learner will be modified if its results dramatically 

worsen, the drift detection method is easy to work with 

and can prevent pointless model modifications. DDM can 

detect abrupt drifts efficiently but frequently responds 

slowly to gradual drifts; this is because memory overflows 

are brought on by the necessity to retain a sizable number 

of data samples to reach the drift level of a long, gradual 

drift [23], [24].  

The Early Drift Detection Method (EDDM) keeps 

track of the separation between two successive errors to 

identify gradual drift. When there is little space between 

two subsequent errors, gradual drift occurs [25]. The 

separation between two misclassification errors should 

grow as predictions get more accurate. The process for 

resizing a window is the same as with DDM. The main 

problem with EDDM is that at least 30 mistakes must be 

included in the calculation, making it difficult to utilize 

with unbalanced datasets [23]. The EDDM is an 

improvement of the DDM; hence the DDM could not 

detect gradual drift. 

The Adaptive sliding window (ADWIN) algorithm 

separates the data stream into two sequential sub-windows 

within a variable-size sliding window and compares the 

means [26]. Drift is discovered when the difference 

between the means exceeds a threshold value determined 

using the Hoeffding bound [27]. All previous data samples 

from before the discovered drift point are discarded once 

the drift point is identified [23]. Due to the sliding 

window's capacity to be stretched to a large windowing 

size to notice long shifts, ADWIN successfully identifies 

progressive drifts. The mean value, however, is often not 

a good indicator of change. 

ii. Concept Drift Adaptation: 

After drift detection, a suitable drift adaptation strategy 

should be employed to handle the found drifts and 

maintain strong learning performance. Incremental 

learning and ensemble procedures are the two most 

common types of current drift adaptation strategies. The 

learning model is incrementally modified by studying 

each sample one at a time in chronological order. The 

Hoeffding tree (HT), which employs the Hoeffding 

constraint, is a particular kind of “decision tree (DT)” 

whereby data streams may incrementally adapt [23]. 

Instead of using a decision tree to choose the optimal 

schism, the hoeffding tree uses the “Hoeffding bound” to 

determine how many samples are needed to choose the 

split node. Now that its node has been updated, the HT can 

adapt to new samples. However, the HT lacks any 

processes for handling certain types of drift. A 

modernized version of the HT, the Hoeffding Anytime 

Tree (HATT), often referred to as the “Extremely Fast 

Decision Tree (EFDT)” [28], instead than waiting to find 

the best split in the HT, splits nodes when it reaches the 

confidence threshold. The EFDT can respond better to 

concept drifts than the hoeffding tree thanks to this 

division mechanism, albeit its efficiency could be 

enhanced [29].  

Ensemble learning approaches have been suggested 

as a way to improve concept drift adaption and create 

reliable learners for data stream analytics. Block-based 

and online ensembles are two additional categories for 

ensemble approaches [30], [31]. Block-based ensembles 

partition the data streams into fixed-size blocks, after 

which each block is trained with a base learner. The base 

learners will be assessed and modified each time a new 

block is released. Although they typically take longer to 

react to abrupt drifts, block-based ensembles react to drifts 

gradually and properly. Deciding on the right block 

dimension to allow for a drift reaction speed and the 

learning trade-off between the base learners' results is 

another issue with block-based ensemble systems [31]. 

Three popular block-based ensembles are "Accuracy 

Updated Ensemble (AUE), Accuracy Weighted Ensemble 

(AWE), and Streaming Ensemble Algorithm (SEA)" [5], 

[32]. Online ensembles include different incremental 

learning models, such as HTs, to enhance learning 

performance. The adaptive random forest (ARF) 

approach, developed by Gomes et al. [10], uses HTs as 

base learners and ADWIN as each tree's drift detector. The 

drift detection mechanism replaces the underperforming 

base trees with new trees that better fit the new concept. 

Since the random forest is also an effective machine 

learning algorithm, ARF frequently outperforms many 

other approaches. ARF also includes a powerful 

resampling method and the flexibility to accommodate 

various drifts. For streaming data analytics, Gomes et al. 

[11] also put forth the Streaming Random Patches (SRP) 

innovative adaptive ensemble approach. To create 

predictions, SRP combines the online bagging method and 

random subspace. SRP and ARF use the same technology, 

but SRP uses a global subspace randomization strategy, 

while ARF uses a local subspace randomization approach. 

The more adaptable global subspace randomization 

strategy increases the diversity of base learners. SRP 

frequently has better prediction accuracy than ARF, 

although its execution time is often longer [29].  

Although numerous concept drift adaptation 

techniques are now in use, their prediction accuracy and 

drift reaction time are performance limited. Due to their 

weak capacity to react to drift and low model complexity, 

incremental learning approaches frequently perform 

poorly. In contrast, block-based ensembles face 

significant difficulties in determining block size and drift 

reaction speed. Online ensembles like ARF and SRP 
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consistently outperform block-based ensembles and 

incremental learning; however, their randomization 

strategies also cause unstable learning models by adding 

more unpredictability to building their models. In order to 

increase drift adaptation performance, this research 

proposes an ensemble model that is stable and reliable. 

3 Proposed model framework 
Figure 2 depicts a high-level view of the proposed system 

for spatiotemporal crime prediction based on data stream 

analytics. The primary steps are listed below. First, 

generated streams of spatiotemporal data are pre-

processed. Second, the critical learners for the first 

classification of crimes and drift adaptation are 

constructed using six drift adaptation techniques of 

concept drift: “ARF+DDM, ARF+EDDM, 

ARF+ADWIN, SRP+EDDM, SRP+DDM, and 

SRP+ADWIN.” The ensemble approach is then created by 

merging the six base learners' probabilities of their 

prediction according to the specified AWPEM 

architecture. The ensemble model is employed, which can 

predict crime and adjust to concept drifts. 

 
Figure 2: Proposed model framework

 

Three fundamental approaches for detecting drift 

(ADWIN, DDM, and EDDM) and two cutting-edge 

techniques for adjusting drift (ARF and SRP) are 

combined to create a robust ensemble model. Innovative 

methods for drift adaption, “ARF and SRP,” have 

demonstrated superior performance to other drift 

adaptation techniques in experimental tests observed from 

literature [33], [34]. This motivated us to adapt and use 

them in our proposed model as our concept drift adaption 

techniques. Additionally, as was already mentioned, the 

concept drift detectors (ADWIN, DDM, and EDDM) 

employed in this work have the advantage of detecting 

both sudden and gradual drift. As a result, the suggested 

ensemble model can identify both types of drift effectively 

thanks to both drift detection techniques. 

The average weighted performance ensemble model 

(AWPEM), a unique ensemble technique, is proposed in 

this study as a means of integrating the base learners for 

spatiotemporal data stream analytics. Many other 

ensemble techniques combine fixed weights, whereas 

AWPEM gives learners adjustable weights based on how 

they perform at the moment. Assuming that the goal 

attribute contains c various labels, 𝑦 ∈ 1, … , 𝑐 for each x 

data input and that the data stream 𝐷 =
{(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)}. It is possible to write the target 

class predicted by AWPEM as seen in Equation 1. 

�̂� =  
𝑎𝑟𝑔𝑚𝑎𝑥

𝑖 ∈ {1, … , 𝑐}

∑ 𝑤𝑗𝑃𝑗(𝑦 = 𝑖|𝐿𝑗 , 𝑥)𝑘
𝑗=1

𝑘
                     (1) 

𝑃𝑗(𝑦 = 𝑖|𝐿𝑗 , 𝑥) is the likelihood that the value of the 

class I will appear in the data sample x utilizing, 𝑗𝑡ℎ base 

learner, 𝐿𝑗 .  Each weight of the 𝐿𝑗 is 𝑤𝑗  and the 

suggested model base learners' number is k  (i.e., k = 6). 

After each data sample has been processed, the 

instantaneous error rate (see equation 2) is determined by  

 

 

dividing the sum of incorrectly classified labels by the 

overall number of samples analyzed. 

 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
        (2) 

 

Each base learner's weight 𝑤𝑗 , is obtained by taking the 

inverse of the real-time error rate. The 𝑤𝑗  is denoted as 

given in Equation 3. 

                   𝑤𝑗 =  
1

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 +  𝜖
                                     (3) 

 

 

Where 𝜖 (epsilon) represents a little constant that serves as 

a safeguard against the denominator falling to zero. 

The idea of real-time error rates is employed in our 

proposed AWPEM model to create the base learners' 

weights for further dependable adaptation to data changes 

as opposed to the “mean square error rates” of the blocks 

of data utilized in the accuracy updated ensemble model. 

The ensemble model can account for the outcome of the 

base learners individually on a particular job due to the 

actual-time error rate on all compiled data. 

The AWPEM provides several benefits since it can 

enhance the weights of base learners who perform at the 

top of their class while also considering other base 

learners. The suggested model's inverse-based weighting 

operation has improved AUE's weighting operation. 
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Additionally, the flexible weights generated with “real-

time error rates” can be utilized to change the relevance of 

the base learners concerning their instantaneous results, in 

contrast to the fixed weights used in many existing 

ensemble techniques. These shifting weights guarantee 

that the present base learners who excel at the highest 

levels will be awarded higher weights. 

4 Experiments and results 
The Scikit-Multiflow [35] framework was expanded to 

implement the suggested framework using Python 3.9 on 

a computer with a core i5 processor. 

4.1 Data pre-processing 

We used two datasets for our model training and 

testing. These are crime datasets; the first dataset 

(Dataset1) has 319073 rows × 16 columns. The prediction 

class is the OFFENSE, whether it was violent or 

nonviolent. The second dataset (Dataset2) has 28303 rows 

× 20 columns. The prediction class here is whether there 

was an attack or no attack. In the hold-out evaluation, the 

initial model training took up 10% of the data, while the 

testing portion took up the remaining 90%. Before using 

the learning model for model training and updating, the 

learning model is tested via prequential validation, 

sometimes referred to as test-and-train validation. The five 

criteria, "accuracy, precision, recall, f1-score, and 

execution time,” were utilized to assess the effectiveness 

of the suggested approach. 

4.2 Results and discussion of the 

experiment 

Prediction accuracies of the base learners (six) in the 

suggested model were lower than that of the proposed 

AWPEM on both datasets used in the experiments. 

Figure 3 depicts the accuracies of the crime predictions of 

the base learning models of ARF+ADWIN and 

ARF+DDM on both datasets used in this study. Figures 

3(a) and 3(b) show that the base learners' model accuracies 

were 86.33% and 98.43% on both datasets, respectively. 

Figure 3(c) and 3(d) prediction accuracies were 86.93% 

and 98.70% on both datasets, respectively.  

 

Figure 3: Accuracies of ARF+ADWIN and ARF+DDM, 

both datasets. 

 

Figure 4 depicts the accuracies of the crime predictions of 

the base learning models of ARF+EDDM and 

SRP+ADWIN on both datasets used in this study. Figures 

4(a) and 4(b) show that the base learners' model accuracies 

were 87.38% and 98.75% on both datasets, respectively. 

Figure 4(c) and 4(d) prediction accuracies were 80.56% 

and 98.56% on both datasets, respectively. 

Figure 4: Accuracies of ARF+EDDM and SRP+ADWIN, 

both datasets 

 

Figure 5 depicts the accuracies of the crime predictions of 

the base learning models of ARF+EDDM and 

SRP+ADWIN on both datasets used in this study. Figures 

5(a) and 5(b) show that the base learners' model accuracies 

were 95.01% and 98.43% on both datasets, respectively. 

Figure 5(c) and 5(d) prediction accuracies were 95.00% 

and 98.64% on both datasets, respectively. 
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Figure 5: Accuracies of SRP+DDM and SRP+EDDM both datasets

 

Table 1: Comparison of the effectiveness of drift adaptation techniques on Dataset1 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Average time (ms) 

ARF+ADWIN 86.33 76.58 86.80 81.37 6.07 

ARF+DDM 86.93 77.17 88.08 82.26 11.87 

ARF+EDDM 87.38 78.13 87.90 82.73 12.4 

SRP+ADWIN 80.56 70.92 73.66 72.26 22.28 

SRP+DDM 95.01 91.33 94.47 92.87 20.88 

SRP+EDDM 95.00 91.84 93.77 92.80 22.18 

HT 84.49 71.09 92.49 80.39 1.17 

LB 92.48 86.29 92.87 89.46 29.07 

Proposed 

AWPEM 

98.45 97.87 97.63 97.75 35.08 

 

Table 2: Comparison of the effectiveness of drift adaptation techniques on Dataset2 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Average time (ms) 

ARF+ADWIN 98.43 96.15 94.63 95.38 0.20 

ARF+DDM 98.70 97.36 95.04 96.18 0.25 

ARF+EDDM 98.75 96.71 95.98 96.34 0.23 

SRP+ADWIN 98.56 96.52 95.02 95.76 1.02 

SRP+DDM 98.43 96.34 94.45 95.39 1.33 

SRP+EDDM 98.64 96.62 95.43 96.02 1.12 

EFDT 91.02 69.35 85.54 76.60 0.41 

HT 91.61 73.03 81.11 76.86 0.09 

LB 97.79 92.76 94.54 93.64 0.02 

Proposed 

AWPEM  

99.24 98.54 97.01 97.77 4.20 
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Figure 6: Accuracy comparison of drift adaptation methods on dataset1

 

The suggested AWPEM framework's performance is 

compared in Tables I and II to other cutting-edge drift 

adaptive methods presented in this paper, such as ARF, 

SRP, HT, EFDT, & LB. The suggested AWPEM 

technique performs better than all other models, as  

 

 

 

demonstrated in Tables I and II. On dataset1, from Figure 

6, five drifts were seen early on; these drifts were noticed 

as a result of an increase in crime occurrences. Despite 

having different levels of adaptability, all the methods 

used could adjust to the drifts swiftly. However, our 

proposed AWPEM method swiftly adapted to the drifts 

and maintained a higher accuracy of 98.45%. 

 
Figure 7: Comparison of drift adaption techniques' accuracy on dataset 2 

 

There were six concept drifts in the tests for dataset2, as 

depicted in Figure 7. Both sudden (drifts 1, 3, and 5) and 

gradual drifts were seen in this series (drifts 2, 4, 6); these 

changes resulted from increased crime committed at 

various points. Once more, the suggested AWPEM 

approach quickly corrected for drifts and preserved a  

 

 

greater accuracy of 99.24 %. The justification for selecting 

the six base learners as base learners is further 

strengthened by their superior performance compared to 

other cutting-edge drift adaption techniques. 

Figure 8 illustrates how the suggested AWPEM 

strategy takes longer to execute on datasets 1 and 2 than 

the other tested methods, but the mean time execution 
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remains reasonable for each occurrence. M1, M2, M3, 

M4, M5, and M6 in figure 8 stand for, respectively, 

“ARF+ADWIN, ARF+DDM, ARF+EDDM, 

SRP+ADWIN, SRP+DDM, and SRP+EDDM”. 

Figure 8: Average time comparison of the models on the 

two datasets. 

 

Overall, while the average time taken by AWPEM 

may be higher compared to some other models, its 

outstanding performance across multiple metrics 

demonstrates its efficacy in addressing concept drift. 

Additionally, the difference in processing time between 

the two datasets highlights the importance of considering 

dataset characteristics and computational resources when 

selecting an appropriate drift adaptation technique. 

Certainly, addressing the computational efficiency of the 

AWPEM model can be a promising avenue for future 

research. While AWPEM demonstrates exceptional 

performance in handling concept drift, its relatively longer 

average processing time, especially in Dataset1, suggests 

room for improvement in terms of computational 

efficiency. One potential direction for future studies could 

involve optimizing the algorithmic implementation of 

AWPEM to reduce its computational overhead without 

compromising its predictive accuracy. This optimization 

may involve refining the model architecture, streamlining 

the feature selection process, or implementing more 

efficient data processing techniques. Furthermore, 

exploring parallelization and distributed computing 

strategies could help accelerate the processing speed of 

AWPEM, making it more scalable and suitable for 

handling large-scale spatiotemporal datasets in real-time 

applications. 

In terms of precision, recall, and f1-score, Figures 9 

and 10 compare the suggested method to state-of-the-art  

techniques. The suggested model's precision shows that it 

can correctly recognize and predict positive data samples 

even when drift occurs. On the other hand, current 

methods consider the classification model's response to 

the input data at hand, resulting in a wrong prediction 

when concept drifts occur. 

 
Figure 9: Performance comparison with precision, recall, 

and f1-score of the methods on dataset1 

Figure 10: Performance comparison with precision, 

recall, and f1-score of the methods on dataset2 

Recall demonstrates the capacity of the suggested 

model to generate fewer false negatives. For dataset1 and 

dataset2, the proposed model outperformed earlier 

techniques in the recall by 97.63% and 97.01%, 

respectively. When false negatives and false positives are 

critical, and the class distribution in the real-world dataset 

is uneven, the F1-score is calculated and compared. For 

datasets 1 and 2, the proposed model beat existing 

techniques by 97.75% and 97.77% f1-score. 

5 Conclusion 
This research offers the AWPEM framework for drift 

adaptive for spatiotemporal data streams classification, 

built on a collection of cutting-edge drift adaptation 

techniques. The proposed framework predicted crime in 

response to adaptation to the changes in data (concept 

drift) by attaining 98.45% and 99.24% accuracies on the 

two datasets. These accuracies' performance is 

significantly higher than other cutting-edge algorithms' 

accuracies based on the experimental performance of the 

two spatiotemporal data streams. To expand it, more drift 
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adaption strategies that offer better performance, 

diversity, and speed can be added to the proposed 

framework in subsequent studies. Also, it can be further 

optimized to reduce its high computational efficiency. 

 

Data availability statement 
The datasets generated during and/or analysed during the 

current study are available from the corresponding author 

on reasonable request. 
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