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Data clustering refers to the process of grouping similar data points based on patterns or characteristics. 

It finds applications in image analysis, pattern recognition, and data mining. The k-means algorithm is 

commonly used for this purpose, but it has two main limitations. Firstly, it necessitates the user to 

explicitly specify the number of clusters. Secondly, it is highly sensitive to the initial selection of cluster 

centroids. To overcome these limitations, this study presents a novel approach that utilizes a variable-

length spider monkey optimization algorithm (VLSMO) with a hybrid measure to determine the optimal 

number of clusters and initial centroids. Experimental results obtained from real-life datasets demonstrate 

that VLSMO outperforms the standard k-means algorithm and other techniques in terms of accuracy and 

clustering capacity. 

Povzetek: Prispevek opisuje novo metodo za združevanje podatkov z uporabo optimirnega algoritma 

VLSMO, ki odpravlja omejitve predhodnih algoritma, izboljšuje natančnost in zmogljivost združevanja. 

 

1 Introduction 
Data clustering is one of the most important data mining 

approaches, which involves partitioning data instances 

into smaller groups, where each group comprises objects 

that are similar to each other but distinct from those in 

other clusters. Clusters are defined by a center point and a 

proximity metric that measures the similarity or 

dissimilarity of the candidate data points. Clustering 

analysis has as its primary objective the creation of 

clusters consisting of the highest density of similar points 

and the most distant clusters of different points. Clustering 

cannot be performed manually due to the large volume of 

data. Instead, specialized computing techniques are used. 

Nonetheless, clustering differs from classification since 

most data is unlabeled, implicitly performing 

classification. Therefore, it is considered unsupervised 

learning. 

The practice of clustering is prevalent throughout 

industries, as it allows related objects to be grouped. For 

example, a clustering approach can be used in marketing 

to identify consumers with similar purchasing habits. In 

educational settings, it can be useful in analyzing students' 

academic achievement by grouping those with similar 

study habits. In addition, clustering can also be utilized in 

diverse applications, including the segmentation of 

images, the detection of outliers, the detection of tumors, 

and the detection of fraud. Furthermore, clustering is a 

powerful method of uncovering hidden patterns within a 

dataset. Despite its wide range of applications, clustering 

poses a number of challenges  [1]. 

Many clustering algorithms have been developed, 

including K-means, density-based spatial clustering of 

applications with noise (DBSCAN), expectation 

maximization (EM), and hierarchical agglomerative 

clustering (HAC). The K-means algorithm is widely 

recognized as the most commonly employed clustering 

algorithm. The K-means algorithm is popular in scientific 

research and industrial applications because it is simple, 

fast convergence, and scalable. Nevertheless, k-means 

clustering, which involves randomly distributing starting 

points during center initialization, frequently results in 

local optimal clustering outcomes that could result in 

inaccurate categorization due to instability. It has a 

number of limitations, including the necessity of 

specifying the number of clusters and its sensitivity to 

initial center points. In order to overcome the limitations 

of this algorithm, a globally optimized approach must be 

adopted [2]. Several techniques have been proposed in the 

literature to overcome these limitations, including the 

elbow method, the gap statistic, and the canopy method. 

The appropriate number of clusters (k) can be determined 

using these techniques. Furthermore, various algorithms 

can be used to identify the initial centroids, including the 

Forgy method, random partition method, and k-means++ 

algorithm. As far as the authors are aware, there are 

limited techniques available to determine both parameters 

simultaneously based on using optimization techniques 

like genetic algorithms (GA), artificial bee colony (ABC), 

and particle swarm optimization (PSO). 

The current work aims to progress in this area by 

presenting a modified version of the spider monkey 
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optimization algorithm (SMO) with variable length to 

determine the number of clusters and their initial 

centroids. 

The following sections of this paper are organized as 

follows: An overview of related work is presented in 

Section 2. Section 3 provides a theoretical background on 

the topic. Section 4 describes the current work. A 

summary of the results is presented in Section 5. Finally, 

the paper is concluded in Section 6. 

2 Literature review 
Numerous techniques have been presented to determine 

suitable parameters for the k-means algorithm. Several of 

these techniques focus on estimating the number of 

clusters (k), others optimize the initial centroids, and some 

address both aspects simultaneously. 

Multiple methods are available for estimating the number 

of clusters, and selecting a suitable one depends on the 

dataset and goals. One of the most common methods is the 

elbow method. It works by plotting the sum of squared 

distances between each data point and its nearest centroid 

against different values of k. The point where the curve 

starts to level off is considered the optimal value of k [3]. 

An alternative approach is the silhouette method, which 

calculates the silhouette coefficient for each point in order 

to assess how well it fits within the assigned cluster in 

relation to other clusters. The optimal number of clusters 

is determined by selecting the k value that maximizes the 

average silhouette coefficient. Additionally, the gap 

statistic provides a robust method in this regard. In this 

method, the within-cluster sum of squares of observed 

data is compared to a randomly generated data set to 

identify the optimal value of k that minimizes the gap 

statistics. Similarly, the canopy method uses hierarchical 

clustering to group data points. It determines the optimal 

number of clusters by identifying the level in the hierarchy 

at which clusters are most distinctive. These are just a few 

of the many methods that can be used to estimate the 

number of clusters. 

On the other hand, choosing suitable initial centroids is 

also crucial as they serve as the starting points for the k-

means clustering algorithm and greatly influence the final 

clustering outcomes. The most common method of 

selecting initial centroids is to choose them randomly from 

the dataset. Alternatively, more advanced algorithms such 

as k-means++ can be used to refine the selection process. 

It aims to select centroids that are distant from each other 

and representative of the data distribution. This helps to 

avoid local optima, which can occur when the initial 

centroids are not well-chosen. The authors in [4] propose 

a hybrid algorithm, ACO-K-means, that combines the ant 

colony optimization (ACO) algorithm with the k-means 

algorithm for clustering to find good initial centroids for 

the k-means algorithm, which can improve the clustering 

results. ACO-K-means outperform the k-means algorithm 

on the tested datasets. A hybrid clustering algorithm 

named MABCKM is presented in [5], which combines 

modified ABC and KM algorithms. MABCKM addresses 

the issue of dependency on initial cluster centers in KM. 

A cooperative algorithm is presented in [6] that combines 

PSO with k-means to provide a global and local search 

capability. Experimental results indicate that the proposed 

algorithm achieves satisfactory efficiency and robustness  

when clustering data. In [7], three K-means initialization 

strategies are compared using the UCI ML handwritten 

digits dataset: random, K-means++, and PCA-based K-

means. The findings indicate that the PCA-based K-means 

initialization strategy performs better than the other two 

approaches regarding accuracy and running time. In [8], 

the authors prove that combining the glowworm swarm 

optimization (GSO) algorithm, k-means algorithm, and 

good-point set can improve the clustering effect and 

stability under unsupervised learning conditions.  

Further, some studies have investigated using meta-

heuristic algorithms to optimize k-means issues. These 

algorithms search the parameter space to find the optimal 

combination of k and initial centroids. For instance, an 

algorithm based on variable-length chromosomes is 

proposed in [9]  for solving the K-means clustering 

problem. This approach is designed to automatically 

determine the number of cluster centers that is most 

appropriate. In [10], the authors propose a new method 

KMBA for optimizing the k-means clustering algorithm 

using the bat algorithm. In KMBA, each bat in the 

algorithm performs two essential tasks: (1) identify the 

ideal number of clusters utilizing a discrete PSO approach 

based on CPSO, and (2) determine the optimal number of 

cluster centers using the K-means algorithm. It is easy to 

implement and effective in a variety of problems. In [11], 

a new K-FA approach combines the firefly algorithm (FA) 

with k-means clustering to cluster data. It utilizes FA to 

determine the centroids of the specified number of clusters 

and further refines them using k-means clustering. K-FA 

algorithm clusters data accurately and effectively. In [2], 

the authors present a novel approach, ABCVL (Artificial 

Bee Colony with Variable-Length Individuals), for 

optimizing the k-means clustering algorithm. ABCVL is 

used to determine both the value of k and the initial 

centroids. ABCVL has been evaluated on various datasets, 

demonstrating that it is more accurate in clustering than 

the standard k-means algorithm. ABCVL is also simple to 

implement and is effective across a wide range of problem 

domains. 

Finally, the literature indicates that there is no one-size-

fits-all approach to estimating k-means parameters. It is 

important to consider both the data characteristics and the 

problem at hand before choosing a method. Therefore, it 

is essential to experiment with different techniques and 

compare their performance to select the most appropriate 

one for a particular application. 

Table 1 summarizes a selection of relevant studies in the 

field. 
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3 Background 

3.1 Spider monkey optimization (SMO) 

algorithm 

SMO is a collaborative, iterative process based on trial and 

error, much like the other population-based algorithms. 

Six phases comprise the SMO process: Local Leader, 

Global Leader, Local Leader Learning, Global Leader 

Learning, Local Leader Decision, and Global Leader 

Decision. The Gbest-guided ABC [12] [13] and a 

modified version of ABC [14] [15] inspired the position 

updating procedure in the Global Leader phase. Following  

 

 

 

 

 

is an explanation of each SMO implementation step in 

detail  

[16] 

3.1.1 Initialization of the population 

Initially, SMO creates an initial population of N spider 

monkeys (SMs) with a uniform distribution. Each SM in 

the population is represented by a D-dimensional vector, 

SMij (i = 1, 2,..., N and j = 1, …, D), where D represents 

the length of the optimization problem. Each SM 

represents a possible solution to the issue. Every SMi is 

initialized as follows: 

 

SMij = SMminj + U (0,1) × (SMmaxj - SMminj).                           (1) 

 

Ref Year Technique fitness dataset Best Mean SD Run 

[3] 2019 Analyze four K-value 

selection algorithms 
Elbow Method, Gap 

Statistic, Silhouette 

Coefficient, and Canopy 

Silhouette Coefficient ▪ Iris 0.765 --- --- --- 

[4] 2005 Hybrid Ant Colony 

Optimization with  

K-Means Algorithm 
(ACO-K-means algorithm) 

distance between cluster  

centers and calculating 

the sum of color and 
physical distances 

between each pixel and 

its assigned cluster 

center. 

▪ images --- --- --- --- 

[5] 2011 Hybrid Modified Artificial 

Bee Colony and K-Means 
Algorithm 

 (MABCKM) 

Euclidean distance (short 

for distance) 

▪ Iris 

▪ glass 
▪ lung cancer 

▪ soybean 

(small)  

▪ wine 

▪ vowel   

78.8514  

336.0840 
535.6552 

208.1545 

2.3707e6 

3.06907 

78.8516 

336.6181 
570.8732 

227.6273 

2.3708e6 

3.06907 

0.00004 

0.1604 
10.5690 

10.2121 

29.9780 

10.1211 

20 

[6] 2012 A cooperative algorithm 

based on PSO and k-means 

Sum of Intra Cluster 

Distances (SICD) 

▪ Irish 

▪ Pima 
▪ Wine   

▪ WDBC   

▪ Glass 
▪ Sonar 

96.73000 

47561.35 
16292.68 

211.0400 

149473.1  
234.6300 

96.91000 

47580.43 
16293.75 

214.8300 

149475.0 
234.7800 

 

0.170000 

59.97000 
0.880000 

4.090000 

1.370000 
0.160000 

 

120 

[7] 2018 Evaluation of these three 
strategies for initializing the 

centroids 

silhouette coefficient ▪ digits 0.15 --- --- --- 

[8] 2018 Glowworm Swarm 

Optimization, K-means, and 
Good-Point Set 

(GSOK-GP algorithm) 

Density-Based ▪ Iris   

▪ Glass 

97.32  

225.08  

89.33 

53.50 

0 

0.0090 

20 

[9] 2019 genetic algorithm with 
variable length string  

Davies-Bouldin Index 

(DBI) 

▪ Random 0.2126 --- --- 20 

[10] 2012 K-Means and Bat 

Algorithm (KMBA) 
Accuracy ▪ Iris   95% --- --- --- 

[11] 2012 hybrid K-means and Firefly 
Algorithm (K-FA) 

intra-cluster distance ▪ Iris   
▪ WDBC   

▪ Sonar   

▪ Glass    
▪ Wine    

96.13  
149450.3 

229.35  

210.51  
16284.01  

 

103.87  
149590.2 

231.36 

221.87 
16327.53 

2.45 
197.31 

2.94 

10.5 
10.10 

30 

[2] 2022 Improved artificial bee 
colony algorithm with 

variable-length individuals 

(ABCVL) 

Hybrid-Scale2   ▪ Mall 
Customers 

▪ Digits 

▪ Breast 
Cancer 

0.521397 
1.336862  

0.423736 

0.520917 
1.345410 

0.423736 

0.002586 
0.008708 

1.110×10-16 

30 

 

 

Table 1: Relevant studies in the field. 
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Here, U (0,1) is a uniformly distributed random number in 

the range [0,1], and SMminj and SMmaxj are the limits of 

SMi in the jth direction. 

 

3.1.2 Local leader phase (LLP) 

Each SM adjusts its present position during LLP based on 

information from the experience of the local leader and 

local group members. The fitness value of the newly 

acquired position is computed. As long as the new position 

has a greater fitness value than the old one, the SM 

replaces the old one with the new one. In LLP, the position 

update equation for the ith SM, a member of the kth local 

group, is: 
 

SMnewij = SMij + U (0,1) × (LLkj - SMij) + U (-1,1) × (SMrj - SMij),     (2) 
 

where, LLkj stands for the jth dimension of the kth local 

group leader position, and SMij is the jth dimension of the 

ith SM. In order to ensure that r≠i and U (0,1) is a uniformly 

distributed random integers between 0 and 1, SMrj is the 

jth dimension of the rth SM that is randomly selected inside 

the kth group. Algorithm 1 illustrates the method of 

updating LLP positions [16]. 

 

Algorithm 1: LLP 
MG: the swarm's maximum number of groups 

Pr: the perturbation rate ∈ [0.1, 0.9], determining how much the 

current location is perturbed.  

 

for each k ∈ {1, ..., MG} do  

    for each member SMi ∈ kth group do  

       for each j ∈ {1, ..., D} do  

          if  U (0,1)  ≥  pr then  
                 Update SMnewij using Eq. (2).  

          else  

                  SMnewij = SMij  
        end if  

      end for  

   end for  

end for 

 

3.1.3 Global leader phase (GLP) 

Once LLP has been completed, GLP will begin. Each SM 

updates its position during the GLP based on the 

experience of the global leader and the local group 

members. Here, the position is updated by applying Eq. 

(3). 

 
SMnewij = SMij + U (0,1) × (GLj - SMij) + U (-1,1) × (SMrj - SMij).          (3) 

 

Where j ∈ {1, 2, ..., D} is the randomly selected index, and 

GLj is the jth dimension of the global leader position. 

 

In this phase, SM placements are adjusted based on 

probabilities derived from their fitness. A better candidate 

has a higher chance of improving under this approach. For 

determining the probability probi, Eq. (4), or some other 

equation related to fitness, may be used: 
 

probi = 0.9  ×
fitnessi

𝑚𝑎𝑥_ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
  + 0.1,                                                          (4) 

 

where, fitnessi denotes the ith SM's fitness value and max_ 

fitness denotes the group's maximum fitness. 

Additionally, the fitness of the SMs' newly produced 

position is computed, compared to the previous one, and 

the more suitable position is accepted. Algorithm 2 

illustrates the process of updating GLP positions [16]. 

 

 

 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

3.1.4 Global leader learning (GLL) 

During this phase, the position of the global leader is 

updated by applying greedy selection on the population, 

i.e., selecting the SM position with the best fitness among 

the population as the updated position. In addition, the 

global leader position is determined, and if it is not 

updated, the GlobalLimitCount is incremented by one. 

3.1.5 Local leader learning (LLL) phase 

In this phase, the local leader's position is updated using a 

greedy selection method within the group. The local leader 

is chosen based on the SM's fitness level. The updated 

position of the local leader is then compared to its previous 

position, and if the local leader has not changed, the 

LocalLimitCount is incremented by one. 

3.1.6 Local leader decision (LLD) phase 

Assume that the position of any local leader is not updated 

until the Local Leader Limit has been reached. In this 

situation, all group members update their positions using 

either random initialization or the combined knowledge of 

the Global Leader and Local Leader obtained by Eq. (5), 

depending upon the pr. 

 
SMnewij = SMij + U (0,1) × (GLj - SMij) + U (0, 1) × (SMij - LLkj)     (5) 

 

According to Eq. (5), the updated dimension of this SM is 

attracted to the global leader and repellent to the local 

leader. Algorithm 3 displays the process of the LLD phase, 

where LocalLimitCountk refers to the trial counter for the 

local best solution of the kth group. 

 

 

 

 

 

Algorithm 2: GLP 

for k = 1 to MG do 

    count = 1; 

       GS = kth group size; 
       while count < GS do 

          for i = 1 to GS do 

             if  U (0, 1) < probi then // see Eq. (4) 
                 count = count + 1. 

                 Randomly select j ∈ {1...D}. 

                 Randomly select SMr from kth group s.t. r ≠ i. 

                 Update SMnewij using Eq. (3). 

             end if 

          end for 

          if i is equal to GS then 

              i = 1; 
          end if 

  end while 

end for 
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3.1.7  

3.1.8 Global leader decision (GLD) phase 

As soon as the position of the global leader has not been 

changed for a predefined number of iterations, the 

population is divided into smaller groups by the global 

leader. The population is divided into two groups first, 

followed by three groups, and so on until the maximum 

number of groups (MG) has been reached. Whenever a 

new group is established during the GLD phase, the LLL 

procedure is initiated to elect the local leader. Regardless 

of how many groups are established, if the global leader's 

position remains unchanged, all groups will be united. 

Hence, this method was based on SMs' fusion-fission 

structure. Algorithm 4 illustrates how the GLD phase 

works. 

 

 

 

 

 

 

 

 

 

 

 

The SMO algorithm can be summarized in Algorithm 5  

[16]. 

 
Algorithm 5: SMO Algorithm 

1. Initialize the population of spider monkeys. 

2. Evaluate the fitness of each spider monkey. 
3. Identify the best spider monkey based on fitness. 

4. Perform exploration and exploitation by updating the positions of 

spider monkeys. 
5. Evaluate the fitness of the updated spider monkeys. 

6. If the termination condition is met, stop; otherwise, go to step 3. 

7. Output the best solution found. 

 
 

3.2 K-Means clustering algorithm 

The k-means algorithm and its extensions have a long 

history, and it remains a challenging task today. This is 

because it depends on the initializations and requires 

determining a specific number of clusters [17]. 

This algorithm partitions the dataset into k unique clusters 

by iteratively achieving a local minimum. The initial K 

cluster centers for the K-means method are selected at 

random from the dataset, where the user predetermines k. 

Throughout each iteration, each point in a dataset is 

assigned to the nearest cluster center. Once all data points 

have been grouped into clusters, the new centroid is 

calculated as the mean of all cluster points for each cluster. 

This process is repeated until either the centroids of the 

clusters do not change any longer or the maximum number 

of iterations has been reached [2] [18]. 

3.3 Basic theory of good-point set 

Good point sets are defined and structured in the following 

manner [8] [19]: 

 

1) Assume Gs is a unit cube in S-dimensional Euclidean 

space, which is expressed as x ∈ Gs, 

 

x = (x1, x2,...,xs) ,                                                    (6) 

 

where, 0 ≤ Xi ≤ 1, i = 1, 2,..., s. 

2) Assume Pn(K) is a point set with the number of n in 

Gs, which is expressed as: 

 

Pn (k) = {(X1
(n)(K), X2

(n)(K), ..., Xs
(n)(K))} ,   (7) 

 

where, 0 ≤ K ≤ n, 0 ≤ xi
(n) (K) ≤ 1, i = 1, 2,..., s. 

3) Assume r = (r1, r2, ..., rs) is a given point in Gs and 

Nn(r) = Nn(r1, r2, ..., rs) is the number of points not 

satisfying the inequality below in point set Pn(k). 

 

0≤ Xi
(n) (k) ≤ ri, where, i = 1, 2, ..., s.                      (8) 

 

𝜑(n) = sup |Nn(r)/n − |r||, where r ∈ Gs, |r| = r1r2 ⋅⋅⋅rs, 

and 𝜑(n) is the deviation of point set Pn(K). 

 

4) Assume 𝜑(n) is the deviation of Pn(K) = {(X1
(n)∗k, 

X2
(n)∗K,..., Xs

(n)∗K, K= 1, 2, ..., n} and meets the 

requirements below: 

 

𝜑(n) = C(r,𝜀)n− 1+𝜀 , where C(r, 𝜀) is a constant related 

to  r and 𝜀,  𝜀 > 0. 

A good-point set is denoted by Pn(K), and a good point is 

denoted by r. The order of deviation 𝜑(n) about 

approximation integration is shown by applicable 

theorems to be dependent solely on n and independent of 

the sample's spatial dimensions. The computation in high-

dimensional spaces may thus be supported more 

effectively by the good-point set. Meanwhile, the 

deviation 𝜑(n) of n points Pn = X1, X2, ..., Xn acquired by 

a good-point set is much better than n points produced by 

a random technique for a point set object whose 

distribution is unknown. Based on this characteristic of the 

good-point set, a better initial distribution strategy may be 

offered for the swarm distribution in the swarm 

intelligence algorithm. 

4 The current work 
Swarm intelligence (SI) is significantly limited when 

dealing with fixed-length individuals. This paper proposes 

Algorithm 3: LLD Phase 
for k = {1...MG} do 
    if LocalLimitCountk > Local Leader Limit then 

        LocalLimitCountk = 0. 

        GS = kth group size; 

        for i ∈ {1...GS} do 

            for each j ∈ {1...D} do 

               if U (0,1) ≥ pr then 
                       SMnewij = SMminj + U (0,1) × (SMmaxj - SMminj) 

               else 

                       Upate SMnewij using Eq. (5). 
               end if 

             end for 

         end for 

   end if 

end for 

 

Algorithm 4: GLD Phase 
if GlobalLimitCount > Global Leader Limit then 

   GlobalLimitCount = 0 

   if Number of groups < MG then 

      Divide the population into groups. 

   else 

      Combine all the groups to make a single group. 

   end if 

   Update Local Leaders position. 
end if 
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an enhanced version of the SMO algorithm, known as the 

variable-length SMO algorithm (VLSMO), that handles 

variable length. To check the effectiveness of VLSMO, 

we will utilize it to tackle the challenges of the k-means 

algorithm by determining the number of clusters (k), and 

the initial cluster centers. 

We will describe the current work in the following lines. 

4.1 Individual representation 

Two representation techniques are used to represent 

individuals (SMs) in the population: indirect and direct. 

Suppose the dataset contains 100 data points numbered 

from 1 to 100, each data point has four attributes, and the 

number of clusters is 3. The following is a description of 

SM with the details below using these two techniques. 

 

Data point index Attributes (4 features) 

2 4.7 3.2 1.3 0.2 

40 5.0 3.5 1.3 0.3 

70 6.4 2.9 4.3 1.3 

 

 

▪ Indirect technique: in this technique, every SM 

position is represented as the index of data points in 

the dataset, where each index corresponds to a 

sample. For example, below is the representation of 

SM according to this technique.  

 

Cluster 1 Cluster 2 Cluster 3 

2 40 74 

 

This individual implies that the number of clusters is 

3, and the first centroid corresponds to the data point 

with index 2, the second centroid corresponds to the 

data point with index 40, and the third centroid 

corresponds to the data point with index 74. 

 

▪ Direct technique: in this technique, every SM position 

is represented as the attributes of data points in the 

dataset, where each position corresponds to a sample. 

For example, below is the representation of SM 

according to this technique. 

 

4.7 3.2 1.3 0.2 Cluster 1 

5.0 3.5 1.3 0.3 Cluster 2 

6.4 2.9 4.3 1.3 Cluster 3 

 

This individual implies that the number of clusters is 

3. The first centroid corresponds to the data point with 

attributes (4.7, 3.2, 1.3, 0.2) instead of its index 2; the 

second centroid corresponds to the data point with 

attributes (5.0, 3.5, 1.3, 0.3) instead of its index 40; 

and the third centroid corresponds to the data point 

with attributes (6.4, 2.9, 4.3, 1.3) instead of its index 

74. 

4.2 Initial population based on the Good-

point set 

To optimize the SMO, it is effective to switch from a 

random distribution to a uniform distribution in the search 

space. Nevertheless, a good-point set method must be 

applied to enhance the initial distribution to ensure that the 

solution space is covered in most cases. This can be 

accomplished through the theory of the good-point set, 

discussed in Section 3.3. 

The population in this context exhibits the following 

attributes: it comprises individuals {ind1, ind2, ind3, …, 

N}, and the length of each individual corresponds to the 

number of clusters, denoted as K, where nCmin≤Ki≤ nCmax 

for 1≤i≤N. Here, nCmin and nCmax denote the minimum and 

maximum number of clusters, respectively. Each 

individual serves as a representation of the initial cluster 

centroids (C): indi = {C1, C2, C3, ... CKi}. 

4.3 Objective function 

We evaluated the clustering quality by experimenting with 

eight objective functions that relied on key metrics. These 

metrics encompassed both internal (1-2) and external (3-

6) measures, as well as Inertia (7) and a hybrid measure 

we proposed (8). These measurements are explained 

below [1]. 

 

1. Davies-Bouldin Index (DBI) measure measures the 

average similarity between a cluster and its most 

comparable one. The lower the DBI value, the better 

the clustering, while zero indicates optimal clustering. 

2. Silhouette coefficient measure:  It measures how 

similar a data point is to its own cluster compared to 

others. The score ranges from -1 to 1, where a higher 

value indicates better clustering results. 

3. Homogeneity measure: This measure assesses the 

degree to which all data points within a cluster belong 

to the same class. A high homogeneity score indicates 

well-separated clusters. 

4. Completeness measure: It measures how effectively 

all data points belonging to a single class are placed 

together. A high completeness score indicates optimal 

clustering. 

5. V-measure: It assesses both homogeneity and 

completeness at the same time. It measures how well 

the clustering solution matches the known class 

labels. Better clustering is indicated by higher V-

measure scores, with 1 being perfect clustering. 

6. Adjusted rand index (ARI) measure: It measures 

the similarity between predicted and actual clustering 

by considering the possibility of chance clustering. 

The score ranges from -1 to 1, where a higher value 

indicates better clustering results. 

7. Inertia: It measures the sum of squared distances 

between each data point and the center of the cluster 

to which it belongs. The lower the score, the better the 

result [2]. 

8. Hybrid score (HS): this proposed measure integrates 

the Silhouette and ARI measures, assigning a weight 
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to each measure to determine its relative importance 

using Eq. (9). 

 

HS = a × Silhouette + b × ARI,                                (9) 

 

where a and b are real numbers within the range [0,1] 

and a+b =1. 

4.4 Modified search equation 

The SMO algorithm was improved to accommodate 

individuals of varying lengths. By adhering to numerous 

modification instructions, The LLP equation has been 

revised to accommodate two scenarios based on the 

potential varying lengths of the two individuals, namely 

MLLPq. Assume we have two individuals (Ind1 and Ind2) 

of different lengths (L1 and L2). Detailed descriptions of 

each scenario are provided below. 

• MLLPq1 

In the first scenario, MLLPq1, the L1 is less than or equal 

to the L2. Equation (2) is utilized on the initial L1 positions 

shared by the two individuals (Ind1 and Ind2), resulting in 

a new individual (Ind3) with a length equal to L1. The 

sketch diagram of the MLLPq1 example is shown in 

Figure 1(a). 

• MLLPq2 

The second scenario, MLLPq2, involves L1 being greater 

than L2. Initially, Eq. (2) is utilized on the initial L2 

positions shared by the two individuals (Ind1 and Ind2), 

resulting in the first L2 positions in the new individual 

(Ind3). Then, a random integer number P in range (L2, L1] 

is selected. Finally, the positions from L2+1 to P of Ind1 

are copied to the same positions at Ind3. In this scenario, 

the length of Ind3 ranges from L2 to L1. The sketch 

diagram of the MLLPq2 example is shown in Figure 1(b). 

 

Figure 1 illustrates how a new individual Ind3 can be 

created by combining two individuals, Ind1 and Ind2, with 

lengths L1 and L2, respectively. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: The schematic diagram of (a) MLLPq1, and (b) 

MLLPq2. 

 

5 Results 

5.1 Tested datasets 

The current work evaluates five datasets from the UCI 

repository [20], and their properties of these datasets are 

listed in Table 2. 

 

Table 2: Characteristics of the data sets considered 
Name No. of classes No. of attribute Size of dataset 

Seed 3 7 210 (70, 70, 70) 

Bupa 2 6 345 (145, 200) 

Iris 3 4 150 (50, 50, 50) 

Heart 2 13 270 (120, 150) 

Haberman 2 3 306 (225, 81) 

 

5.2 Parameters setting 

The current work employs the following parameters 

settings for all experiments: 

• The swarm size: N = 20 

• The minimum number:   nCmin = 2  

• The maximum number nCmax = 12 

• The GlobalLeaderLimit = [N/2, 2 × N] 

• The LocalLeaderLimit = D × N 

• The maximum number of iterations = 100 

• a and b for HS function = 0.5 

5.3 Results 

We conducted a series of experiments to assess the 

effectiveness of the VLSMO method from different 

perspectives. These experiments are referred to as 

Experiment I, Experiment II, and Experiment III. 

In Experiment I, our objective was to evaluate the impact 

of the performance of the objective function on the overall 

effectiveness of the VLSMO method. We carefully 

examined how variations in the objective function affected 

the performance and optimization capabilities of the 

VLSMO method. 

Moving on to Experiment II, our focus was on analyzing 

the efficiency of the VLSMO method by considering 

individuals of varying lengths. We investigated how the 

method's performance was influenced by different lengths 

of individuals, aiming to identify any correlations between 

the length of individuals and the efficiency of the VLSMO 

method. 

In Experiment III, we aimed to assess the efficiency of the 

VLSMO method by comparing it with other techniques 

that have been previously discussed in [23]. This 

experiment provided valuable insights into how the 

VLSMO method compared to other existing techniques, 

Ind1 X1 X2 X3 X4 X5 X6 

 

Ind2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 

----------------------------------------------------------------- 

Ind3 Z1 Z2 Z3 Z4 Z5 Z6 

                                     (a) 

 

 

  (a) 

Ind1 X1 X2 X3 X4 X5 X6 X7 

 

Ind2 Y1 Y2 Y3 

 
If value of random = 4 

--------------------------------------------------------- 

Ind3 Z1 Z2 Z3 X4 

 
If value of random = 7  

------------------------------------------------------- 

Ind3 Z1 Z2 Z3 X4 X5 X6 X7 

(b) 
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allowing us to better understand its strengths and 

weaknesses. 

Through these experiments, we comprehensively 

understood the VLSMO method and its performance 

across different dimensions. 

5.3.1 Experiment I 

In this experiment, we evaluated the effectiveness of the 

VLSMO method for clustering problems on five datasets, 

as described in Section 5.1, using eight measures defined 

in Section 3.4.3 as objective functions. Tables 3-13 

summarize the results of this experiment, including the 

best value, mean, optimal k, and mean of k, with the best 

outcomes highlighted in bold typeface. 

 

 

Table 3: Experiment I on Seed dataset-Indirect 

technique. 

Measure Best Mean Optimal (K) Mean (K) 

DBI 0.667283 0.667283 2 2.0 

Silhouette 0.474919 0.485367 2 2.2 

Homogeneity 0.133885 0.133702 9 10.0 

Completeness 0.256622 0.256622 2 2.0 

V-measure 0.282329 0.282353 3 3.0 

Inertia 161.2699 162.6081 12 12.0 

ARI 0.27389 0.277021 3 3.1 

HS 0.400861 0.400861 3 3.0 

 

Table 4: Experiment I on Bupa dataset-Indirect 

technique. 

Measure Best Mean Optimal (K) Mean (K) 

DBI 0.767878 0.767878 2 2.0 

Silhouette 0.365595 0.384366 2 2.3 

Homogeneity 0.868698 0.878894 11 10.6 

Completeness 0.961773 0.966154 10 9.6 

V-measure 0.938959 0.943134 11 11.1 

Inertia 113115.8 115453.6 12 11.9 

ARI 0.961553 0.968388 6 8.3 

HS 0.685475 0.68636 2 2.1 

 

Table 5: Experiment I on Iris dataset-Indirect 

technique. 
Measure Best Mean Optimal (K) Mean (K) 

DBI 0.404293 0.455829 2 2.2 

Silhouette 0.318954 0.344599 2 2.2 

Homogeneity 0.022699 0.031922 12 10.9 

Completeness 0.116486 0.146221 2 2.3 

V-measure 0.219169 0.219169 3 3.0 

Inertia 22.39424 22.66280 12 11.9 

ARI 0.213836 0.224934 3 3.1 

HS 0.336311 0.34281 3 3.3 

Table 6: Experiment I on Heart dataset-Indirect 

technique. 

Measure Best Mean Optimal (K) Mean (K) 

DBI 0.713265 0.727587 3 3.3 

Silhouette 0.614592 0.618281 2 2.3 

Homogeneity 0.783788 0.791029 11 11.1 

Completeness 0.927299 0.932774 6 6.7 

V-measure 0.89814 0.902304 8 9.4 

Inertia 154717.8 164091.2 12 11.3 

ARI 0.904502 0.909118 3 3.8 

HS 0.793613 0.794022 2 2.2 

 

Table 7: Experiment I on Haberman dataset-Indirect 

technique 

Measure Best Mean Optimal (K) Mean (K) 

DBI 0.80366 0.800347 3 4.2 

Silhouette 0.566715 0.567513 3 3.0 

Homogeneity 0.834284 0.845633 11 10.4 

Completeness 0.904877 0.910012 2 2.1 

V-measure 0.914638 0.916857 2 2.1 

Inertia 6472.869 6552.305 12 11.9 

ARI 0.811333 0.82498 2 2.2 

HS 0.734413 0.739459 2 2.5 

 

Table 8: Experiment I on Seed dataset-direct 

technique. 

Measure Best Mean 
Optimal 

(K) 
Mean 
(K) 

DBI 0.667282 0.667282 2 2.0 

Silhouette 0.474919 0.490591 2   2.3 

Homogeneity 0.135167 0.147534 11 11.1 

Completeness 0.256622 0.271856 2 2.4 

V-measure 0.282328 0.282376 3 3.0 

Inertia 161.591242 166.966275 12 11.7 

ARI 0.2738904 0.277063 3 3.1 

HS 0.400861 0.400861 3 3.0 

Table 9: Experiment I on Bupa dataset-direct technique. 

Measure Best Mean 
Optimal 

(K) 
Mean 
(K) 

DBI 0.767878 0.739907 2 3.8 

Silhouette 0.365594 0.369024 2 2.2 

Homogeneity 0.893468 0.901519 11 11.1 

Completeness 0.968224 0.968492 9 10.2 

V-measure 0.950264 0.953214 11 10.1 

Inertia 113166.23 114804.18 12 11.8 

ARI 0.969933 0.972824 6 7.1 

HS 0.685474 0.687244 2 2.2 

Table 10: Experiment I on Iris dataset-direct technique. 

Measure Best Mean 
Optimal 

(K) 
Mean 
(K) 

DBI 0.404292 0.404292 2   2.0 

Silhouette 0.318953 0.331776 2 2.1 

Homogeneity 0.032809 0.041085 8 9.0 

Completeness 0.116485 0.155215 2 2.4 

V-measure 0.219168 0.2202207 3 3.2 

Inertia 22.507321 23.250523 12 11.7 

ARI 0.1984501 0.21826009 3   3.1 

HS 0.3363106 0.342809 3   3.0 

Table 11: Experiment I on Heart dataset-direct technique. 

Measure Best Mean 
Optimal 

(K) 

Mean 

(K) 

DBI 0.713264 0.738831 3 3.2 

Silhouette 0.614592   0.615822 2 2.1 

Homogeneity 0.798409 0.800753 12 11.5 

Completeness 0.929894 0.9351805 6 6.8 

V-measure 0.900645 0.905123 10 9.7 

Inertia 155568.13 163630.64 12 11.4 

ARI 0.895478 0.9088609 3 3.7 

HS 0.793613 0.793817 2 2.1 

Table 12: Experiment I on Haberman dataset-direct 

technique 

Measure Best Mean Optimal (K) Mean (K) 

DBI 0.727124 0.740409 7 6.6 

Silhouette 0.566714 0.567868 3 3.1 

Homogeneity 0.835039 0.846492 12 10.4 

Completeness 0.893457 0.905006 2 2.3 
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V-measure 0.914637 0.919636 2 2.0 

Inertia 6466.24 6521.739 12 12.0 

ARI 0.799551 0.822034 2 2.4 

HS 0.727788 0.734275 2 2.1 

Table 13: Accuracy of the tested measures on the five 

datasets-Indirect and direct technique. 
Measure Seed Bupa Iris Heart Haberman Accuracy 

DBI      10% 

Silhouette      20% 

Homogeneity      0% 

Completeness      10% 

V-measure      30% 

Inertia      0% 

ARI      30% 

HS      100% 

 

5.3.2 Experiment II 

In this experiment, we evaluated the effectiveness of the 

VLSMO method for optimizing k-means techniques 

across five clustering datasets. We contrasted the 

outcomes against those of the standard k-means algorithm. 

Tables 14-15 summarize the outcomes of this experiment, 

displaying the best value, mean, and standard deviation 

(SD) generated by each algorithm throughout 30 runs, 

with the best results highlighted in bold typeface. 

Furthermore, Figures 2 and 3 depict the evolution curve of 

the VLSMO algorithm across the five clustering datasets. 

 

Table 14: The results-Indirect technique of Experiment 

II. 

Dataset 
Basic K-Means Algorithm VLSMO Algorithm 

Best Mean SD Best Mean SD 

Seed 0.4052703 0.4052703 1.110223 0.400861 0.400861 2.775557 

Bupa 0.687704 0.687704   0.0 0.685475 0.690008 0.014974 

Iris 0.358471 0.358471 1.665334 0.336311 0.34281 0.002166 

Heart 0.797463 0.797463 2.220446 0.793613 0.793886 0.000694 

Haberman 0.800257 0.800257 1.110223 0.731062 0.736556 0.005237 

 

 

Table 15: The results-direct technique of Experiment II. 

Dataset 
Basic K-Means Algorithm VLSMO Algorithm 

Best Mean SD Best Mean SD 

Seed 0.405270 0.405270 1.11022 0.400861 0.401992 0.006093 

Bupa 0.687704 0.687704   0.0 0.685474 0.688840 0.013460 

Iris 0.358471 0.358471 1.66533 0.336310 0.346141 0.010807 

Heart 0.797463 0.797463 2.22044 0.793613 0.793954 0.000761 

Haberman 0.800257 0.800257 1.11022 0.727788 0.735944 0.006259 

 

 

 

 
 

 
 

Figure 2: The curve of the VLSMO with the hybrid score 

on five tested datasets, indirect representation 
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Figure 3: The curve of the VLSMO with the hybrid score 

on five tested datasets, direct representation 

 

5.3.3 Experiment III 

In this experiment, we compared the effectiveness of the 

VLSMO method against K-Means, PSO, Hybrid, K-

Means+GA, and a hybrid sequential clustering algorithm. 

The results, summarized in Table 16, present the 

quantization error (average distance between data points 

and cluster centroids) for the artificial problem I, artificial 

problem II, Wine, and Iris datasets. The best results are 

highlighted in bold, indicating superior performance. 

 

Table 16: Comparison of VLSMO with K-Means, PSO, 

Hybrid, K-Means+GA, and a hybrid sequential clustering 

(HSC) algorithm regarding quantization error. 

Algorithm 
Artificial 

problem I 

Artificial 

problem II 
Wine Iris 

K-Means  0.984 

±0.032  

0.264 

±0.001  

1.139 

±0.125 

1.139 

±0.125 

PSO  0.769 

±0.031  

0.252 

±0.001 

1.493 

±0.095 

0.774 

±0.094 

Hybrid  0.768 

±0.048  

0.250 

±0.001 

1.078 

±0.085 

0.633 

±0.143 

KMeans+ 

GA  

0.772 ±0.05  0.260 

±0.001 

1.384 

±0.099 

0.982 

±0.128 

HSC  0.764 

±0.031  

0.250 

±0.001  

1.072 

±0.084  

0.628 

±0.092 

VLSMO 0.761± 

1.9135e-15 

0.250 

±4.432e-15 

1.074± 

1.3688e-16 

0.624± 

1.2243-15 

 

6 Discussion 
The results of Experiment I (Tables 3-13) reveal that the 

proposed hybrid measure, HS, outperforms all other 

measures. This finding suggests that combining Silhouette 

and ARI measures into a hybrid measure can address the 

limitations of each individual measure, resulting in a more 

robust and comprehensive evaluation of clustering 

performance. The HS measure considers both the 

similarity of objects within clusters and the agreement 

between actual and predicted cluster labels, making it 

particularly useful for assessing clustering algorithms on 

complex and heterogeneous datasets. As a result, the HS 

measure will be utilized in the experiment II. 

In Experiment II, the results indicate that employing the 

VLSMO algorithm leads to superior performance 

compared to traditional techniques for setting parameters 

of k-means. The VLSMO algorithm surpasses the basic k-

means algorithm to achieve the best value, mean, standard 

deviation, and speed in identifying the optimal value for 

the tested clustering datasets. Figures 2-3 demonstrate that 

the direct technique exhibits faster convergence with 

VLSMO than the indirect technique. 

Moving on to Experiment III, the outcomes consistently 

demonstrate that the VLSMO algorithm achieves the 

lowest average quantization error across all tested 

datasets, except for the Wine dataset, where the Hybrid 

Sequential clustering algorithm performs better. While 

other algorithms may yield better results in specific cases, 

their overall performance lacks consistency. Only the 

proposed VLSMO algorithm consistently generates the 

best solutions across the board. 

These findings highlight the efficacy of the VLSMO 

algorithm in various experimental scenarios, supporting 
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its suitability for optimizing clustering outcomes. The 

consistent superior performance of the VLSMO algorithm 

in terms of quantization error underscores its potential for 

effectively addressing complex clustering challenges. 

 

7 Conclusion 
In this paper, we proposed a new version of the SMO 

algorithm called VLSMO, which enhances its flexibility 

by eliminating the constraint of fixed-length individuals. 

Unlike the basic SMO algorithm, VLSMO can handle 

both fixed and variable-length individuals, enabling it to 

tackle problems that were previously intractable. This 

feature makes the VLSMO algorithm suitable for solving 

a variety of problems that the SMO algorithm alone cannot 

address. 

To evaluate the effectiveness of the VLSMO algorithm, 

we applied it to significant clustering problems involving 

the identification of optimal hyperparameters for the k-

means algorithm, specifically the optimal value of k 

(number of clusters) and the initial centroids. While 

existing techniques like the elbow method, gap statistic, 

and canopy method are used to determine the appropriate 

cluster size, and methods such as the Forgy method, 

random partition method, and k-means++ algorithm are 

employed to find initial centroids, the VLSMO algorithm 

demonstrates efficient and accurate identification of both 

optimal values for k and initial centroids, as demonstrated 

by the test results. 

We aim to extend the application of the VLSMO 

algorithm to a wide range of problems that involve 

variable-length individuals. Some examples include 

scheduling time-based sensor networks [21], optimizing 

road traffic coordination in a multipath scenario [22], and 

other similar issues. 
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