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The irregularity in the heartbeats caused cardiac arrhythmia, which resulted in serious health problems. 

This cardiac arrhythmia is monitored by electrocardiogram (ECG) signals. As a result, an accurate and 

timely analysis of ECG data can prevent serious health problems. However, the conventional manual 

prediction systems and artificial intelligence (AI) methods failed to detect cardiac arrhythmia because 

they failed to extract the deep salient features from the ECG dataset. So, this research work implements a 

model named CardiacNet, which is used to identify and classify cardiac arrhythmias from an MIT-BIH-

based dataset. Initially, the pre-processing operation is performed to remove the non-linearities from the 

dataset. Then, unsupervised machine learning algorithm-based principal component analysis (UML-

PCA) is used to extract the features of the pre-processed dataset. Further, the optimal feature selection 

operation is carried out using improved Harris Hawk's optimization (IHHO), which is a naturally inspired 

model. Moreover, a customized convolutional neural network (CCNN) model performs the classification 

of various cardiac arrhythmia diseases using IHHO features. The simulation results show that the 

proposed CardiacNet resulted in an accuracy of 97.57%, sensitivity of 98.29%, specificity of 97.97%, F-

measure of 97.40%, precision of 98.66%, Matthew's correlation coefficient (MCC) of 98.17%, dice of 

98.96%, and Jaccard of 97.12%. The performance comparisons show that the proposed CardiacNet 

resulted in improved metrics over all existing methods. 

Povzetek: Razvit je sistem CardiacNet za učenje brez nadzora za optimalno izbiro lastnosti s prilagojenim 

CNN modelom za natančno zaznavanje in klasifikacijo srčnih aritmij iz podatkov EKG. 

 

1 Introduction  
Abnormal heart rhythm is known as cardiac arrhythmia. 

According to the World Health Organization, 

cardiovascular diseases claim over 17 million lives each 

year [1]. About 31% of all fatalities may be attributed to 

this. The American Heart Association reports that heart 

disease is responsible for one in every three fatalities in 

the United States. Every year, cardiovascular disease kills 

more individuals than all forms of cancer and chronic  

 

lower respiratory disorders combined [2]. The 2022 

research indicated that 2–4% of people in North America 

and European nations were living with AF. In adults, a 

heart rate of more than 100 beats per minute is considered 

tachycardia, whereas a heart rate of fewer than 60 beats 

per minute is considered bradycardia (less than 60 beats 

per minute). When the heart begins to contract before it 

should, this is called a premature contraction. An erratic 

heartbeat is also known as fluttering or fibrillation. 

Cardiac arrhythmias are classified not just by the patient's 
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heart rate but also by several other factors. In addition to 

being utilized as a diagnostic criterion [3], the location of 

the irregular heart rate may also be used to classify the 

condition. In most cases, problems with the 

atrioventricular node are the root cause of arrhythmias in 

the heart's atrium. The atrioventricular node is situated in 

the heart, halfway between the two upper chambers (the 

atria) and the two lower chambers (the ventricles) [4]. 

During cardiac contraction, blood is pushed from the atria 

to the ventricles. Some examples of atrial arrhythmias 

include atrial fibrillation (AF), atrial flutter, atrial 

tachycardia, premature atrial contractions, and sinus 

bradycardia. The AF and atrial flutter are types of 

arrhythmias that, if left untreated, may be life-threatening. 

AF is a cardiac rhythm disorder characterized by 

abnormally fast and disorganized atrial contractions and 

electrical impulses that originate from places other than 

the sino-atrial node [5]. 

This causes an atrial rhythm that is fast and irregular. As a 

result of the atria's wall fibrillation, the heart is unable to 

pump blood properly to the ventricles. AF may lead to 

several potentially deadly consequences, including stroke 

and heart failure. AF has been connected to a wide variety 

of medical conditions, including hypertension, an 

overactive thyroid, coronary heart disease, and rheumatic 

heart disease. Atrial flutter, like AF [6], may have serious 

consequences. Atrial flutter is characterized by the fast 

and regular movement of cardiac electrical impulses 

throughout the atria, in contrast to the disorganized 

passage of electrical impulses seen in AF. Premature 

heartbeats, or ventricular arrhythmias, may originate from 

an ectopic ventricular focus. Ventricular fibrillation, 

ventricular tachycardia, and premature ventricular 

contractions are all examples of ventricular arrhythmias. 

It's important to note that certain forms of arrhythmia 

cause no obvious symptoms and don't put the patient's life 

at risk [7]. However, there are forms of arrhythmia that 

show no symptoms but may lead to serious complications, 

including a clot, a stroke, heart failure, or even sudden 

cardiac death. Arrhythmia is a disorder that may arise 

when the heart's electrical impulses, which serve to 

coordinate beats, are not functioning properly [8]. The 

initial stages in making a diagnosis of this illness are to 

interpret the ECG and confirm that the ECG shows no 

symptoms of cardiac arrhythmia [9]. To alter and analyze 

cardiac arrhythmia ECG data, methods including feature 

extraction, engineering, pattern analysis, and deep 

learning are utilized, which increases the diagnostic 

precision and comprehension of arrhythmia situations. 

Through a variety of techniques, such as visual inspection, 

automated pattern recognition, and deep learning, 

arrhythmia diseases may be identified using amplitude 

changes in ECG readings, increasing the accuracy and 

efficiency of identifying cardiac abnormalities. Using 

ECG data from the MIT-BIH database and another 

database, several researchers were able to successfully 

categorize all four types of arrhythmias. The classification 

of cardiac arrhythmias has received a lot of attention, with 

ECG data serving as the gold standard [10]. Myocardial 

infarction is one of the most prevalent and dangerous 

forms of cardiac arrhythmia documented so far. When the 

regular beat of the heart is disturbed, a diagnosis of cardiac 

arrhythmia is made. However, the heart itself is the site of 

the abnormalities that give rise to this illness. Heart 

abnormalities lead to abnormal activation, depolarization, 

and repolarization. The ECG will show a shift in 

waveform reflective of these alterations. The waveform of 

an ECG will change depending on the kind of cardiac 

arrhythmia that is being suspected. So, the conventional 

AI [11], machine learning [12], and deep learning [13] 

methods failed to result in better sub-class classification. 

So, the novel contributions of this work are illustrated as 

follows: 

• Implementation of CardiacNet for classification 

of Sinus Bradycardia, Right Bundle Branch 

Block, Old Anterior Myocardial Infarction, 

Ischemic Changes, Coronary Artery Diseases, 

and the Normal Heart from the MIT-BIH dataset 

• Adoption of both feature extraction and optimal 

feature selection methods such as UML-PCA and 

IHHO is necessary for the effective analysis of 

ECG data. 

• The development of a CCNN model for multiple 

classification classes from IHHO features, which 

also performs the prediction of disease from test 

data, Improved Harris Hawk's Optimisation 

features are used by the CNN model for multiple-

class arrhythmia grouping, which calls for the 

gathering of the data, feature extraction, model 

design, training, assessment, fine-tuning, 

installation, and analysis. 

The rest of the paper is organized as follows: Section 2 

contains the literature survey with existing drawbacks. 

Section 3 contains a detailed analysis of the proposed 

method with sub-block explanations. Section 4 contains 

the detailed simulation analysis. Section 5 contains the 

conclusion. 

2 Literature survey  

In [14], the authors implemented the T-wave integral and 

the total integral from a single cycle of normal and patient 

ECG data to detect and localize myocardial infarction 

(MI) in the left ventricle. Through identifying ischemia-

related alterations and infarct patterns, the T-wave integral 

in electrocardiography aids in the assessment of 

repolarization anomalies in myocardial infarction patients. 

It aids in diagnosis and prognosis, assisting with therapy 

selection with objectivity. A whole ECG cycle was used 

to extract these features. The T-wave integral was used 

because of the significance of this property to the T-wave 

in the MI. T-wave integration in machine learning (ML) 

helps with biometric identity, research and development, 

ischemia risk assessment, ECG signal quality, therapeutic 

efficacy, and personalized medicine. The second part of 

this study considers the integral of a single ECG cycle 

[15]. This happens because the shape of the ECG signal is 

altered after an MI alters the total integral. By including 

additional variables in the classification process, this body 

of work may increase accuracy. It was shown that MIs 

may be identified with a high degree of accuracy using a 
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simple technique based on the extraction of just two 

characteristics from a regular ECG. The diagnostic 

properties of multiscale wavelet energies and eigenvalues 

of multiscale covariance matrices were investigated by 

[16]. Classifiers can take many forms; the K-nearest 

neighbor technique, and support vector machines (SVM) 

with linear and RBF kernels [17], to name a few. The 

diagnostic ECG database provides the data utilized in 

these tests. There is a wide variety of situations included 

in the datasets, from healthy controls through anterior, 

lateral, and septal MI as well as inferior, lateral, and 

posterior-lateral MI. The findings validated the efficacy of 

the suggested method in identifying MI disorders. 

The authors [18] presented a novel approach to the 

automated identification and localization of MI using 

cardiac electrical activity analysis. The 12-lead ECG data 

from 200 participants is segmented in this research; this 

contains 125,652 "normal" beats and 485,753 "indicative 

of myocardial infarction" beats. Initially, a signal was 

discretely wavelet transformed (DWT) [19] at depths of 

up to four using data collected from 12 cardiac electrodes. 

The DWT coefficients are then used to derive a set of 

twelve nonlinear characteristics. The collected data is then 

evaluated using a t-score. By using 47 characteristics 

extracted from lead 11, the suggested technique was able 

to obtain the greatest average accuracy (91.8%), 

sensitivity (91.4%), and specificity (91.27%) in 

identifying normal and MI ECG (two classes). Using an 

artificial neural network classifier [20], we were able to 

automatically categorize cardiac arrhythmias into one of 

five groups. An ANN classifier is trained using the linear 

and nonlinear parameters retrieved from a heart rate 

variability (HRV) signal. The suggested method was 

validated by testing it on the MIT-BIH arrhythmia 

database, where it achieved a success rate of 92.38 

percent. 

In [21], the authors proposed an automatic cardiac 

arrhythmia classification technique using probabilistic 

neural networks (PNN) trained on multi-channel ECG 

data. Using the results of this research, we were able to 

reliably categorize arrhythmias for use in diagnostic 

decision support systems. In [22], the authors conducted a 

study on the various approaches for evaluating the HRV 

signal retrieved from the ECG waveform. After the HRV 

signals have been described in terms of these 

characteristics, they are submitted to classifiers, which 

further classify them (for healthy persons and diseases like 

heart disease and diabetes) to aid in diagnosis. 

To improve the efficiency and accuracy with which 

AF may be detected in displayed ECG traces, authors 

investigated and implemented a DL technique, including 

a recurrent neural network (RNN) and gated recurrent 

units (GRUs) [23]. This research made use of a public 

dataset from Physionet at MIT-BIH. As far as we are 

aware, this is the first time DL has been used to produce a 

real-time diagnosis of AF. This article presents 

experimental findings showing that RNN and GRU each 

attain an accuracy of 0.920 and 0.900, respectively. 

However, there is a need for further filtering, pre-

processing, or de-noising when using this method. 

Through methods including missing data management, 

feature selection, and dimension reduction, preprocessing 

processes normalize dataset dimensions, improving data 

quality and making it more suitable for statistical analysis 

and machine learning. Data is normalized to a standard 

range, resulting in increased algorithm efficiency and 

assuring consistency and equivalence. 

The DL Algorithm used a long short-term memory 

(LSTM) [24]-RNN to determine the presence and severity 

of cardiac diseases using ECG data. The model's excellent 

accuracy was validated using many different cardiac 

disease datasets. We tested the model on an arrhythmia 

dataset to see how well it could distinguish between 

cardiac diseases and arrhythmia (which has a high 

likelihood of mimicking the associated heart rate 

variability). 

Further, the PhysioBank's [25] goal is to provide 

researchers with easy access to high-quality digital 

recordings of physiological signals and accompanying 

data. So far, it has accumulated databases of 

multiparameter cardiopulmonary, brain, and other 

biological signals from both healthy individuals and 

patients suffering from a broad variety of diseases with 

serious implications for public health. Some examples of 

these conditions are life-threatening arrhythmias, 

congestive heart failure, cardiac diseases, neurological 

disorders, and old age. The PhysioToolkit is a free and 

open-source software library for a wide variety of 

physiological signal processing and analysis tasks, 

including but not limited to displaying and characterising 

signals interactively [26]; creating new databases; 

simulating physiological and other signals; quantitatively 

comparing analysis methods; and detecting 

physiologically significant events using both conventional 

and novel methods based on statistical physics and 

nonlinear dynamics. PhysioToolkit was developed by the 

UCSF Physiological Signal Processing and Analysis 

Group. When it comes to sharing and analyzing recorded 

biological signals, PhysioNet is the community-driven 

infrastructure you need. This data bank is available via the 

World Wide Web. It included functions that encouraged 

collaborative data analysis and algorithmic improvement 

by teams.  

3 Proposed system 
Cardiac arrhythmia is the medical term for an irregular 

heartbeat. Therefore, preventing significant health issues 

through an accurate and automated examination of ECG 

data is essential. However, traditional manual prediction 

systems and conventional AI, ML, and DL approaches 

were unable to identify cardiac arrhythmias because they 

were unable to extract characteristics from ECG datasets. 

By learning hierarchical features from ECG datasets, deep 

learning algorithms might enhance the identification 

process while overcoming obstacles such as signal 

complexity, noise, and model complexity. This can 

increase the accuracy of recognizing cardiac arrhythmia 

situations. This is the reason they were unable to detect 

cardiac arrhythmia. This research aims to apply optimal 
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feature selection, UML, and DL techniques to the problem 

of identifying heart arrhythmias from raw ECG data. 

Figure 1 shows the block diagram of the proposed 

CardiacNet. Here, the MIT-BIH dataset is considered for 

evaluating the performance of the overall system. Initially, 

the dataset is split into 80% for training and 20% for 

testing. Then, the entire operation is going to be performed 

on both training and testing datasets. To ensure consistent 

dimensions, maintain data integrity, and facilitate correct 

analysis, normalization entails activities including 

preprocessing, managing missing data, encoding, scaling, 

dimension reduction, feature selection, and outlier 

treatment. Further, pre-processing operations are carried 

out to remove the missing symbols and unknown 

characters, including special characters. To ensure 

transparency and repeatable findings, text analysis pre-

processing comprises managing missing symbols, 

unknown characters, and special characters using methods 

including replacement, normalization, regular 

expressions, spell checking, human inspection, and 

domain-specific handling. The pre-processing operation 

also normalizes the number of rows and columns present 

in the dataset. After that, UML-PCA is applied to the 

preprocessed dataset to extract its features. By 

concentrating on critical data patterns, Principal 

Component Analysis (PCA), a vital data analysis 

approach, decreases dimensionality, extracts key features, 

improves model performance, and increases efficiency. In 

addition, the IHHO model, which is inspired by nature, is 

used in the process of carrying out the optimum feature 

selection operation. By imitating the cooperative hunting 

techniques of Harris's hawks, employing adaptive 

strategies, reproduction, mutation, and learning to 

efficiently explore feature space, the Improved Harris 

Hawk's Optimisation model enhances feature selection. In 

addition, the CCNN model can categorize the many 

different cardiac arrhythmia illnesses by using IHHO 

properties. The Better A more sophisticated version of the 

Harris Hawk's Optimisation method, the Harris Hawk's 

Optimisation (IHHO) model was created for the best 

feature selection in data analysis and machine learning. 

Iteratively refines feature subsets for better performance, 

using inspiration from cooperative hawk hunting. Based 

on ECG signals, CNN models may categorize cardiac 

arrhythmias, with accuracy varied depending on system 

design, database effectiveness, and medical knowledge. 

Finally, CardiacNet classifies sinus bradycardia, right 

bundle branch block, old anterior myocardial infarction, 

ischemic changes, coronary artery diseases, and the 

normal heart. Finally, CardiacNet classifies sinus 

bradycardia, right bundle branch block, old anterior 

myocardial infarction, ischemic changes, coronary artery 

diseases, and the normal heart. 

 

Figure 1: Proposed CardiacNet block diagram. 

3.1 MIT-BIH dataset 

 

All the MIT-BIH Arrhythmia Database includes 48 unique 

30-minute recordings of two-channel ambulatory ECGs. 

Between 1975 and 1979, 47 subjects were studied with the 

use of these recordings by the BIH Arrhythmia 

Laboratory. Key components such as the dataset, feature 

extraction, pre-processing, machine learning algorithm, 

findings, discussion, performance assessment, and 

conclusion are used to evaluate the efficiency of the MIT- 

 

BIH Arrhythmia Database system and make 

recommendations for further research. Twenty-three 

recordings were randomly selected from four thousand 24-

hour ambulatory ECG recordings taken from inpatients 

(roughly 60%) and outpatients (roughly 40%) at Boston's 

Beth Israel Hospital; the remaining 25 recordings were 
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selected from the same set to include less common but 

clinically significant arrhythmias. Figure 2 shows the 

sample ECG signals from the MIT-BIG dataset; those are 

normal ECG signals and cardiac arrhythmia ECG signals. 

The cardiac arrhythmia ECG signal contains high 

amplitude fluctuations that can aid in the diagnosis of 

arrhythmia diseases. High amplitude cardiac arrhythmia 

fluctuations ECG signals help with illness diagnosis, 

aberrant rhythm detection, pattern creation, visual 

identification, clinical decision-support, advancement 

tracking, and research comprehension. 

   

(a)     (b) 

Figure 2: Sample signals from MIT-BIH dataset [1]. (a) normal ECG signal, (b) cardiac arrhythmia ECG signal. 

3.2 UML-PCA feature extraction 

Potential applications of UML-PCA span numerous 

disciplines, from population genetics to studies of the 

microbiome to studies of the atmosphere and beyond. A 

technique called UMAP-PCA reduces dataset dimensions 

by combining UMAP and PCA, combining global and 

local structures, and offering a useful lower-dimensional 

approximation for dealing with complicated high-

dimensional data. In a real coordinate system, a collection 

of points is represented by a list of unit vectors. Each of 

these scalars represents an orthogonal line segment that 

best matches the data. For this definition, the best-fitting 

line is the line with the smallest mean perpendicular 

distance between the data points and the line. In linear 

regression, the "best-fitting line" is found by minimizing 

the sum of squared residuals between the data points and 

the line, attempting to reduce standard deviation and offer 

the most accurate approximation. These directions make 

up an orthonormal basis that ensures the different data 

dimensions are not linearly connected. UML-PCA is used 

to execute a change of basis on data by identifying the 

principal components and then acting on that insight. 

While using UML-PCA to reduce the number of 

dimensions might increase efficiency, make interpretation 

easier, and improve model performance, it also comes 

with hazards including information loss and incorrect 

interpretation. Even if it doesn't always happen, UML-

PCA usually ignores everything except the most important 

factors. So, it is often used for assessing massive datasets 

with several variables or dimensions for each observation. 

This technology allows for the visualization of data in 

several dimensions and improves data interpretability 

without losing any relevant details. To reduce the number 

of dimensions in a dataset, statisticians might use UML-

PCA. Utilizing a transformation matrix, linear 

transformations change the original coordinate system 

while preserving data linkages. They are essential in 

mathematics for data interpretation and analysis and are 

employed in domains including graphics, image 

processing, and physics. To achieve this goal, a linear 

transformation is applied to the data to relocate it to a new 

coordinate system where the data's variance may be 

explained using fewer variables. Because of this, we may 

now further simplify matters. To make it simpler to 

identify clusters of numbers, many studies simply display 

the data in two dimensions, depending on the first two 

primary components. The first two components are critical 

for doing this and identifying the disease-specific features. 

3.3 IHHO algorithm 

In recent years, there has been a surge in interest and 

understanding of how to implement evolutionary 

algorithms and swarm intelligence algorithms effectively, 

cheaply, and efficiently. The No Free Lunch (NFL) 

theorem states that no algorithm is a universally optimal 

optimizer for any issue. According to the NFL theorem, 
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no one optimization method can be the best in all 

application domains. To overcome these constraints, new 

optimizers that employ population-based strategies, 

hybrid methods, adaptive techniques, parallel computing, 

and transfer learning are being developed. The NFL 

theorem has led to new optimizers with specific local and 

global searching strategies. Strategies for local and global 

searches are essential for fine-tuning a new optimizer and 

boosting productivity and effectiveness. Efficiency is 

improved by combining both approaches in a new 

optimizer, encouraging speedier convergence and robust 

exploring. Figure 3 shows the flowchart of the IHHO 

algorithm for optimal feature selection. The unique 

nature-inspired optimization approach was inspired by 

Harris' Hawks, one of the world's most intelligent birds. 

Because of their outstanding team-chasing skills, 

flexibility, energy efficiency, and social cohesiveness, 

Harris's hawks excel at cooperative hunting. Their 

communal feeding and specialized tasks increase their 

success on the hunt. Unlike other raptors, the Harris's 

hawk forages cooperatively with other members of its 

stable group, whereas other raptors are more likely to 

attack and take prey alone. Due to its highly evolved 

inventive team-chasing abilities, this desert predator can 

hunt down potential prey, encircle them, flush them out, 

and then attack them. Predators in the desert use complex 

team-chasing tactics to identify and catch prey. These 

tactics include coordinated attempts, disorientation, stress, 

herding behavior, strategic placement, and group learning. 

The following steps show the optimal feature selection 

process. 

Step 1: Set T, and N as the HHO parameters, which 

hold the properties of IHHO. 

Step 2: Initialize the location of the population of 

Harris Hawks X of N random particles with n, t 

dimensions. 

Step 3: The objective function for each element of X 

is evaluated. The average location of hawks 

𝑋𝑚(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑖=1      

   (1) 

where 𝑋𝑖(𝑡) signifies each hawk position in iteration 

t, where N is the total number of hawks in the iteration.

  

Step 4: Set the location of the rabbit (best location) as 

Xrabbit.  

Step 5: For each hawk Xi calculate E. The prey's 

energy is represented as: 

𝐸 = 2𝐸0 (1 −
𝑡

𝑇
)     

    (2) 

Here T signifies the maximum number of repeats and 

𝐸0 is energy at its starting point. 

Step 6: Depending on the energy value of his prey 

update the location of Harris Hawks X. 

𝑋(𝑡 + 1) =

{
𝑋𝑟𝑎𝑛𝑑(𝑡)−𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡)−2𝑟2𝑋(𝑡)|  𝑞≥0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)−𝑋𝑚(𝑡))−𝑟3(𝐿𝐵+𝑟4(𝑈𝐵−𝐿𝐵)) 𝑞<0.5
    (3) 

Here,  𝑋(𝑡 +  1) denotes the position vector of hawks 

in the next iteration, 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) denotes the rabbit position, 

𝑋(𝑡) denotes the hawks’ current position vector, 

𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) denotes random numbers between (0,1) that 

update in each iteration, and the number of iterations is R. 

The variables' upper and lower limits are represented by 

the letters LB and UB, 𝑋𝑟𝑎𝑛𝑑(𝑡) represents any randomly 

picked hawk in the current members population, and 𝑋𝑚 

represents the current population hawks’ average location. 

Step 7: The t index is increased in 1, if the stop criteria 

(t ≥ T) are not satisfied jump to step 5. Finally, the optimal 

features are selected from the available data. 
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Figure 3: Flowchart of IHHO. 

3.4 Proposed CCNN 

The ECG data was categorized according to cardiac 

arrhythmia via the development of a multi-layer deep 

convolutional network. Figure 4 shows the proposed 

CCNN model enables automatic input ECG classification 

without requiring any manual feature extraction or 

selection. The suggested CNN model for classifying 

cardiac arrhythmias makes use of a specialized 

architecture, ECG signal processing, convolutional layers, 

pooling, non-linearity, regularisation, optimization, tuning 

hyperparameters, early stopping validation, Class 

Activation Mapping, and interpretability metrics. This is 

feasible because of the holistic design. The CCNN 

structure is at the heart of the deep network model, which 

is built on the layers of a CCNN. Input, convolutional, and 

activation functions are used in the construction of CCNN 

layers, which are impacted by the properties of the input  

 

data, the needs of the issue, and the selection of the 

hyperparameters. Feature maps, which are representations 

of ECG segments, are concatenated using weights of 

varying sizes in multi-dimensional convolution layers. A 

convolution with 128 weight vectors is used on the ECG 

data in the first layer of the model. To avoid gradient 

problems, assist with uniform weight initialization, 

promote faster convergence, and improve generalization, 

normalizing activation outputs is an essential 

preprocessing step in deep learning. Before processing 

each batch, the activation outputs of this layer are 

normalized by the batch normalization layer. By 

preventing division by zero, batch normalization improves 

training, regularisation, and neural network efficiency by 

ensuring uniform allocation of activating responses within 

every batch. The max pooling layer takes the maximum 

value from each region specified on the feature maps 

gathered in the layers below it to generate new feature 

maps. To make better use of the available feature space, 
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the feature maps from the previous layer have been 

reduced in size in this one. Reducing the size of feature 

maps is a crucial step in making DL systems faster and 

more resource-friendly. Decreased feature map size in 

deep learning methods increases computational speed, 

resilience, and efficiency, making models more scalable, 

deployable, and quick on devices with limited resources. 

To achieve this, we use methods like averaging the max 

pooling layer's maximum values. In the fourth layer, the 

convolution technique is repeated many times on the input 

feature maps using weights that are 32 by 7. With the 

pooling approach applied to the layer, the feature maps 

with a region width of two are decreased by a factor of 

half. This is done by completing yet another round of 

batch normalization. The next layer is a convolution, and 

the layer after that is a max pooling, both of which are 

repeats of the prior layers' algorithms. The feature maps 

collected at the previous layer will be downscaled in this 

step so that they may be used as input at higher network 

levels. When dealing with multidimensional feature 

vectors, we "flatten" them into a single dimension. 

Following their transit through the flattened layer, the 

features are sent onto a 512-unit, strongly linked neural 

network layer. A SoftMax layer serves as the network's 

last layer. This layer determines the total number of output 

classes. For multi-class classification problems, the 

Softmax layer is an essential last layer in neural networks. 

It generates normalized probability distributions, 

facilitates training, stable optimization, and 

understanding, handles one-hot encoded labels, and 

supports model assessment and inference. To forecast 

what category, the input data belongs to, the SoftMax 

layer is used. To prevent the network from becoming too 

specialized as it learns, several layers have a dropout 

parameter. Because of this, the layer's precision is limited 

to prevent problems. By periodically deactivating neurons 

during training, increasing resilience, and limiting co-

adaptation, the dropout parameter is a regularisation 

strategy for neural networks that reduces overfitting and 

improves generalization. 

 

Figure 4: Block diagram of the proposed CCNN model. 
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4 Results and discussion 

This section gives a detailed performance analysis of the 

proposed CardiacNet. The performance of the proposed 

method is measured using several performance metrics, 

such as accuracy, sensitivity, specificity, F-measure, 

precision, MCC, dice, and Jaccard. All these metrics are 

measured for proposed methods as well as existing 

methods. Then, all the methods use the same MIT-BIH 

dataset for performance estimations. 

4.1 Subjective analysis 

 

Figure 5 shows the classified outcomes using CardiacNet. 

The test input is considered several ECG signals, and its 

data is converted into a binary domain. Now, the 

CardiacNet analyses these binary signals, yielding a 

classification result. Here, the red-colored box shows the 

optimal feature zone. Figure 5(a) shows the classified 

outcome as sinus bradycardia; Figure 5(b) shows the 

classified outcome as right bundle branch block; Figure 

5(c) shows the classified outcome as anterior myocardial 

infarction; Figure 5(d) shows the classified outcome as 

ischemic changes; Figure 5(e) shows the classified 

outcome as coronary artery diseases; and Figure 5(f) 

shows the classified outcome as a normal heart. 

 

(a) sinus bradycardy 

 

(b) Right bundle branch block 

 

(c) Old Anterior Myocardial Infarction 

 

(d) Ischemic changes 

 

(e) Coronary artery diseases 

 

(f) normal heart 

Figure 5: Classification results from CardiacNet 

4.2 Performance comparison 

Table 1 compares the classification performance of 

various approaches to the proposed CardiacNet. The first 

column contains performance metrics. The second column 

contains the performance estimation during the SVM [17] 

method. The third column contains the estimated 

performance of the PNN [20] method. For assessing the 

generalization, model selection, hyperparameter 

tweaking, overfitting identification, prediction 

confidence, task applicability, and iterative improvements 

of the PNN approach, performance is essential. In the 

fourth column, the performance estimation during GRU 

[23] is presented. Here, the proposed CardiacNet resulted 

in improved classification performance as compared to 

SVM [17], PNN [20], and GRU [23]. 
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Table 2 presents the percentage of improvements over 

Table 1. Here, the CardiacNet has increased accuracy by 

4.21%, sensitivity by 6.38%, specificity by 2.24%, F-

measure by 4.88%, precision by 6.08%, MCC by 2.37%, 

dice by 3.79%, and Jaccard by 3.77% as compared to the 

SVM [17]. In the third column, CardiacNet increased 

accuracy by 4.21%, sensitivity by 6.38%, specificity by 

2.24%, F-measure by 4.88%, precision by 6.08%, MCC 

by 4.52%, dice by 3.79%, and Jaccard by 3.77% as 

compared to PNN [20]. In the last column, CardiacNet 

increased accuracy by 3.66%, sensitivity by 6.20%, 

specificity by 3.70%, F-measure by 5.45%, precision by 

7.82%, MCC by 7.59%, dice by 4.48%, Jaccard by 1.55% 

as compared to GRU [23]. 

Table 1: Performance comparison of various methods. 

Metric SVM 

[17] 

PNN 

[20] 

GRU 

[23] 

Proposed 

CardiacNet 

Accuracy 

(%) 

93.62 93.62 94.12 97.57 

Sensitivity 

(%) 

92.39 92.39 92.55 98.29 

Specificity 

(%) 

95.82 95.82 94.47 97.97 

F-measure 

(%) 

92.86 92.86 92.36 97.40 

Precision 

(%) 

93.00 93.00 91.50 98.66 

MCC (%) 95.89 93.92 91.24 98.17 

Dice (%) 95.34 95.34 94.71 98.96 

Jaccard 

(%) 

93.59 93.59 95.63 97.12 

 

Table 3 presents the ablation study for the proposed 

CardiacNet. Here, the first column contains the different 

performance metrics. The second column contains the 

performance estimation using only CCNN, where UML-

PCA and IHHO are absent. Then, the third column 

contains the performance estimation during UML-PCA 

with the CCNN method, where IHHO feature selection is 

absent. Finally, the last column contains the performance 

of CardiacNet with all modules presented. Here, the 

performance of the proposed method is improved when all 

modules are present in comparison to the absence of any 

individual module. So, this ablation study shows the 

significance of UML-PCA feature extraction and IHHO 

feature selection. 

 

Table 2: Percentage of improvement in proposed 

CadiacNet model as compared to state-of-the-art 

methods. 

Metric SVM [17] PNN [20] GRU [23] 

Accuracy (%) 4.219184 4.219184 3.665533 

Sensitivity (%) 6.385973 6.385973 6.202053 

Specificity (%) 2.24379 2.24379 3.70488 

F-measure (%) 4.88908 4.88908 5.456908 

Precision (%) 6.086022 6.086022 7.825137 

MCC (%) 2.377724 4.525128 7.595353 

Dice (%) 3.796937 3.796937 4.487383 

Jaccard (%) 3.77177 3.77177 1.558088 

 

Table 4 presents the percentage of improvements over 

Table 3. Here, the CardiacNet has increased accuracy by 

5.34%, sensitivity by 6.32%, specificity by 4.60%, F-

measure by 2.18%, precision by 5.76%, MCC by 1.76%, 

dice by 1.39%, and Jaccard by 4.25% as compared to the 

only CCNN case. Performance measures such as accuracy 

of 5.04%, sensitivity of 3.46%, specificity of 1.70%, F-

measure of 4.78%, precision of 4.68%, MCC of 2.23%, 

dice of 5.23%, and Jaccard of 5.53% are compared to the 

UML-PCA+ CCNN presented case in the third column. In 

the final column, accuracy by 6.50%, sensitivity by 

2.79%, specificity by 6.33%, F-measure by 4.69%, 

precision by 6.82%, MCC by 5.14%, dice by 5.99%, and 

Jaccard by 2.81% are compared to the IHHO+ CCNN 

presented case.  

Table 3: Ablation study of the proposed method. 

Metric CCN

N  

UML-

PCA+ 

CCN

N  

IHHO

+ 

CCNN  

Proposed 

CardiacNe

t 

Accuracy 

(%) 

92.65 92.91 91.64 97.57 

Sensitivit

y (%) 

91.54 94.07 94.68 98.29 

Specificit

y (%) 

93.97 96.65 92.44 97.97 

F-

measure 

(%) 

96.43 94.04 94.12 97.40 

Precision 92.90 93.86 91.98 98.66 
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(%) 

MCC 

(%) 

96.40 95.96 93.30 98.17 

Dice (%) 96.01 92.51 91.84 98.96 

Jaccard 

(%) 

94.89 93.74 96.22 97.12 

Table 4: Percentage of improvements in ablation study as 

compared to state-of-the-art methods. 

Metric CCNN  UML-

PCA+ 

CCNN  

IHHO+ 

CCNN  

Accuracy 

(%) 

5.342688 5.047896 6.50371 

Sensitivity 

(%) 

6.325104 3.465504 2.798902 

Specificity 

(%) 

4.607854 1.707191 6.339247 

F-measure 

(%) 

2.188116 4.785198 4.696133 

Precision 

(%) 

5.769645 4.687833 6.827571 

MCC (%) 1.763485 2.230096 5.144695 

Dice (%) 1.395688 5.231867 5.999564 

Jaccard 

(%) 

4.257561 5.536591 2.816462 

5 Conclusion 
This work effort developed CardiacNet, which is an AI 

tool for identifying cardiac arrhythmias using a dataset 

based on MIT and BIH. To begin, a pre-processing 

procedure is carried out on the dataset to eliminate any 

non-linearities that it may include. After that, UML-PCA 

is applied to the pre-processed dataset to extract its 

features. In addition, the IHHO model, which is inspired 

by nature, is used in the process of carrying out the 

optimum feature selection operation. In addition, the 

CCNN model can categorize the many different cardiac 

arrhythmia illnesses by using IHHO properties. Finally, 

CardiacNet classifies sinus bradycardia, right bundle 

branch block, old anterior myocardial infarction, ischemic 

changes, coronary artery diseases, and the normal heart. 

Here, the CardiacNet has increased accuracy by 4.21%, 

sensitivity by 6.38%, specificity by 2.24%, F-measure by 

4.88%, precision by 6.08%, MCC by 2.37%, dice by 

3.79%, and Jaccard by 3.77% as compared to existing 

methods. Further, this work can be extended with 

improved transfer learning methods and class-specific 

performance estimation. 
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