
https://doi.org/10.31449/inf.v49i16.4974 Informatica 49 (2025) 97–114 97

A Unified Trace Meta-Model for Alignment and Synchronization of BPMN
and UMLModels

Aljia Bouzidi1, Nahla Haddar2 and Kais Haddar2
1ISIMM University of Monastir, Monastir, Tunisia
2University of Sfax, Sfax, Tunisia
E-mail: aljia.bouzidi@gmail.com, nahla_haddar@yahoo.fr, kais.haddar@yahoo.fr

Keywords: Traceability, synchronization alignment, use case diagram, class diagram, MVC, BPMN diagram, integration,
transformation

Received: February 24, 2025

Organizations often face information system (IS) failures due to misalignment with business goals. Business
process models (BPMs) play a crucial role in addressing this issue but are often developed independently
of IS models (ISMs), resulting in non-interoperable systems. This paper proposes a traceability method to
link BPMs and ISMs, bridging the gap between business and software domains.
We introduce a unified trace meta-model integrating BPMN elements with UML constructs (use cases and
class diagrams) via traceability links. This meta-model is instantiated as the BPMNTraceISM diagram,
ensuring seamless integration through bidirectional transformation models.
To validate our approach, we developed a graphical editor for BPMNTraceISM diagrams and implemented
transformations using the ATLAS Transformation Language (ATL). A case study on a loan approval process
demonstrates the method’s effectiveness in aligning BPMN and UML elements, improving interoperability
and model alignment across domains

Povzetek: Razvit je enoten sledilni meta-model, ki povezuje elemente BPMN in UML (diagram primerov
uporabe, razredov po vzorcu MVC) za uskladitev poslovnih procesov in informacijskih sistemov, ki ga
validirajo z grafičnim urejevalnikom in transformacijami ATL.

1 Introduction
In the software engineering field, Business Process Mod-
els (BPMs) playb an increasingly central role in the devel-
opment and continued management of software systems.
Therefore, it is crucial to have Information System Mod-
els (ISMs) that tackle BPMs. modelling. However, these
models are mostly expressed using different modeling lan-
guages, and only a few information systems (IS) are devel-
oped with explicit consideration of the business processes
they are supposed to support. This separation causes gaps
between business and IS models. Thus, a methodology is
needed to examine the gap between BPMs and ISMs, and
keep them aligned even as they evolve. Traceability in soft-
ware development proves its ability to associate overlap-
ping artefacts of heterogeneous models (for example, busi-
ness models, requirements, uses cases, design models), im-
prove project results by helping designers and other stake-
holders with common tasks such as analysis of change im-
pacts, etc. Thereby creating an explicit traceability model
that is not a standalone guideline, but it has significant ben-
efits in terms of quality, automation, and consistency. Al-
though creating it is not a trivial task, an explicit traceabil-
ity model remains a reference for a consistent definition of
typed traceability links between heterogeneous model con-
cepts, helping to ensure their alignment and coevolution.
In our previous work presented in [1], we proposed a rel-

evant explicit traceability model and defined it using the
integration mechanism. Indeed, we propose a requirements
engineering method that works at both the meta-model and
model levels, establishing traceability between BPMs and
ISMs to bridge the gap between business modeling and re-
quirements elicitation.modeling. This method is deliber-
ately influenced by the Object Management Group (OMG)
specifications. Particular attention is given to UML use
case models [2] as the most commonly used way to elicit
software needs and BPMN [3] as the most widely used lan-
guage to specify the business process model (BPMs). In-
deed, in [1], we firstly defined a unified trace meta-model
of the BPMN and the UML use case models in the form of
an integrated single meta-model. It defines also traceability
links between interrelated concepts to correlate overlapped
concepts as new modeling concepts. This meta-model is
then instantiated in the form of a new diagram that we called
BPSUC (Business Process SupportedUse Cases). This new
diagram permits business teams and requirements design
teams to work together within the same model, and allows
specifying trace links graphically.

The practical benefits of the proposed method lie in its
ability to bridge the gap between business process man-
agement (BPM) and software systems development. In the
context of Business Process Models (BPMs) and Informa-
tion System Models (ISMs), this method enables seamless

98 Informatica 49 (2025) 97–114 A. Bouzidi et al

integration and traceability across heterogeneous models,
which is crucial for ensuring their alignment and coevolu-
tion. By establishing clear and accurate traceability links
between BPMs, UML use case diagrams, and class dia-
grams, our method enhances communication and collab-
oration among business analysts, software engineers, and
stakeholders, ensuring that software systems are developed
with a clear understanding of the business processes they
aim to support. Furthermore, the integration of these mod-
els, coupled with the explicit traceability model, provides
several practical advantages, including improving change
impact analysis, enhancing automation, and maintaining
consistency throughout the system lifecycle. These ben-
efits are particularly significant in dynamic environments
where both business processes and software systems evolve
frequently. Thus, the method not only improves the qual-
ity of the development process but also provides a robust
framework for aligning business and software models, en-
suring their cohesive adaptation to changing requirements
and system developments.
This paper enriches and extends our work presented in

[1]. The enrichment involves adding class diagram con-
cepts structured according to the MVC pattern. Our inter-
vention considers both the meta-model and the model lev-
els. Hence, in the integrated trace meta-model proposed
in [1], we add new modeling concepts to express trace
links between the class diagram, use case diagram, and
the BPMN concepts. Class diagram concepts that have no
corresponding concepts are also included in the integrated
trace meta-model. Proposed traceability concepts and class
diagram concepts are instantiated in the BPSUC diagram.
Accordingly, BPSUC now enables the design of class dia-
gram elements and the proposed traceability concepts com-
bined with their corresponding BPMN and use case dia-
gram artefacts.
We validate our theoretical method by implementing a

visual modeling tool to support the enriched integrated trace
meta-model and the new diagram supplemented with class
diagram elements.
The rest of this paper is organized as follows: Section 2

is dedicated to discussing related work. In Section 3, we
give an overview of the method presented in [1]. Section
4 is devoted to explaining our contributions. Section 5 and
section 6 are dedicated to demonstrating the feasibility of
our proposal in practice and through a topical case study. In
section 7, we evaluate and discuss our method. Finally, in
section 8, we conclude the current work and we give some
outlooks.

2 Related work

We classify related work into two groups based on the
methodologies they have used to establish traceability
between elements of heterogeneous models: (1) works
that have proposed transformation models to define in-
ternal or implicit traceability models, and (2) approaches

that defined external traceability models manually, basing
on some mechanisms, such as model integration, model
merge/ composition, UML profiles or matrices.

2.1 Traceability via transformation models
In the first category, existing implicit traceability mod-
els are commonly MDA-compliant approaches that de-
fine traceability through exogenous, endogenous, hori-
zontal, or vertical transformation models. In these ap-
proaches, BPMN models are widely used to generate al-
ternative models through different transformation model
types. Among the various uses of BPMN models are: an
exogenous-based transformation for the definition of map-
ping users/organizations' requirements with BPMNmodels
[4]; a vertical transformation for the generation of artefacts
between BPMN and user stories [5] and [6]; and the gen-
eration of UML models [7]; a horizontal and exogenous
transformation for the generation of activity diagrams from
BPMN [8] and [9]; and a vertical transformation of textual
requirements into a BPMN model [10]. Some approaches
define endogenous transformation between UML diagram
elements to establish their traceability. For instance, the ap-
proach in [11] usesmachine learning techniques tomaintain
traceability information between software models. Their
focus is particularly on the requirements, analysis, and de-
sign models, which are specified by the UML language. To
trace links between requirements documents and UML di-
agrams, several approaches use Natural Language Process-
ing (NLP). For example, the approach in [12] uses a sys-
tem requirement description expressed in natural language
to extract the actors and the actions automatically.
The core benefit of defining implicit traceability is that

it does not require supplemental effort because only one
chain of transformation is sufficient to perform transfor-
mations in both directions. Moreover, it offers multiple
trace links between generated artefacts. However, the iden-
tified trace links consider exclusively transformed artefacts.
Moreover, the transformation chain is static and cannot be
updated to obtain the required traces for such traceability
scenarios.

2.2 Explicit traceability models
The second category includes approaches that define ex-
plicit traceability models separate from the source mod-
els. This category includes approaches that propose guide-
lines for creating traceability models. For instance, the
author of [13] defines a method for guiding the establish-
ment of traceability between the software requirements and
the UML diagrams. This guideline has two main compo-
nents: (i) a meta-model and (ii) a process step. The pro-
cess step defines the detailed processes, the mapping of
requirements to UML diagrams, and the types of require-
ments. Requirements can be classified according to their
aspects. This classification can be carried out according to
the type of requirement, which then requires the use of cer-

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 99

tain types of UML diagrams. However, this guideline fo-
cuses only on establishing traceability at the meta-model
level. Moreover, the business field is not considered in
this work. The authors of [14] propose a meta-model-based
approach to create traceability links between different lev-
els of the same system. Indeed, this approach focuses on
defining traceability metamodel source code stored as an
Abstract Syntax Tree (AST) and other possible artefacts
such as requirements, test cases, etc. To show the identi-
fied trace links, authors develop an editor. Nevertheless,
storing source code of a system as an AST can cause sev-
eral problems such as the appearance of syntax errors in the
source code, which leads to the loss of traceability links.
There is other model-based research that aim to maintain
traceability. For example, the research in [15] proposes a
co-evolution of transformations based on the propagation
of change. Its hypothesis is that knowledge of the evo-
lution of meta-models can be disseminated by decisions
aimed at driving the co-evolution of transformations. To
address particular cases, the authors present composition-
based techniques that help developers compose resolutions
that meet their needs. For the same purpose, the approach
in [11] refers to machine learning techniques to introduce
an approach called TRAIL (TRAceability lInk cLassifier).
The training of the classifier is based on a training dataset
that contains histories of existing traceability links between
pairs of artefacts to output the trace link (related or unre-
lated) of any future pair of artefacts (new or already exist-
ing). Some other approaches define traceability models for
eliciting requirements of complex systems [16] and [17].
Likewise, the authors of [19] base their work on deep learn-
ing techniques and propose a neural network architecture
based on word embedding and Recurrent Neural Network
(RNN) algorithms to predict trace links automatically. The
output of this model is a vector that contains the semantic
data of the artefact. Then, the trained model compares the
semantic vectors of a pair of artefacts and predicts if they
are related or unrelated. However, considering all meta-
models from many different abstraction levels in one uni-
fied single traceability model is not a trivial task and can
result in very complex models.
In [18], the authors propose an approach to promote

traceability and synchronization of computational models
in an Enterprise Architecture (EA), using meta-models,
model traceability, and synchronization structures. The au-
thors represent the meta-models of the EA at all abstraction
levels (strategic, tactical, and operational). These levels are
denoted within the integrated meta-model by three pack-
ages. Each package incorporates the core concepts of the
level it represents. They integrate the three meta-models
by adding alignment points between them. In addition,
they define a traceability framework and a synchronization
framework to support the analysis of the impact of organi-
zational changes.
There are also studies on specific languages. For exam-

ple, the approach in [20] uses Natural Language Processing
techniques to define a framework for managing traceability

between software artefacts. To demonstrate their work in
practice, the authors develop a tool that supports traceabil-
ity links between software models, including requirements
and UML class diagrams, and the source code written in the
Java programming language.

2.3 Identified gaps in existing works
Overall, existing works that define explicit traceability
models are mostly focused on the meta-model level only
and ignore the model level. Moreover, existing explicit
models establish traceability either between software mod-
els expressed in UML diagrams at the same or different ab-
straction levels or between business model artefacts. How-
ever, none of the existing approaches have achieved suc-
cessful results in establishing or maintaining traceability
between BPMN models, UML use case models, and the
UML class diagram.
The disadvantages of the proposed approaches stem from

rigid relationship types that fail to adapt to the changing
needs and practices of organizations. Furthermore, most of
the proposed approaches define or use very generic trace-
ability meta-models, capable of generating highly abstract
trace models. In practice, there is no prescription for how
to add customized tracing information or how to adapt a
generic traceability meta-model to express valuable and
context-specific traces. Concerning the approaches that fo-
cus on concrete modeling languages, to our knowledge,
there is no approach that proposes an explicit trace model
or meta-model between BPMN and UML models, even
though they are the most popular standards for modeling
business processes and automated information systems.

3 Background of our previous
traceability method

The method presented in this paper is an extension of our
previous work [1]. In this previous work, we have explored
the advantages of defining an integrated traceability model
to establish traceability between the BPMN and the UML
use case models and ensure their coevolution once a change
has occurred. This method acts at both the meta-model and
model level, and it includes three core steps:
(i) First, we have defined an integrated trace meta-model

that is a specification of traceability between the existing
artefacts, while keeping them unchanged and independent.
This integrated trace meta-model contains all the BPMN
and the UML use case meta-model artefacts (meta-classes
and associations) unified with new meta-classes and asso-
ciations for expressing traceability links at the meta-model
level. The integrated trace meta-model favors simplicity
and uniformity because source meta-models are kept and
unified with their traceability information in one unified
meta-model.
(ii) Next, we instantiated the integrated trace meta-model

at the model level. We represent it as a new diagram called

100 Informatica 49 (2025) 97–114 A. Bouzidi et al

Business Process Modeling Notation Traces Use Case (BP-
SUC). This diagram also incorporates the BPMN and the
UML use case elements together with traceability links, and
allows designing BPMN and use case diagram artefacts,
jointly. Moreover, visualizations and queries on traced el-
ements together are straightforward, because business ana-
lysts and software designers are now able to work together
on one integrated model. BPSUC can also be used to anal-
yse change impacts and validate them before propagating
them to the source models.
(iii) Finally, we defined bidirectional transformation

models between the BPSUC diagram and the sourcemodels
(BPMN and the use case models) to ensure the coevolution
of the origin models.

3.1 Integrated trace meta-model
In our previous work presented in [1], a unified trace meta-
model is proposed based on a semantic mapping of pairs of
BPMN and use case meta-model artefacts. The definition
of thismeta-model follows the following scenario: For each
pair of overlapped BPMN and UML use case concepts, we
add a new modeling concept that can be either a link, such
as an association, a composition or an inheritance, or a new
meta-class. Each trace link represented by a newmeta-class
is associated with the pair artefacts it specifies, generally,
by an inheritance relationship.
Table 1 summarizesmappings between the BPMNmodel

(first column) and the use case diagram concepts (second
column), and the corresponding new meta-classes (third
column) that are associated with them in the integrated
meta-model (the full mapping and its explanation is avail-
able in [1]). To validate the proposed mapping further, we
have conducted additional evaluations across a variety of
BPMN and UML diagram scenarios.
This expansion includes not only the core BPMN and

UML elements such as activities, actors, and use cases but
also more complex diagrams, such as:
– BPMNModels: Event-driven processes, process vari-
ants, and sub-processes with different complexity lev-
els, such as loan approval and inventory management
systems.

– UML Diagrams: Class diagrams, including inheri-
tance and association relationships, and more sophis-
ticated use case diagrams representing different busi-
ness functions, such as order fulfilment, customer sup-
port, and system maintenance.

These diverse scenarios have allowed us to assess how
well the mapping between BPMN, UML use case, and
class diagrams holds up in real-world business process and
system modeling. By applying the proposed traceability
method to these varied scenarios, we demonstrate the scala-
bility and robustness of our meta-model. We have also pro-
vided examples where the mapping effectively handles the
integration of different BPMN and UML model types, en-
suring traceability between the business and software mod-
els.

Table 1: Mapping of BPMN, use case and the trace meta-
model concepts
Use Case
Concept

BPMN concept Meta-model
concept

Package Empty Lane (a lane in-
cluding other sub-lanes)

Organisation
Unit Pack-
age

Actor Non empty Lane (that
does not contain other
sub-lanes)

Organization
Unit Actor

Use case Fragment represented
by a sequence of BPMN
artefacts that is per-
formed by the same
role and manipulates the
same item aware element
(business object, input
data, data store, data
state) d

UCsF

Extends Exclusive Gateway be-
tween two different frag-
ments

Exclusive
Gateway,
Extends

Association Fragment within the low-
est nesting level of sub-
lanes

Association

Includes Redundant Fragment
(that appears multiple
Times in the BPMN
model)

Fragment
that appears
multiple
times, In-
cludes

Extends Inclusive Gateway be-
tween two different frag-
ments

Inclusive
Gateway,
Extends

Extension
Point

Condition of sequence
Flow + the name of the
fragment that represents
to the extending use case

Extension
Point

The integrated meta-model is depicted in Figure 1). In
order to be able to read it, we have presented in this Figure
only the core artefacts of the source meta-model (use case
meta-model and BPMN met-model) and all the trace links
(meta-classes and associations). Dark grey meta-classes
represent new meta-classes; light grey meta-classes repre-
sent UML use case elements, white meta-classes represent
BPMN elements, and black lines represent existing associa-
tions from the source meta-models The blue lines represent
trace relationships, providing the foundational traceability
between BPMN and UML elements, as further detailed in
[1] and [22].

– Organizational-Unit-Package

In BPMN, a non-empty lane is a grouping element and
therefore has the same meaning as a package in UML. Con-
sequently, the Organizational-Unit-Package (OUPackage)

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 101

is defined to trace the link between the pair BPMN non-
empty lane and the use case package thereby defining an in-
heritance relationship between the new meta-class and this
artefact pair.
– Organizational-Unit-Actor
In the proposed integrated trace meta-model of [1], we

have defined a meta-class designated Organizational-Unit-
Actor (OUActor). This new meta-class traces artefacts of
the pair UML actors and BPMN empty lanes (i.e. lanes that
do not have embedded lanes). That is, it unifies the prop-
erties of a lane and an actor, and combines them without
changing their semantics there by defining the OUActor as
specialization of the UML actor and the BPMN Lane pair.
In this way, OUActor inherits properties of this pair of arte-
facts without updating their original semantics and struc-
tures. For example, in a loan approval process, the Loan
Officer is represented in a BPMN diagram by a non-empty
lane and in a UML use case diagram as an actor involved
in the process. The OUActor meta-class links these repre-
sentations, inheriting properties from both while preserving
their original semantics. This ensures synchronization be-
tween BPMN and UML elements, offering a unified view
of the Loan Officer’s role across models.
– Fragment
A fragment is defined by [22] as “a set of interrelated

BPMN elements that has inputs and outputs, and which is
executed by the same performer”. This artefact is speci-
fied in the unified trace meta-model as an instance of the
meta-class Fragment (cf. Figure 1)). As a Fragment is just
an activity that can contain other BPMN concepts such as
tasks, events, gateways and sequence flows, we have aggre-
gated a BPMN sub-process to a Fragment by creating an ag-
gregation relationship called fragments, between the frag-
ment and sub-process meta-classes in the integrated trace
meta-model (cf. Figure 1)). Its cardinality is 1-* to point
out that a sub-process should contain at least one fragment
but it may incorporate more than one Fragment. In addi-
tion, we define a many-to-many reflexive association in the
fragment to represent the fact that a fragment may be an
aggregation of other fragments (cf. Figure 1)). Moreover,
we create an association between the data object and the
fragment (cf. Figure 1)) to associate each fragment with
the objects it manipulates. The cardinality of this relation-
ship is fixed to 1-* to indicate that each fragment manipu-
lates at least one business object type, but it may manipu-
late more than one business object. Furthermore, we have
defined an association called organizationUA between the
meta-classes OU-Actor and fragment with a cardinality of
1-* to associate a fragment with its performer. For instance,
tasks such as Review Application, Assess Credit Score, and
Approve Loan in the BPMN Loan Approval Process are
all performed by the Loan Officer. The Fragment aggre-
gates these tasks into a cohesive group and connects them
to the BPMN sub-process as well as the business objects
(e.g., Loan Applications, Credit Scores) manipulated dur-
ing the process. This provides clear traceability between
tasks, business objects, and performers while maintaining

logical consistency.
– Use case supporting fragment
In order to support business objectives, such a UML use

case should be able to realize some business activities that
are specified in the integrated trace meta-model by a Frag-
ment. A separate specification of the use case and the frag-
ment that is supposed to realise does not allow explicitly
representing the semantic links between them. To do this,
we have defined the integrated trace meta-model presented
in [1], which introduces a new meta-class that we designate
Use Case supporting Fragment (UCsF) This new meta-
class is defined as a specialization of a UML use case in
order to inherit all its properties without updating its initial
meaning.

3.2 BPSUC diagram
To allow modeling the artefacts of the proposed integrated
trace meta-model, we have instantiated it in the form of an
integrated trace model, in our previous work [1]. We rep-
resent it as a new diagram that we have called BPMN Sup-
porting Use Case model (BPSUC).

Table 2: Notation of the traceability artefacts
Meta-model concept Graphical notation

OU-Actor

OU- Package

Use Case supporting
Fragment (UCsF)

For each concept, we have provided a graphical nota-
tion as follows: We have introduced new notations to the
proposed new meta-classes UCsF, Organization Unit Pack-
age, and Organization Unit Actor. These notations are in-
spired by and extended from the icons of the pair of arte-
facts they represent. The inspiration ensures that experi-
enced business and system designers are comfortable using
the BPSUC diagram. Each concept originates form UML
use case and BPMN models[1], and retains its original no-
tation. In the BPSUC diagram, the Fragment is instantiated
as a specific activity within the Loan Approval Process,
linking BPMN tasks to the Loan Officer (OUActor) and
business objects like the Loan Application. Additionally,
the Organization Unit Package (OUPackage) meta-class is
used to trace relationships between BPMN lanes and UML
packages. For example, functional areas such as Loan Re-
view, Credit Assessment, and Loan Approval in the BPMN
diagram are mapped to corresponding UML packages, en-

102 Informatica 49 (2025) 97–114 A. Bouzidi et al

Figure 1: Traceability of BPMN and use case meta-model concepts

suring alignment and traceability between these functional
areas and their UML counterparts.
Table 2 depicts the graphical notations of the new meta-

classesOrganisationUnit Actor, OrganisationUnit Package
and the UCsF.

4 Traceability method
The research work conducted in this paper is an extension
and enhancement of our previous work presented in [1].
The extension consists of improving the integrated trace
meta-model and the BPSUC diagram to include the arte-
facts of the UML class diagram structured according to the
MVC design pattern. Our contribution aims not only to es-

Figure 2: Background of the traceability method

tablish alignment but also to keep source models always
aligned even if they evolve. The propagation of changes

from our trace model to the source models is carried out
through defined MDA model transformations. The former
is explored to guarantee the coevolution of the BPMN and
the UML models. Figure 2) demonstrates the background
of our traceability method. In this section, we further ex-
plain howwe extend and improve the integrated trace meta-
model and the BPSUC diagram, as well as the rectifications
made to them.

4.1 Integrated trace meta-model
improvement

Our first improvement of the integrated trace meta-model
consists of defining an adequate strategy for defining its
concepts and relationships between them. Indeed, we pro-
pose a methodology for defining the integrated trace meta-
model which includes two main steps: (1) identifying over-
lapping concepts of BPMN and UML meta-models to de-
fine a relevant mapping between them, and (2) Defining
an adequate methodology to link each pair of interrelated
concepts, without changing their semantics. Thus, we pro-
pose to keep overlapping concepts and connect them ei-
ther by a new concept, or a new relationship, which spec-
ifies the trace link between existing concepts at the meta-
model level. Afterwards, we connect each pair of artefacts
to the new concepts representing them through a general-
ization/specialization relationship. This relationship allows
inheriting properties of both separated concepts as well as
combining their usage without updating their initial seman-
tics. Our second improvement consists of adding the class

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 103

diagrammeta-model artefacts to the previous version of the
integrated trace meta-model.
By applying our meta-model construction, we need to

identify adequate mappings between BPMN and UML
class diagram concepts. In the literature mapping between
BPMN and UML class diagram concepts is widely dis-
cussed. Among them, [23] defined model transformations
from BPMN into UML class diagrams structured according
to the MVC design pattern, and use case diagrams based on
semantic mappings. For example, they propose mapping
each BPMN empty lane (i.e. lane that does not include
other lanes) into a class in the class diagram, and into an
UML actor in the use case model. We reuse the defined se-
mantic mappings in this approach to continue the definition
of the integrated trace meta-model.

Table 3: Mapping of BPMN and class diagram meta-model
concepts

BPMN concept UML class diagram
meta-model

Item Aware Element (Data
object, Data store, Data in-
put, Data output or Data
state)

– Entity class
– Association

Empty lane – Entity class
– View class
– Control class
– Association

Fragment – View class
– Control class

Exception event – Exception class
– Operation

Signal event
– Signal Class
– Operation

Automated task t (business
rule task, receive task, send
task, user task, script task,
service task) within a frag-
ment

– Operation
– Association

Item aware element type
(single or collection) or
Gateway or
Loop task/ Rollback se-
quence flow

Cardinality of associ-
ations

Item aware element attached
to an automated task t within
a fragment f

Parameters of an op-
eration

Conditional sequence Flow Attribute

In Table 3, we summarize the semantic mapping be-
tween the BPMN meta-model artefacts and the class di-
agram meta-model artefacts from [23]. In this Table, the
class diagram meta-model concepts are structured accord-
ing to the MVC design pattern.

In contrast to the mapped concepts of the use case and
the BPMN meta-model artefacts, the mapping between the
interrelated concepts of UML class diagram and the BPMN
meta-model is not tight, as shown in Table 3. Indeed, one
UML concept may be represented by many BPMN con-
cepts and vice versa. This is due mainly to the important
degree of heterogeneity between the BPMN and the class
diagram artefacts. Thus, our mapping is limited to defining
associations instead of defining new traceability concepts,
as we aim not to complicate our integrated trace meta-
model, and therefore facilitate its readability while main-
taining its consistency. The aforementioned trace meta-
classes can also be reused to define BPMN- class diagram
concept traceability.
The excerpt of the meta-model defined to trace the

BPMN and the class diagram meta-models is presented in
Figure.3. To ensure readability, Figure 3) depicts only the
main artefacts of class diagram and BPMN meta-models,
as well as the reused traceability concepts.
White meta-classes are BPMN concepts, orange meta-

classes are UML class diagrammeta-model concepts, khaki
meta-classes denote UML class diagram concepts used for
structuring the class diagram according to the MVC de-
sign pattern, while new concepts are specified by dark grey
meta-classes. The blue associations represent the new trace
links, while the black ones are the existing associations.
It is important to note that all the use case concepts,

BPMN concepts, traceability links and existing associa-
tions defined in the previous extract of the integrated trace
meta-model, which are not present in this extract remain
valid.
In the excerptof Figure.3, each BPMN concept is asso-

ciated with its corresponding concept in the class diagram
meta-model. For example, we define a trace link called
trace between the data object and the entity class to estab-
lish traceability between them.
The multiplicity of this association is 1..* to indicate that

each item-aware element should represent exactly one en-
tity class. Moreover, we define a trace link between the
gateway and the property meta-classes as gateways can be
indicators of association cardinalities. The multiplicity of
this association is 0. On the other hand, UCsF is linked
to the following meta-classes: class, ClassDIPackage, and
association by composition . This means that a UCsF can
include classes, associations, and packages. These asso-
ciations mean that a UCsF is a use case that incorporates
its supported class diagram elements, representing the sup-
ported fragment elements.
The cardinality of the composition association UCsF-

ClassDIPackage is 3-* to indicate that an UCsF should in-
corporate at least three packages: View, Control, and Mod-
els, which represent the three parts of the MVC design pat-
tern.
In addition, we define an association between OUActor

and class to express that an actor in the integrated trace
meta-model is represented as a class in the class diagram
meta-model. Furthermore, in our integrated trace meta-

104 Informatica 49 (2025) 97–114 A. Bouzidi et al

model, a generalization/specialization relationship between
the meta-classes OUPackage and ClassDIPackage is de-
fined to point out that this trace meta-class inherits all prop-
erties of the Package meta-class.

4.2 BPSUC diagram improvement
In contrast to most existing approaches [11], [13], [14],
[15], [16], [17], [18], [19], [20], [21], which focus only on
the meta-model level, our traceability method includes both
the meta-model and the model levels. Thus, the second step
of our contribution is devoted to describing how the trace-
ability of BPMN and UML artefacts is established at the
model level. We have improved the proposed BPSUC di-
agram from [1], in which the BPSUC diagram features are
limited to designing thoroughly the BPMN and the use case
diagram artefacts, , combined with their traceability links,
which already reflects its designation.
In this paper, we aim to enrich this diagram to incorpo-

rate class diagram elements combined with BPMN and use
case diagram elements. The first thing we do is update the
name of BPSUC to be in harmony with its newly supported
features. The new designation we have chosen is BPMN-
TraceISM (Business Process Model and Notation Traces
Information System Models). BPMNTraceISM is an in-
stantiation of the new version of the improved meta-model
and forms a single unified model that combines the usage of
UML elements including the use case diagram and class di-
agram elements, as well as the BPMN elements thoroughly.
Thus, this diagram is now able to design elements and rela-
tionships of both UML use case and class diagrams, as well
as BPMN models, concurrently. Moreover, it specifies the
traceability information of the interrelated artefacts.
Each artefact inBPMNTraceISM diagram has its specific

notation. Some of them retain the original notation (BPMN
or UML notations), while the others have a new represen-
tation, which does not differ greatly from BPMN and UML
notations.

4.2.1 BPMNTraceISM artefacts conserve their initial
notations

The mappings on which we base the definition of the in-
tegrated trace meta-model comprises neither all the BPMN
concepts nor all the UML concepts. This is due to the fact
that, some BPMN artefacts do not have their corresponding
UML artefacts, and vice versa. For example, the mapping
does not define any UML concept representing a BPMN
start event.
Even though, in a BPMNTraceISM diagram, it is pos-

sible to specify UML artefacts with no corresponding ele-
ments in BPMN. According to the mapping, many elements
of UML are mapped to one BPMN element. Thus, the rep-
resentation of these elements in UML diagrams requires
grouping them. On the other hand, one UML element may
be linked to many BPMN elements. For example, a data
store in the BPMN diagram is transformed into (i) an asso-

Table 4: Graphical notations of overlapping elements of
BPMNTraceISM diagram

BPMNTraceISM
element

Graphic
notation

BPMNTraceISM
element

Graphic
notation

Use case asso-
ciation

Signal event

Extends rela-
tionship

Exclusive gate-
way

Includes rela-
tionship

Parallel gate-
way

Annotation
flow

Inclusive gate-
way

Start event Data input

End event Data output

Manual task Data store

Normal task Sequence flow

Error event Group

Cancel event Entity class

Control class Generalization

Signal class Aggregation
association

View class Composition
association

Exception class Directed asso-
ciation

ciation, (ii) an entity class, and (iii) an operation of a class,
in the class diagram. In this situation, it is very difficult to
represent the mapped elements in one unifying element. At
the meta-model level, we have proposed associating each
pair of these mapped concepts by an association instead of

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 105

Figure 3: Traceability of the BPMN meta-model and the UML class diagram meta-model

defining new traceability meta-classes. At the model level,
these artefacts are processed similarly to the non-mapped
concepts, and retain their original notations in the BPM-
NTraceISM diagram. Table 4 outlines the graphical nota-
tions of the core artefacts of the BPMNTraceISM diagram
that retain the initial notations. OUPackage and OUActor
are new meta-classes defined by [1] to represent traceabil-
ity links of BPMN and UML use case diagram elements.
In the integrated trace meta-model, we did not reuse these
meta-classes to define new associations. Thus, the instanti-
ation of these meta-classes keeps the annotations provided
in [1].

4.2.2 UCsF notation

In the previous version of the diagram BPMNTraceISM (in
a BPSUC diagram), [1] states that a UCsF is a specializa-
tion of a use case and inherits its properties. Therefore, the
graphical notation of UCsFs extends the graphical notation
of a UML use case. Moreover, a UCsF has composition
relationships to (i) a BPMN Fragment. To represent this
trace link, graphically, [1] defines a compartment that in-
corporates the corresponding BPMN fragment.
In our integrated trace meta-model, we have defined

composition relationships from a UCsF to some UML class
diagram artefacts (cf. Figure 3)). Indeed, a UCsF should
encapsulate classes, associations and packages, which cor-
respond to its supported fragment. Accordingly, we pro-
pose to update the graphic notation of the UCsF. Thus, a

UCsF should act as a complex symbol that describes con-
currently BPMN elements and UML class diagram ele-
ments. In order to represent explicitly the different ele-
ments incorporated by a UCsF, the use case notation needs
to be extended. Therefore, we adjust the UCsF notation
by adding another compartment (cf. Figure 4) to encap-
sulate class diagram elements representing the components
(classes, associations and packages) of the supported frag-
ment. In order to avoid the complexity of this element,
the designer can choose to hide or show each compartment.
Figure 4) depicts the graphical notation of a UCsF, in which
all compartments are hidden.

Figure 4: UCsF notation

4.3 Change propagation improvement
Our traceability method aims to ensure the coevolution of
the separated models when a change occurs either in the

106 Informatica 49 (2025) 97–114 A. Bouzidi et al

source models (BPMNmodel, use case model, and/or class
diagram) or in the BPMNTraceISM diagram (cf. Figure 5)).
To do this, we have improved the transformation model de-
fined in [1] thereby including the class diagram concepts
in the bi-directional transformation rules defined in [1] as
two sets of transformation models (forward and backward
transformation rules). They ensure the transformation be-
tween the BPMNTraceISM diagram, the BPMN, and the
UMLmodels that include a class diagram and a use case di-
agram using a semantic mapping between BPMN, BPMN-
TraceISM, and UML elements derived from our integrated
trace meta-model.
Each transformation model includes a set of well-defined

transformation program or transformation rules (Tab) (Tab
conforms toMMt) that transform source models (Ma) con-
forming to source meta-models (MMa) (noted Ma/MMa)
to target models (Mb) confirming to target meta-models
(MMb) (noted Mb/MMb) according to a mapping between
the source and target model artefacts (noted map(Ma, Mb)).
Formally, we specify transformation models according to a
function that we callMtransF
This function is formally written as follows:

MtransF
(
Ma/MMa, map(Ma,Mb)

)
Tab/MMt→ Mb/MMb

(1)

For example, consider the forward transformation rule
R1 that transforms aUMLpackage and a non-empty BPMN
lane into a OU-Package in the BPMNTraceISM diagram.
This transformation ensures that elements in the source
models are correctly mapped to their counterparts in the
BPMNTraceISM diagram, facilitating traceability across
both business and software models.
The proposed bi-directional transformation models

(backward and forward) ensure the coevolution of BPMN
and UML models, as well as the coevolution of the source
models (business model specified by a BPMN diagram and
software models specified by a UML class diagram and an
UML use case diagram) and the BPMNTraceISM diagram.
Formally, the forward and backward transformation

model is specified as follows:

MtransF
(
Ma/MMa, map(Ma,Mb)

)
forwardRules, backawardRules↔ (Mb/MMb)

(2)

The rest of this section will be devoted to providing more
details on how we created the bidirectional transformation
rules.

4.3.1 Forward transformation rules

We propose a forward transformation model (Forward
rules) to produce automatically a BPMNTraceISM diagram
(MBPMNTraceISM) conforming to our integrated trace meta-
model (MMBPMNTraceISM) from the source models, namely
a BPMN diagram (MBPMN) conforming to the BPMN
meta-model (MMBPMN), a use case model (MUCM), and a

class diagram (MCD) conforming to the UML meta-model
(MMUML). This transformation is carried out based onmap-
pings between the new diagram, the BPMN and UMLmod-
els.
The formal definition of our forward transformation rules

is as follows:

MTransF ((MBPMN/MMBPMN ,MUCM/MMUML,
MUCD/MMUML,

(map(MUCM,MBPMNTraceISM),

map(UCD,MBPMNTraceISM),

map(MBPMN,MBPMNTraceISM))
forwardRules→ MBPMNTraceISM/MMBPMNTraceISM

(3)
There are two possible scenarios for producing the

BPMNTraceISM elements based on the forward transfor-
mation rules:
The first scenario consists of applying a forward trans-

formation rule (RX) to derive trace modeling elements
(tre) represented in the BPMNTraceISM diagram from a
BPMN element (MBPMN!Element) and a UML element
(MUML!Element). More precisely, a OUActor, a OUPack-
age, and a UCsF of the BPMNTraceISM diagram are gen-
erated from the BPMN and UML elements. Formally, these
transformation rules are as follow:

MTransF tre((MBPMN !Element,MUML!Element),
(map(MBPMN,MBPMNTraceISM),

map(MUML,MBPMNTraceISM)))
RX→ MBPMNTraceISM !tre

(4)
For instance, we suppose that a forward transformation

rule R1 produces an OU-Package from a UML package and
a BPMN non-empty lane. Formally, this rule can be written
as follows:

MtransFOUPackage((MBPMN !lane,MUCM !Package),
(map(MBPMN,MBPMNTraceISM),

map(MUCM,MBPMNTraceISM)))
R1→ MBPMNTraceISM !OUPackage

(5)
The second scenario consists of generating unrelated el-

ements (ure) from either, the UML models or the BPMN
model only. Indeed, each concept in the BPMNTraceISM,
that corresponds to a concept in the source models (BPMN
model, a UML class diagram or a UML use case diagram)
needs just its original model. In this case, the input of this
transformation rule is either a BPMN model if this concept
comes fromBPMNor aUMLmodel if its origin is the UML
class diagram or the UML use case diagram. For example,
the generation of amanual task in the BPMNTraceISM dia-
gram requires the BPMNmodel only because a manual task
does not have corresponding elements in the UML diagram.

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 107

This transformation rule is written as follows:

MTransF ure(MBPMN !manualTask,
map(MBPMN,MBPMNTraceISM)

R(ManualTask)→ MBPMNTraceISM !manualTask
(6)

Let's illustrate how a change in the BPMN model (e.g.,
adding a new lane) is propagated into the BPMNTraceISM
diagram. Assume that Rule R1 is applied to generate an
OU-Package from the UML package and the BPMN lane.
The transformation process involves the following steps:
1 The BPMN Lane and UML Package elements are
identified.

2 Rule R1 is triggered, creating a corresponding OU-
Package in the BPMNTraceISM diagram.

3 The OU-Package is updated within the BPMNTra-
ceISM diagram, and the changes are synchronized
with the BPMN and UML models.

4.3.2 Backward transformation rules

To have the opposite direction of the forward transfor-
mation rules, we have defined a backward transformation
model. This means that the source elements of each for-
ward transformation rule become the target elements of a
backward transformation rule, and its target elements be-
come the source elements of the backward transformation
rule. Formally, backward transformation rules are written
as follows:

MTransF (MBPMNTraceISM/MMBPMNTraceISM ,
(map(MBPMNTraceISM,MUCM),

map(MBPMNTraceISM,MUCD),

map(MBPMNTraceISM,MBPMN))
backwardRules→

MBPMN/MMBPMN ,MUCM/MMUML,
MCD/MMUML,MUCD/MMUML

(7)
We use the same logic as in the forward transformation

rules to define the reverse transformation rules. Therefore,
each backward transformation rule of each pair of artefacts
is defined according to the following formula:
MTransFtre(MBPMNTraceISM!tre,

MTransF tre (MBPMNTraceISM !tre,
(map(MBPMNTraceISM, MBPMN),

map(MBPMNTraceISM,MUML)))
RX→ (MBPMN !Element,MUML!Element)

(8)

Non-overlapping artefact transformation rules are de-
fined according to the formula below:

MTransF ure(MBPMNTraceISM !ure,
(map(MBPMNTraceISM,MBPMN),

map(MBPMNTraceISM,MUML)))
RX→ (MBPMN !Element,MUML!Element)

(9)

For example, when a change occurs in the BPMNTra-
ceISM diagram, such as adding a new OU-Actor, the cor-
responding elements in the BPMN and UML models need
to be updated. The backward transformation rule ensures
that:
1 TheOU-Actor is mapped to both the UMLActor in the
use case diagram and a new BPMN lane in the BPMN
model.

2 The changes are propagated back into the source mod-
els, maintaining alignment across the models.

4.3.3 Change propagation process

The bidirectional transformation rules allow propagating
changes that occur in the source model into the target mod-
els. By applying these rules this approach enables the co-
evolution of the business and software models.
The change propagation process is carried out in two

ways (cf. Figure 5): (1) by manually updating the source
models (BPMN, UML, and UML use case diagram) , or (2)
by designing the BPMNTraceISM diagram.
In the first case, software designers and business ana-

lysts separately and concurrently update the BPMN mod-
eland consequently the use case diagram and/or the class
diagram. For example, a software designer adds a new use
case to the use case model, new classes responsible for re-
alizing the new use case, and simultaneously, a business
analyst changes the name of a lane in the BPMN model. A
direct generation of the software models leads to the loss
of changes made by the software designers. Additionally,
to avoid unintentional updates, the impact of changes in-
volved in a (business or UML) model needs to be anal-
ysed before propagating it to the target model. To tackle
this problem, an intermediate step is required to make all
updates made in the separate models. This step can be
reached by executing our forward model (user task “Exe-
cute forward transformation rules”), which derives a BPM-
NTraceISM diagram from both UML and BPMN. Thus,
all changes made on the BPMN and/or on the class and
use case diagrams are considered in the derived BPMNTra-
ceISM diagram.
In the second case, all updates made by business analysts

and software designers are done in the unified trace model
(BPMNTraceISM diagram) of being made in the BPMs and
the ISMs. Using BPMNTraceISM overcomes the gap be-
tween the business analysts and software designers, and en-
ables them to work together using the same model. Indeed,
this diagram covers all business and software model ele-
ments and the traceability concepts of pairs of mapped arte-
facts. Any change involving a BPMNTraceISM element
(bp) leads to the modification of the BPMN or/and UML
model elements traced by bp. For example, the insertion
of a new OU-Actor in the BPMNTraceISM diagram leads
to the insertion of and a new UML actor in the UML use
case diagram and a new BPMN lane in the BPMN model.
BPMNTraceISM can act as a gateway allowing business
analysts and software designers to work together to test,

108 Informatica 49 (2025) 97–114 A. Bouzidi et al

Figure 5: Synchronization process of BPMN and UML

analyse, and correct inconsistencies due to unwanted up-
dates before propagating them to the sourcemodels (BPMN
and UML models). In addition, this new diagram can be
used to analyse and estimate the impact of changes made
to business or system components or services. Until this
step, although the BPMNTraceISM diagram is aware of the
updates made by both business analysts and software de-
signers, the source models are not aware neither the BPM-
NTraceISM diagram nor each other. Accordingly, propa-
gating the modifications is an essential step to ensure the
coevolution of the source models. We can do this eas-
ily by running our backward transformation model (user
task ”execute backward transformation rules”). Once the
backward transformation model is run, changes are prop-
agated to BPMN and UML models and thus these models
are aligned with each other.

5 Implementation
To use the proposed traceability approach, we implement
a visual editor called Business Process model Traced with
Information System Models (BPTraceISM).
Moreover, we develop a prototype called Business Pro-

cess to Information System Models (BP2ISM) that pro-
vides significant practical support for the transformations
involved in our traceability method. This prototype auto-
mates the suggested forward and backward transformation
models between the business process and the ISMs on the
one hand, and the BPMNTraceISM diagram on the other.
These transformation models are automatically applied via
transformation rules expressed in the ATL transformation
language.

5.1 Visual editor implementation
To implement the BPTraceISM editor, we have used
Eclipse EMF to implement the trace meta-model and
Eclipse GMF to design the concrete syntax of the BPM-
NTraceISM diagram. Indeed, the modeling tool includes

a graphical editor that conforms to the trace meta-model
and enables concurrently seeing and managing trace rela-
tionships between the BPMN model, the use case, and the
class diagram. BPTraceISM can be integrated within other
modeling tools to enhance their modeling capabilities. To
make our modeling tool available in any Eclipse environ-
ment without need to start an Eclipse runtime, we imple-
ment it as an Eclipse plug-in.

Figure 6: The environment of the BPTraceISM editor

The construction process of the BPTraceISM consists
of two main phases: (1) the definition of the modeling
tool, and (2) the definition of the plug-in that supports it.
The first phase begins with the implementation of the trace
meta-model using the ecoremeta-modeling language. Then
we build a toolbox for creating instances of the meta-model
classes. In the second phase, we develop a feature that sup-
ports the modeling tool. Afterward, we construct an update
site to ensure the portability of our plug-in and allow its
installation via any Eclipse update manager.

BPTraceISM environment is composed of four main
parts (cf. Figure 6): the project explorer containing an EMF
project that includes BPMNTraceISM diagrams (part a), the
modeling space (part b), the toolbox containing the graphi-
cal elements of a BPMNTraceISM diagram (part c), and the
properties tab to edit the properties of an element selected

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 109

in the modeling space (part d).
Figure 7) outlines a simple example of a BPMNTra-

ceISM diagram created using the editor. The modeling
space contains an OUActor called supplier associated with
a UCsF called manage purchase order. In the business com-
partment of the UCsF Manage purchase order, we have a
user task calledAccept purchase order. In the class diagram
compartment, we have four classes linked via undirected
associations. Each class has a name and a stereotype. The
boundary class Manage purchase order contains an opera-
tion called acceptPurchaseOrder()

Figure 7: Example of a BPMNTraceISM diagram within
the modeling tool

5.2 Prototype for the transformation models
BP2ISM is implemented within the Eclipse Modeling
Framework (EMF) environment. It includes two compo-
nents:
– BPISM2BPMNTrISM : It automates the forward trans-
formation, which is the conversion of BPMN and
UML models into BPMNTraceISM.

– BPMNTrISM2BPISM : It automates the backward
transformations.

The transformation process requires tools, editors or plu-
gins in order to specify source and target models. For this
reason, tools are required to represent BPMN, UML and
BPMNTraceISM diagrams, which serve as the source and
target models of BP2ISM components. Because BPMN
and UML are widely used standards, many plugins and
tools have been created and certified to support them. We
choose to employ internal plugins within EMF instead of
existing plugins. As a result, we develop BPMN mod-
els with the Eclipse BPMN2 modeler plugin and UML
use case and class diagrams with the UML designer plu-
gin. Internal meta-models in these plugins closely adhere
to OMG requirements. We incorporate these meta-models
into the EMF environment for usage in the execution of
our prototype components. In addition, we integrate the
trace meta-model to visualize (backward transformation) or
design (forward transformations) BPMTraceISMdiagrams.
We built the transformation rule sets in Atlas Transforma-
tion Language (ATL), which is provided as an internal EMF
plugin.

BPISM2BPMNTrISM takes three files as input: (1) A
file with the extension “.bpmn” that must conform to the
BPMN2.0 meta-model, (2) two files with the extension
“.uml” that must conform to the UMLmeta-model and con-
tain the use case model and the class diagram. It generates
as output a BPMNTraceISM diagram with the extension
“.BPMNTraceISM”.

BPMNTrISM2BPISM implements the backward trans-
formations, i.e., the transformation rules from a BPMN-
TraceISM diagram into a BPMN and UML models. It
takes as input a BPMNTraceISM diagram with the exten-
sion “.BPMNTraceISM”. It generates as output three files:
(1) A file with “.bpmn” as extension. This file conforms to
the BPMN2.0 meta-model, (2) two files with the extension
“.uml” that include the generated use case model and the
class diagram.

6 Case study

We take a common business process model for online pur-
chasing and selling to demonstrate the viability of our trace-
ability method. The model is specified using BPMN2.0 (cf.
Figure 8)) [23].
.
This business process begins when a customer selects a

product to purchase and adds it to the basket, resulting in
the creation of an online purchase order and the transmis-
sion of the order to the vendor. The customer has the op-
tion to cancel the purchase order before entering their per-
sonal information. Otherwise, they must fill in their per-
sonal information and submit an online purchase order to
the stock management. When an online purchase order is
received, the stock manager checks the warehouse for the
availability of the ordered items to see if there are enough
products to fulfil the order. If not, the restocking procedure
is initiated to reorder raw materials and create the ordered
products based on the supplier's catalogue. The restock-
ing procedure can be performed as many times as neces-
sary within the same business process instance. An extreme
scenario occurs when raw materials are unavailable. If all
items are available, sales validate the purchase order, gen-
erate an invoice, and begin collecting and packaging prod-
ucts for shipment. When sales receive payment and store
the delivered order, the procedure is complete. Purchase
order cancellation requests, however, can be made before
the purchase order is verified. As a result, sales proceed
with purchase order cancellation and a penalty charge to the
buyer. In [23], the authors decompose the BPMN model
of the case study into nine fragments (F1-F9) (cf. Figure
8)) based on their fragment definition (see [23] for further
explanation). By applying their transformation rules, the
approach from [23] allows generating the use case diagram
and the class diagram from the case study BPMN model,
which that is taken as the input model.
The online purchasing and selling BPMN model, use

case model, and class diagram presented in [23] can be

110 Informatica 49 (2025) 97–114 A. Bouzidi et al

Figure 8: Online purchasing and selling in BPMNTraceISM diagram

combined and designed in a single unified model, namely
the BPMNTraceISM diagram, by using the BPTraceISM
editor. We would like to highlight that this diagram can
be created manually by designers or automatically by run-
ning the BPISM2BPMNTrISM component. Figure 9) de-
picts the BPMNTraceISM diagram. Figure 9) shows how
each fragment and its corresponding use case are merged
and expressed as a UCsF. For example, we combine Frag-
ment F1 with the use case “Manage preparing purchase or-
der” to form the UCsF “Manage preparing purchase order”.
EachUCsF displays the traced BPMNelements and the cor-
responding class diagram elements. For each UCsF, the el-
ements of the BPMN model are represented in the BPMN
compartment, while the corresponding class diagram ele-
ments are represented in the class diagram compartment.

In Figure 9), these compartments are hidden in the UCsF
Cancel purchase order, while the BPMN compartment is
visible in all the other UCsFs.

In the UCsF receive payment, the BPMN compartment
contains a service task called receive payment, a data ob-
ject called invoice, and a data output called purchase order
[paid] These elements are the BPMN elements of fragment
F8 Moreover, the class diagram compartment of UCsF
archive purchase order is displayed and contains the class
diagram elements, such as the classes VarchivePurchase-
Order, CArchivePrchaseOrder, paid, archived, operations,
attributes, etc corresponding to fragment F10. Further-
more, an OUActor specifies each actor and the correspond-

ing vacant lane. For example, the actor Stock manager and
the empty lane Stock manager map to the OUActor Stock
manager.
Assume that business analysts and system designers col-

laborate on the BPMNTraceISM diagram and update the
business and system functionalities accordingly. Suppose
they delete the UCsF Manage preparing purchase order
and the OUActor Customer from the BPMNTraceISM di-
agram The UCsF Manage preparing purchase order is
traced to the elements of fragment F1, the UML use case
Manage preparing purchase order, as well as all class dia-
gram elements derived from F1 By deleting this UCsF, all
its components are also removed from the BPMNTraceISM
diagram Then, the change involved in the BPMNTraceISM
diagram is propagated to the source models by executing
the BPMNTrISM2BPISM tool. The output of this compo-
nent is a BPMN model without the pool Customer or the
fragment F1, a UML use case model that contains neither
the use case Manage preparing purchase order nor the ac-
tor Customer, and a class diagram without elements corre-
sponding to F1.

7 Evaluation results

7.1 Comparison with existing approaches
To evaluate the effectiveness of our traceability method, we
compare it with existing traceability approaches based on

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 111

Figure 9: Online purchasing and selling in BPMNTraceISM diagram

defined evaluation criteria. These criteria include: (i) the
proposal of a traceability approach at both the meta-model
and model levels, (ii) explicit representation of relationship
types between elements, (iii) graphical notation for trace
links, and (iv) the consideration of both business and infor-
mation system (IS) models.
Table 5 presents the results of this comparison, with rows

listing the methods studied and columns representing the
evaluation criteria. Cells are color-coded to show the ex-
tent to which each criterion is satisfied: dark grey indicates
a criterion is not fully addressed, light grey represents par-
tial satisfaction, and ”Y” stands for full satisfaction. Based
on this comparison, we conclude that our approach is the
only one that meets all evaluation criteria. Specifically,
[17] and [20] are the only other works that consider both
business and IS modeling, but they fall short in addressing
the full range of traceability needs compared to our method.
Furthermore, only a few approaches, such as those by [15],
[18], and [20], take into account the functional and static
views of IS models.
Our method is unique in that it does not require any

extensions and works seamlessly with standard UML and
BPMN tools, making it more adaptable and accessible. Ad-
ditionally, our method provides rich software modeling-
level artefacts, incorporating both static views (class dia-
grams) and functional views (use case models). The class
diagrams are designed in accordance with the MVC pattern
simplifying the prototyping process for developers.
When focusing on traceability, our method stands out be-

cause it provides traceability at both the meta-model and
model levels, ensuring a unified view of BPMN and UML
elements. In contrast, many approaches specify only trace-
ability at the meta-model level, without providing a visual
tool for combined model use. Additionally, our method in-

troduces a graphical visualization for traceability links, en-
abling users to more easily trace and align elements across
models. This graphical representation reduces analysis
time, simplifies development, and minimizes the risk of
misalignment.
Moreover, our method's assessment methodology is

more comprehensive than most others in the field, which
typically rely on simple case studies. We provide a fully im-
plemented prototype of the transformation approach and an
Eclipse plug-in for the traceability process, demonstrating
the practicality and feasibility of our contributions through
a relevant case study.

7.2 Shortcomings of our contribution
Despite the strengths of our traceability method, there are
some limitations that need to be addressed. One notable
drawback is that our evaluation was based on a single use
case, which may not be sufficient to fully assess the accu-
racy and robustness of the method. To address this, we are
conducting ongoing evaluations using more complex case
studies, which will allow us to better validate the method's
performance in different contexts. This extended evalua-
tion will help ensure that the method is robust and adaptable
across various scenarios, enhancing its overall credibility.
Additionally, our current transformation approach relies

on forward and backward transformation rules, which re-
quire the recreation of all components, even if they have
not been affected by changes. This process can lead to in-
efficiencies, especially when working with large or com-
plex models. To overcome this issue, we plan to develop
incremental transformations that will update only the com-
ponents directly impacted by changes. This will improve
efficiency and minimize unnecessary recalculations, ensur-

112 Informatica 49 (2025) 97–114 A. Bouzidi et al

Table 5: Comparison of our contribution with approaches based on the external traceability practice

Approach
Construction model Traceability approach Assessment

methodologyBusiness
field

software field Meta level Model
level

Trace
links

Graphic
notation

BPM and
ISMfunctional static

[11] N P P Y N N N N CS
[13] N CS Y N N N N CS
[14] N N N Y N N N N tool
[15] P P P Y N N N N
[16] RM CS Y N N N CS
[17] BPMN N N Y N N N N CS
[18] p p p Y Y N N Y N
[19] RM N N Y N Y N N N
[20] N N CD Y N N N N N
[21] BPMN N N Y Y N Y N T
Our con-
tribution

BPMN2 UC CCD Y Y Y Y Y CS &T

Legend: Y:Yes N: No CS: case study RM: requirement model T:tool/editor CS: Complex systems CCD:conception class
diagram UC: uqe case diagram.

ing faster and more resource-efficient updates.
While we have explored the use of traceability informa-

tion to keep BPMN and UML models aligned, the analysis
process is still manual. As a result, we aim to improve this
by investigating the development of heuristics that could
automatically detect modifications in the source models
and suggest necessary adjustments to the corresponding el-
ements. These heuristics would dynamically support de-
velopers, making the process of maintaining alignment be-
tween the models more efficient and less error-prone.
To address the limitations mentioned above, we propose

a comprehensive roadmap for future improvements. This
will involve extending the evaluation process with more
complex case studies, enhancing the transformation ap-
proach to support incremental updates, and automating dia-
gram analysis. In addition, the implementation of heuristic-
based tools will enable the automatic detection of changes
across models, improving traceability and ensuring con-
sistency without requiring manual intervention. These ad-
vancements will significantly strengthen themethod's capa-
bilities, making it more robust and easier to apply in prac-
tical scenarios.

8 Conclusion
The work conducted in this paper fits within the context
of model-based development of ISMs, their alignment and
their
coevolution with BPMs. Indeed, we have used integra-

tion and model transformation methodologies to define a
traceability method oriented towards the development of

(meta) model-based solutions, purposely influenced by the
Object Management Group (OMG) specifications. Partic-
ular attention is paid to the BPMN and UML use case and
class diagram models. Our traceability method acts at the

meta-model and the model levels. Hence, (1) we first de-
fined a unified tracemeta-model that includes all the BPMN
and the UML elements (use case and class diagram) and
traceability links between interrelated elements. (2) Then,
we defined integratedmodel conforms to the proposed trace
meta-model. We defined it as a new diagram named BPM-
NTraceISM (BPMN Traces Information System Models).
This diagram serves many purposes: it promotes the col-
laborative between business and software designers and al-
lows them to work together using one single unified model.
The joint representation of both BPMs and ISMs elements
enables users to drill down and easily trace any business
artefact to its corresponding software artefacts. (3) Finally,
we defined a set of bidirectional model transformation rules
between the BPMN and UML models, as well as the BPM-
NTraceISM diagram.
The rules are useful when a change propagation-

based co-evolution is required to synchronize models after
changes. To prove the feasibility of our traceability method
in practice, we developed a modeling tool in the form of
a plugin that can be integrated into the Eclipse platform.
This tool is named BPTraceISM (Business Process model
Trace with Information SystemModels) and allows design-
ing and handling BPMNTraceISM diagrams in accordance
with the proposed integrated trace meta-model. Addition-
ally, we specified the set of bidirectional transformation
rules using the ATL language and we implemented them
as components of the BPM2ISM prototype. Furthermore,
we applied the proposed approaches to a typical case study.
In future research, we look forward to optimizing our

editor to support traceability and synchronization between
BPMN models and other UML diagrams.

A Unified Trace Meta-Model for Alignment and Synchronization… Informatica 49 (2025) 97–114 113

References
[1] Bouzidi, A., Haddar, N., Haddar, K. (2019). Trace-

ability and Synchronization Between BPMN and
UML Use Case Models, Ingénierie des Systèmes
d’Information, Vol. 24, No. 2, pp. 215-228. https:
//DOI.org/10.18280/isi.240214.

[2] OMG UML Specification, O. A. (2017). OMG Uni-
fied Modeling Language (OMG UML), Superstruc-
ture, V2, Object Management Group, Vol. 70.

[3] OMG BPMN Specification. Business Process Model
and Notation Available at: http://www.bpmn.org/.
Accessed: 2023-01-31.

[4] Driss, M., Aljehani, A., Boulila, W., Ghandorh, H.,
Al-Sarem, M. (2020). Servicing your requirements:
An FCA and RCA-driven approach for semantic web
services composition, IEEEAccess, Vol. 8, pp. 59326-
59339. 10.1109/ACCESS.2020.2982592.

[5] Ghiffari, K. A., Fariqi, H., Rahmatullah, M. D., Zul-
fikarsyah, M. R., Evendi, M. R. S., Fathoni, T. A.,
Raharjana, I. K. (2023). BPMN2 user story: Web ap-
plication for generating user stories from BPMN, In
AIP Conference Proceedings, AIP Publishing LLC,
Vol. 2554, No. 1, pp. 040003. https://DOI.org/
10.1063/5.0103685.

[6] Raharjana, I. K., Aprillya, V., Zaman, B., Justi-
tia, A., Fauzi, S. S. M. (2021). Enhancing soft-
ware feature extraction results using sentiment anal-
ysis to aid requirements reuse, Computers, Vol.
10, No. 3, pp. 36. https://DOI.org/10.3390/
computers10030036.

[7] Khlif, W., Elleuch, N., Alotabi, E., Ben-Abdallah,
H. (2018). Designing BP-IS Aligned Models: An
MDA-based TransformationMethodology. 10.5220/
0006704302580266.

[8] Kharmoum, N., Retal, S., Rhazali, Y., Ziti, S.,
Omary, F. (2021). A Disciplined Method to Gen-
erate UML2 Communication Diagrams Automati-
cally From the Business Value Model, In Advance-
ments in Model-Driven Architecture in Software
Engineering, IGI Global, pp. 218-237. 10.4018/
978-1-7998-3661-2.ch012.

[9] Rahmoune, Y., Chaoui, A. (2022). Automatic Bridge
Between BPMN Models and UML Activity Diagrams
Based on Graph Transformation, Computer Science,
Vol. 23, No. 3. 10.7494/csci.2022.23.3.4356.

[10] Ivanchikj, A., Serbout, S., Pautasso, C. (2020). From
Text to Visual BPMN Process Models: Design and
Evaluation, In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineer-
ing Languages and Systems, pp. 229-239. https:
//DOI.org/10.1145/3365438.3410990.

[11] Mills, C., Escobar-Avila, J., Haiduc, S. (2018). Auto-
matic Traceability Maintenance via Machine Learn-
ing Classification, In 2018 IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME), pp. 369-380. 10.1109/ICSME.2018.00045.

[12] Al-Hroob, A., Imam, A. T., Al-Heisa, R. (2018).
The Use of Artificial Neural Networks for Extracting
Actions and Actors from Requirements Documents,
Information and Software Technology, Vol. 101,
pp. 1-15. https://DOI.org/10.1016/j.infsof.
2018.04.010.

[13] Min, H. S. (2016). Traceability Guideline for Soft-
ware Requirements and UML Design, In International
Journal of Software Engineering and Knowledge En-
gineering, Vol. 26, No. 1, pp. 87-113. https://DOI.
org/10.1142/S0218194016500054.

[14] Eyl, M., Reichmann, C., Müller-Glaser, K. (2017).
Traceability in a Fine-Grained Software Configura-
tion Management System, In Software Quality: Com-
plexity and Challenges of Software Engineering in
Emerging Technologies, 9th International Confer-
ence, SWQD 2017, Vienna, Austria, January 17-20,
2017, Springer International Publishing, pp. 15-29.
10.1007/978-3-319-49421-0_2.

[15] Khelladi, D. E., Kretschmer, R., Egyed, A. (2018).
Change Propagation-Based and Composition-Based
Co-Evolution of Transformations with EvolvingMeta-
Models, In Proceedings of the 21st ACM/IEEE In-
ternational Conference on Model Driven Engineer-
ing Languages and Systems, pp. 404-414. https:
//DOI.org/10.1145/3239372.3239380.

[16] de Carvalho, E. A., Gomes, J. O., Jatobá, A., da
Silva, M. F., de Carvalho, P. V. R. (2021). Em-
ploying Resilience Engineering in Eliciting Soft-
ware Requirements for Complex Systems: Exper-
iments with the Functional Resonance Analysis
Method (FRAM), Cognition, Technology and Work,
Vol. 23, pp. 65-83. https://DOI.org/10.1007/
s10111-019-00620-0.

[17] Lopez-Arredondo, L. P., Perez, C. B., Villavicencio-
Navarro, J., Mercado, K. E., Encinas, M., Inzunza-
Mejia, P. (2020). Reengineering of the Software De-
velopment Process in a Technology Services Com-
pany, Business Process Management Journal, Vol. 26,
No. 2, pp. 655-674. https://DOI.org/10.1108/
BPMJ-06-2018-0155.

[18] Moreira, J. R. P., Maciel, R. S. P. (2017). Towards a
Models Traceability and Synchronization Approach of
an Enterprise Architecture, In SEKE, pp. 24-29. 10.
1109/CBI.2019.00028.

[19] Guo, J., Cheng, J., Cleland-Huang, J. (2017). Seman-
tically Enhanced Software Traceability Using Deep

https://DOI.org/10.18280/isi.240214
https://DOI.org/10.18280/isi.240214
10.1109/ACCESS.2020.2982592
https://DOI.org/10.1063/5.0103685
https://DOI.org/10.1063/5.0103685
https://DOI.org/10.3390/computers10030036
https://DOI.org/10.3390/computers10030036
10.5220/0006704302580266
10.5220/0006704302580266
10.4018/978-1-7998-3661-2.ch012
10.4018/978-1-7998-3661-2.ch012
10.7494/csci.2022.23.3.4356
https://DOI.org/10.1145/3365438.3410990
https://DOI.org/10.1145/3365438.3410990
10.1109/ICSME.2018.00045
https://DOI.org/10.1016/j.infsof.2018.04.010
https://DOI.org/10.1016/j.infsof.2018.04.010
https://DOI.org/10.1142/S0218194016500054
https://DOI.org/10.1142/S0218194016500054
10.1007/978-3-319-49421-0_2
https://DOI.org/10.1145/3239372.3239380
https://DOI.org/10.1145/3239372.3239380
https://DOI.org/10.1007/s10111-019-00620-0
https://DOI.org/10.1007/s10111-019-00620-0
https://DOI.org/10.1108/BPMJ-06-2018-0155
https://DOI.org/10.1108/BPMJ-06-2018-0155
10.1109/CBI.2019.00028
10.1109/CBI.2019.00028

114 Informatica 49 (2025) 97–114 A. Bouzidi et al

Learning Techniques, In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE),
pp. 3-14. 10.1109/ICSE.2017.9.

[20] Swathine, K., Sumathi, N., Nadu, T. (2017). Study
on Requirement Engineering and Traceability Tech-
niques in Software Artefacts, In International Journal
of Innovative Research in Computer and Communi-
cation Engineering, Vol. 5, No. 1. 10.1109/ICSRS.
2017.8272863.

[21] Pavalkis, S., Nemuraite, L., Milevičienė, E. (2011).
Towards Traceability Meta-Model for Business Pro-
cessModeling Notation, In Conference on e-Business,
e-Services and e-Society, Springer, Berlin, Heidel-
berg, pp. 177-188. 10.1007/978-3-642-27260-8_
14.

[22] Bouzidi, A., Haddar, N., Abdallah, M. B., Had-
dar, K. (2018). Alignment of Business Processes and
Requirements Through Model Integration, In 2018
IEEE/ACS 15th International Conference on Com-
puter Systems and Applications (AICCSA), pp. 1-8,
IEEE. 10.1109/AICCSA.2018.8612870.

[23] Bouzidi, A., Haddar, N. Z., Ben-Abdallah, M., Had-
dar, K. (2020). Toward the Alignment and Traceabil-
ity Between Business Process and Software Models,
In ICEIS, Vol. 23. 10.5220/0009004607010708.

10.1109/ICSE.2017.9
10.1109/ICSRS.2017.8272863
10.1109/ICSRS.2017.8272863
10.1007/978-3-642-27260-8_14
10.1007/978-3-642-27260-8_14
10.1109/AICCSA.2018.8612870
10.5220/0009004607010708

	Introduction
	Related work
	Traceability via transformation models
	Explicit traceability models
	Identified gaps in existing works

	Background of our previous traceability method
	Integrated trace meta-model
	BPSUC diagram

	Traceability method
	Integrated trace meta-model improvement
	BPSUC diagram improvement
	BPMNTraceISM artefacts conserve their initial notations
	UCsF notation

	Change propagation improvement
	Forward transformation rules
	Backward transformation rules
	Change propagation process

	Implementation
	Visual editor implementation
	Prototype for the transformation models

	Case study
	Evaluation results
	Comparison with existing approaches
	Shortcomings of our contribution

	Conclusion

