ELM-Based Imbalanced Data Classification-A Review

^{*1}Brajendra Singh Rajput, ¹Partha Roy, ¹Sunita Soni, ²Bhagat Singh Raghuwanshi

¹Computer Science and Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India, Chhattisgarh Swami Vivekanand Technical University (CSVTU)

²Information Technology, Madhav Institute of Technology and Science (MITS) Gwalior, Madhya Pradesh, India E-mail: brajendrarajput89@gmail.com, partha.roy@bitdurg.ac.in, sunita.soni@bitdurg.ac.in, bhagat@mitsgwalior.in *Corresponding Author

Keywords: SMOTE, Imbalanced Learning, Classification, under bagging, ensemble, Voting approach, variable length, Kernelized ELM, Fraud prediction.

Recieved: August 8, 2023

Imbalance issues occur in Machine Learning (ML) when there is high distortion in the class distributions. A great challenging task in ML is the imbalance of data classification. It is because most classification methodologies tend to bias toward the majority class even though high importance is given to the minority class. To enable its stable operation, many techniques are utilized recently that are still in use for classifying imbalanced datasets efficiently. Owing to the assumption with balanced class distribution or equal misclassification, the prevailing learning algorithms are prone to favor the majority class when handling complicated classification issues with skewed class distribution. The most prominently adopted technique to deal with data having imbalance class distribution is Extreme Learning Machine (ELM). Unwanted class boundaries as of data with unbalanced classes may be learned by ELM similar to various other classification algorithms. Grounded on the kernel utilized, elevated weighted ELM, active learning-centered techniques, etc, an augmentation in the ELM framework is done for efficient imbalanced classification are studied here. Finally, regarding G-Mean, Accuracy, and Imbalance Ratio (IR), the research studies' performance was analogized.

Povzetek: Prispevek obravnava neuravnotežene učne primere. Podaja pregled zlasti novejših metod za klasifikacijo neuravnoteženih podatkov z ELM in poudarja izzive pristranskosti modelov do večinskih razredov ter opisuje tehnike, kot so SMOTE in jedrski ELM.

1 Introduction

Data stream classification has garnered wide interest in the modern era owing to the massive expansion in data availability on the Internet and in other fields. Unstructured data streams that consistently arrive on time are difficult to classify because they lack class labels along with accumulating over time [1]. Many data stream algorithms do not perform satisfactorily or fail altogether in mixed data streams comprising categorical along with numerical values or in limited labeled samples. Multiclasses have more categories than two, while binary classes contain only two categories in the dataset [2].

The dataset is affected by imbalance problems like text classification, web fault prediction, Credit Card Fraud Detection (CCFD), high error rate classification

models, etc. [3]. The time-dependent alteration in data streams is one major issue in data stream classification schemes [4]. Another typical classification issue is Class Imbalance (CI) which develops when one of the classes, known as the minority class, has a smaller amount than another class, known as the majority class. To deal with unstructured class streams, many strategies were engendered. Unsupervised learning and supervised learning are the two diverse learning strategies that are employed to address CI issues in ML paradigms [5]. Resampling, cost-sensitive learning, one-class learning, feature selection, and other techniques are also used. However, multiclass classification was not accurately dealt with by conventional methodologies [6]. Hence, the imbalance issue engendered in the data classification process was solved by ELM. Figure 1 shows a diagrammatic representation of imbalance classification.

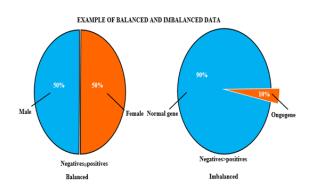


Figure 1: Diagrammatic representation of imbalance classification.

A Single Hidden Layer Feed-Forward Neural Network (SHLFN) is the foundation of an ELM. Utilizing kernels, random neurons with or without specified shapes, and optimization constraints are all combined in this method [7]. To determine the SHLFN's output weights, it randomly chooses the hidden units [8]. Owing to the lack of iterative tuning with training utilizing the generalization operation, ELM is quicker than SHLFN. Additionally, the fundamental benefit of employing ELM is that it models a standard approach for both binary class and multi-class situations [9] in addition to offering universal approximation capability and classification ability. Medical data classification, medical diagnostics, image quality evaluation, and many more are the several ELM. application disciplines of Moore-Penrose generalized inverse is utilized by ELM to update its weight apart from standard single hidden neural networks. The classification accuracy is maximized by several prevailing extreme learning algorithms by classifying the majority class accurately while incorrectly classifying the minority class [10]. For classifying imbalanced datasets, a variety of sampling-based strategies, including under-sampling and oversampling, cost-sensitive learning techniques, along with ensemble learning, have recently been employed

2 Related works

Grounded on the ELM approach, diverse prevailing research methodologies related to the imbalanced classification problem were explained as follows,

2.1 ELM algorithm-based approaches for imbalanced class problem

Bhagat *et al.* [11] presented a novel Synthetic Minority Oversampling Technique centered Class-Specific ELM (SMOTE-CSELM) for elevating imbalanced classification complexities with the skewed class distribution. The minority class samples were elevated by SMOTE that created synthetic samples pertained to the minority class to determine the classifier's decision region. Regarding computation complexity, the experiential outcomes illustrated the presented approach's higher efficacy. However, the large size imbalanced classification complexity could not be tackled by the presented model.

Bhagat Singh *et al.* [12] developed Under Bagging ensemble-centered variants of a Kernelized ELM (UBKELM) where the random under-sampling's strength along with bagging was integrated. By a majority of class samples' random under-sampling, balanced training subsets of large numbers were integrated. As UBKELM had more stability along with promising generalization performance, it was utilized as a component classifier to execute ensemble operations. However, the approach's accuracy was impacted by the dependence of several training subsets on the CIs degrees.

Sanyam Shukla *et al.* [13] explicated a CS-ELM's variant named Online Sequential Class-Specific ELM (OSC-SELM). Here, it utilized a class-specific regularization approach that makes assigning weights to the training samples unnecessary. The class-specific regularization coefficients were computed by utilizing the class proportion along with the regularization coefficient's values. Thus, better generalization was attained by the presented scheme than various other prevailing schemes. However, the presented method's stability was affected by the overfitting complexities.

Hualong et al. [14] projected a proficient Active Online-Weighted ELM (AOW-ELM) classification scheme to tackle larger time consumption issues. To tackle the CI problem, a cost-sensitive learning scheme was adopted to choose the Weighted ELM (WELM). An active learning model was built by utilizing an AL-ELM algorithm, subsequently. For an effective weight update rule, an efficient online learning mode of WELM was designed. Finally, a flexible along with effective early stopping criterion was deduced centered on the margin exhaustion criterion. The missed clusters were avoided by the utilized clustering techniques. By this, the suggested method was recognized to be more efficient than numerous prevailing models. However, the output was affected by the random initialization of weights variation betwixt the input and HL.

Wendong et al. [15] suggested a scheme for classification issues with imbalanced data distributions by utilizing the Class-specific Cost Regulation ELM (CCR-ELM) algorithm. Kernel-centered CCR-ELM was formed by introducing kernel functions in CCR-ELM. The

number of class sample's effects was pondered in CCR-ELM along with the effects of data's dispersion degree. An elevation in classification performance with the superior status diagnosis was explicated in the experiential outcomes. However, direct utilization in multiclass imbalanced classification issues was not handled by the presented model.

Bhagat *et al.* [16] provided a variant of ELM named Class-Specific ELM (CS-ELM) for handling binary CI issues. For better-imbalanced classification, class-specific regularization parameters were employed here, that are computed utilizing class distribution. As there was no weight assigning the process to the training instances, the presented model's performance was elevated. However, the ELM's stability cannot be addressed by the presented scheme under several operational uncertainties.

Yong et al. [17] developed a Differential Evolution (DE)centered ensemble learning stratagem to resolve the imbalanced data classification problem. Numerous WELMs were chosen initially with distinct activation functions as base learners to embody the university. Additionally, each base learner's weight was optimized by utilizing the DE algorithm. A candidate weight vector's population was presented subsequently. Then, choosing the individual having best fitness value as the base learner's weight in the ensemble occurs. Regarding Geometric mean (G-mean), a superior classification performance than other analogized models was provided by the suggested approach. Nevertheless, the technique's performance was affected by the outlier's attendance.

Hui *et al.* [18] explained an Evolutionary ELM with a sparse cost matrix for imbalanced learning. Here, engendering the case-weighting ELM on a sparse cost matrix occurred in a diagonal form. The misclassification issue was optimized by the multi-objective optimization regarding penalty factors utilizing an evolutionary algorithm merged with an error-bound model. As the presented model was aided by the link betwixt the generalization ability and case-weighting factors, it was utilized as adaptive cost-sensitive learning. However, identifying the penalty factor's perfect set along with thumb rules was critical as it was too specific to fit generic situations.

Chengbo *et al.* [19] introduced an Improved Weighted-ELM (IW-ELM) algorithm for imbalanced classification. The appropriate weights were assigned for the imbalanced data classification by presenting a votingcentered weighting scheme. The weighted ELM classifier's training was involved in the presented approach. Following that, proper classifiers for voting were determined by eliminating unusable classifiers. And finally, grounded on majority voting, the classification outcomes were determined. When analogized with other ELM-centered algorithms, high accuracy was exhibited by the simulation outcomes. But, the training time was elevated by the difficulty in the misclassification cost matrix's generation

Tianlei *et al.* **[20]** employed a Deep-Weighted ELM (DWELM) algorithm for imbalanced data classification. The representation capacity was augmented by the elevated stacked multilayer deep representation network that was trained with ELM (EH-DrELM). The sample weights for imbalanced multiclass data were optimized by a rapid AdaBoost algorithm. The data imbalance issue in sequential learning was alleviated by meta-cognitive online sequential ELM. However, pushing the data as of distinct classes in diverse directions was not sufficiently made by the linear ELM.

Honghao *et al.* [21] established Weighted ELM (WELM) to optimize imbalanced classification. Grounded on the dandelion's behavior, a new swarm intelligence algorithm named Dandelion Algorithm (DA) was employed for imbalance classification. A diverse number of seeds are engendered by every dandelion in DA. The next iteration's dandelion was opted as of the seeds formed by diverse dandelions. The dandelion's position was altered via sowing along with selection operations. High detection performance was exhibited by the experiential outcomes than other conventional schemes. It was also utilized in CCFD. However, the system's efficacy was affected by the degradation in convergence rate.

2.2 Ensemble-based ELM imbalanced classification problem.

In table1, CI problem classification based on ensemblebased ELM is explained.

Table 1	: Analysis of class	Ensemble-ba sification pro		balanced			a meta- model was then		
Resear cher Name	Methodol ogy	Descripti on	Result	Drawb ack			d for each		
Arnis	Entropy-	Grounded	Regardin	If the			S		
et	centered	on the	g	initial			algorithm		
al.[22]	Classifier	original	classificat	dataset			s.		
	(EC)	class	ion	was			5. Finally, a		
	algorithm.	proportio	accuracy	unbalan			new		
		ns in the	along	ced, a			classificat		
		training	with	high			ion		
		dataset,	sensitivity	false			problem		
		weights	, a more	negativ			was		
		were	promising	e rate			recomme		
		encompas	solution	was			nded in		
		sed in the	was	shown.			the		
		entropy	attained				recomme		
		computati	in a				ndation		
		on	complex				step.		
		initially.	environm		Wenta	Sparse	By	Better	Unnece
		For each	ent.		o et	Weighting	oversamp	classificat	ssary
		class, the			al.[24]	centered	ling	ion	training
		weights				on Online	utilizing	accuracy	time
		or class				Sequential	the	with	results
		importanc				ELM	SMOTE,	diminishe	in the
		e was				(SW-	а	d	presenc
		computed				OSELM)	balanced	accuracy	e of
		that .					training	loss was	redunda
		remains					set was	exhibited	nt
		unaltered					attained	by the	virtual
		during the					initially.	experienti	samples
		learning					Grounded	al	•
Vienzy	Ensemble	process. Metadata	A	The			on	outcomes.	
Xiaoy	Ensemble of ML- K-	extraction	Augment ed	The			training		
an <i>et</i>	Nearest	was the		imprope "			errors, a		
al.[23]	Neighbour	initial	recomme ndation	r distance			balanced		
	(EML-	step that	performa	method			process		
	(LIVIL- KNN)	encompas	nce was	affected			was		
	KINN)	ses meta-	resulted	the			executed		
		target	by	quality.			after that.		
		identificat	recomme	quanty.			Centered		
		ion along	nding				on the		
		with the	diverse				final		
		meta-	algorithm				training		
		feature	s for				set, the		
		collection	various				initial		
		. In the	classificat				mode was		
		model	ion issues		T	Mar	set.	Close: f in	T1
		constructi	automatic		Junhai	Map Baduaa	Utilizing	Classifyin	The
		on stage,	ally.		<i>et</i>	Reduce	the Map	g the	system'
L	1		· ·	1	al.[25]	and	Reduce	imbalance	S

d EI Mimhal Table 1. Am of D

					· · · · · · · · · · · · · · · · · · ·
	Ensemble-	algorithm	d large	perform	weights
	centered	, the	datasets	ance	along
	ELM	positive	elevated	was	with
	technique.	class	the	affected	biases are
		instance's	positive	by the	generated
		center	class	big data	randomly.
		was	instance's	partitio	Further,
		computed	learning	ning	the
		initially.	region.	into	original
		The		small	data's
		sampling		pieces	main
		was		automat	features
		executed		ically	are
		followed		along	obtained
		by the		with	by ELM
		classifier		their	as an
		compone		deploy	autoencod
		nt's		ment in	er (ELM-
		training		а	AE).
		utilizing		parallel	
		the ELM		computi	
		algorithm		ng	Fulong et al. [27] presented an ensemble-centered
		. By		node.	adaptive over-sampling scheme to overcome the C
		utilizing			problem. Elevated microaneurysm detection was attained
		the voting			by utilizing Boosting and Bagging along with Randon
		approach,			subspace. Thus, the positivity of adaptive over-sampling
		the			and ensemble was integrated by the presented ensemble
		integratio			centered over-sampling schemes. The induction biase
		n was			introduced as of the imbalanced data were diminished by
		executed			the amalgamation of ensemble and adaptive over
		finally.			sampling. Generalization along with ELM classification
Shifei	UnSupervi	By	faster	It was	performance was elevated as a result of this. However
et	sed-	framing a	respondin	not	the classification of imbalanced data was made more
al.[26]	ELM(US-	new cost	g along	suitable	critical owing to the presence of false alarms.
	ELM)	function,	with	for	Zhenyu et al. [28] developed the Easy-SMT ensemble
		the	greater	high-	approach to tackle the imbalance of learning's impact
		embedded	generaliza	dimensi	With a SMOTE-centered oversampling policy to
		matrix	tion	onal	supplement minority defective classes along with Easy
		was		datasets	Ensemble to alter a CI learning problem into an
		obtained		as it	ensemble-grounded balanced learning subproblem, Easy
		initially.		takes a	SMT was nothing more than an integrated ensemble
		The		longer	based approach. Regarding good classification capability
		clustering		training	the presented method outperformed other conventiona
		in the		time.	methods. Because of the minority class sample's small
		embedded			sized features, a large number of minority class samples
		matrix			were not recognized clearly.
		was			
		executed			Guillem et al. [29] projected a Probability Threshold
		by the k-			(PT) - Bagging approach to solving CI problems raised in
		means			the network. Cost-sensitive learning, rebalancing
		algorithm			mechanisms, along with threshold moving were the '3
		. Thus,			stages in the presented PT-Bagging approach. Variou
		input			misclassification costs were assigned to different classes
	1	L	1	1	ـــــــــــــــــــــــــــــــــــــ

initially. To balance the training data, the data was resampled after that. By utilizing the corresponding threshold, a model as of the dataset was altered into a class label. As the presented work discarded various training data, more efficient computation than the traditional schemes was attained by it. However, the error rate was elevated by the miscalibrated posterior probability and the prior shift. Shown in Figure 2.

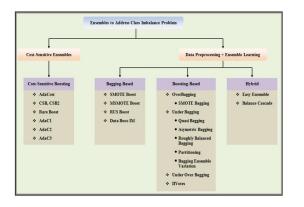


Figure 2: Different ELM-based approaches for imbalance class problems.

Hossam *et al.* [30] ejected a hybrid approach based on ensemble approaches. Feature selection, data balancing, along with classification were the '3' stages in this model. In the prediction process, the influencing factors were identified initially. Then, a least powerful oversampling technique named SMOTE was utilized to handle the imbalanced data distribution. Regarding accuracy, Area under Curve (AUC), along with Geometric-Mean (G-Mean), better prediction outcomes were obtained. But, the outlier's presence made the outputs unstable.

Yanjiao *et al.* **[31]** suggested a Parallel one-class ELM (P-ELM) centered Bayesian methodology for solving an imbalanced classification issue. Grounded on the class attribution of samples, the dataset was partitioned into k components here, which was further classified by subjecting it to the corresponding k Kernel-grounded oneclass ELM classifiers. The suggested model's superiority was validated by the experiential analysis which was utilized in both binaries along with multiclass classification. However, the samples lost their intrinsic property owing to the sample area's overlapping.

2.3 Semi-Supervised ELM-based imbalanced classification problem.

Table 2 details the semi-supervised ELM-based techniques, their purpose, results, and limitations.

Table 2: Analysis of imbalance classification based on
semi-supervised ELM

Autho	Method	Purpose	Results	Limitatio
rs	used	-		n
Zhiqio	Distribut	Primarily,	The	The HLs
ng et	ed and	each	approach	dimensio
al.[32]	weighted	class's	's	nality was
	ELM	data	efficacy	augmente
	(DW-	center	was	d by
	ELM)	was	validated	elevating
	algorith	engendere	by	the
	m.	d	relatively	number of
		randomly.	stable	hidden
		Grounded	training	nodes
		on the	time.	resulting
		multivaria		in the
		te		algorithm'
		Gaussian		S
		distributio		increased
		n, the data		computati
		of each		on time.
		class was		
		engendere		
		d, where		
		the		
		formerly		
		produced		
		center		
		point was		
		pondered		
		as the		
		mean		
		whereas		
		the		
		variance		
		was the		
		number of		
		classes'		
		reciprocal		
		. Finally,		
		the		
		experime		
		ntal data		
		was made		
		by		
		combinin		
		g all		
		classes'		
		generated		
		data.		

T ••	0.16	T 1/ 11	<u> </u>	T 1 1			701		
Junjie	Self-	Initially,	Short	Imbalanc			The	tion tasks	
et	Training	the	calibratio	e			ELM's	were	
al.[33]	Regulari	positive	n time	classificat			performa	elevated	
	zed	and	along	ion was			nce in	by the	
	Weighte	negative	with low	executed			semi-	combinat	
	d Online	sample	computat	only for a			supervise	ion of	
	Sequenti	ratio	ional	highly			d tasks	Laplacia	
	al ELM	along	complexi	labeled			was	n and	
	(ST-	with the	ty and	dataset.			elevated	Hessian	
	RWOS-	data	better				by a	terms.	
	ELM)	chunk	accuracy				weighted		
		was	of about				assemble		
		unaltered.	90%.				d		
		Also, by					regulariza		
		applying					tion		
		the					approach		
		weighting					via the		
		procedure					sigmoid		
		, the					activation		
		errors in					function.		
		the			Jin et	Distribut	Each	Guarante	Disconne
		samples			al.[36]	ed Semi	node in	ed	ction
		were				Supervis	the	privacy-	might
		totally				ed-ELM	communi	conservi	occur in
		rebalance				(DSS-	cation	ng	communi
		d.				ELM)	network	algorith	cation
Nan <i>et</i>	UnSuper	The	To attain	The		with	has an	m with	nodes that
al.[34]	vised	regularise	better	training		Zero	identical	enhanced	cause data
	ELM	d cost	performa	time was		Gradient	basic	converge	loss
	with	function	nce, it	elevated		Sum	function	nce	
	Kernel	was	was	by		(ZGS)	and		
	(US-	diminishe	capable	utilizing		optimiza	random		
	KELM)	d by	of	'2' loops		tion	parameter		
		utilizing a	utilizing	in the		strategy.	s. The		
		wavelet	unlabele	kernel			globally		
		kernel	d data.	matrix			optimal		
		function		computati			coefficien		
		rather		on.			t vector		
		than					was		
		output					computed		
X 7 •	T 1 '	HL.	701	XX71 .1			by ZGS		
Yongxi	Laplacia	Primarily,	The	When the			strategy		
ang <i>et</i>	n- Usesian	Laplacian	extrapola	function			utilizing		
al.[35]	Hessian	and	ting	was			an iterative		
	regulariz	Hessian	power,	heavily					
	ation SS-	functions	accuracy,	oscillatin	Uana	Cost	process	This	The
	ELM	were	along	g, it was	Hongy	Cost-	Grounded		
	(LHRSS	incorporat	with	inaccurate	u et	Sensitive	on the	scheme	algorithm
	-ELM)	ed with	robustne	•	al.[37]	- Diamin 11	output's	was	was made
		semi-	ss in			Dissimil	uncertaint	insensiti	invalid
		supervise	multiclas			ar-	ies	ve to the	and
		d learning	S			ELM(CS	acquired	choice of	unavailab
		methods.	classifica			-D-	as of the	both the	le by

	ELM)	basic	classifier	adding up	Especially in a situation like a relatively low amount of
		classifier,	training	low	labeled data, SSOE-ELM was pondered as a feasible
		testing	algorith	fuzziness	semi-supervised online learning algorithm. Nevertheless,
		samples	ms along	to the	the algorithm's accuracy was altered by the minute
		were	with the	training	variation in the regularization parameter, as it was very
		partitione	specific	samples.	sensitive.
		d into	represent		Jie Yanga et al. [39] projected a Regularized
		numerous	ation		Correntropy criterion-centered SSELM (RC-SSELM)
		groups	forms of		technique. The correntropy was employed in the cost
		initially.	uncertain		function's formulation. Non-Gaussian noises and outliers
		After that,	ty.		were dealt with by adopting the Maximum Correntropy
		sample			Criterion (MCC) in the RC-SSELM's optimization
		groups			strategy. A second-order statistical resemblance measure
		with			in the kernel space was the Correntropy. Thus, it provided
		small			better performance for a high percentage of outliers along
		uncertaint			with founding robust. However, poor performance was
		ies were			exhibited while readily propagating the misclassified
		pondered.			outcomes in the labeled training data to the adjacent
		The basic			samples.
		classifier			Parsa et al. [40] established online ensembles from
		that			multi-class imbalanced data for learning. Grounded on
		predicted			individual recall rates, the minority instances were over-
		the			sampled initially by the Improved SMOTE Online
		samples			Ensembles (ISOE) while dynamically re-sampling whole
		with their			classes. To re-balance the sample sizes of various classes,
		labels was			Improved Online Ensembles (IOE) were utilized by
		summed			altering the parameter rate grounded on performance
		to the			along with each class's number of instances. The
		original			unknown labels were processed by combining self-
		training			training into the online learning process. Thus, a better
		set. Via			outcome was provided by the presented approach than the
		the			conventional schemes regarding balancing the predictive
		chosen			accuracies. Utilizing only static data sets was a major
		training			drawback here; the system's durability gets affected by
		algorithm,			the streams that do not contain concept drifts.
		the			
		classifier			Zheng et al. [41] introduced a Semi-Supervised Broad
		was			Learning System (S2-BLS) for solving CI issues. Here,
		restrained			the mapped features were obtained by utilizing the ELM-
		on the			grounded Auto Encoder (ELM-AE). Consequently, the
		enlarged			discriminative projecting weights betwixt ground truths
		training			and the changed features encompassing the mapping
		set			features along with the enhancement nodes were
		finally.			computed. Subsequently, training the discriminant linear
Corlos	4 al [20] d	avalopad a S	lani Cunam	icad Onlina	mode with altered samples along with ground truths

Carlos *et al.* **[38]** developed a Semi-Supervised Online Elastic ELM (SSOE-ELM) scheme to overcome the CI issues. During the training phase, each dataset was bifurcated into labeled and unlabelled instances. Grounded on the chunk utilized, training was executed in an online manner. Utilizing classification accuracy's mean and standard deviation as performance metrics, the experiment has recurred 30 times for each division.

Adnan et al. [42] presented a Multi Kernel Semi-Supervised ELM (MKSSELM) method to overcome the

occurs. Betwixt the labeled along with unlabelled

samples, the information was explored efficiently. But,

the training time was elevated by the useless information

comprised in the retrieved mapped features along with

enhancement nodes.

unbalanced data conflicts. Utilizing the multi-kernel approach, the kernel parameters were fine-tuned initially. The kernel regulation was controlled by commanding a norm constraint on the kernel combination weights and optimizing the ELM structural parameters along with the kernel combination weights. The system's generalization performance was augmented by the Kernelized ELM. However, the local optima in the dataset affected the presented approach's performance.

Chuangquan Chena *et al.* **[43]** enumerated an Extreme Semi-Supervised Learning (ESSL) scheme to overcome imbalance classification. Initially, both binary, as well as multiclass classification issues, were handled by ELM in a unified model. Then, the HL was encoded by a tiny Approximate Empirical Kernel Map (AEKM) that diminished the computational cost along with memory usage. Subsequently, via the weighting function's elaborative design, the balance constraint or prior knowledge in the unlabeled data was eliminated. The imbalanced class problem was effectively along with efficiently solved by the ESSL without any fine-tuning parameters. However, the scalability was affected by the ESSL's dependence on regularization parameters.

2.4 Kernel- Fuzzy-based ELM imbalanced class problem.

Table 3 illustrated the diverse kinds of existing kernel-Fuzzy-based ELM approaches for imbalanced class problems.

 Table 3: Evaluation of imbalance class problem based on kernel and fuzzy based ELM.

Research	Techni	Procedu	Perform	Disadva
er	ques	re	ance	ntage
			measure	
Weipeng	Fuzzine	Utilizing	Higher	The loss
et al.[44]	SS-	the	generaliz	of vital
	centered	fuzzy	ation	informati
	Online	classifier	performa	on was
	Sequent	,	nce with	caused
	ial ELM	meaning	high	by the
	(FOS-	ful data	testing	utilizatio
	ELM).	was	accuracy	n of
		chosen		predefine
		as of the		d
		given		condition
		data		s.
		initially.		
		Here, the		
		sequenti		
		al		
		learning		

el			utilized		
y.			only the		
a			selected		
d			samples		
ie			with		
n			high-		
1.			output		
ne			fuzzines		
			S.		
	Lu Li et	AdaBoo	Grounde	Better	Insufficie
ne	al. [45]	st	d on the	accuracie	nt
ne	un [40]	Weighte	AdaBoo	s were	discrimin
as		d	st	obtained	ative
in		Compos	algorith	even	informati
y		ite	m, the	though	on for
at		Kernel	training	the	multiclas
y		ELM	sample's	training	s was
's		(AdaBo	weights	samples	s was provided
or		Ost-	were	were	by
ie		WCKE	adjusted	imbalanc	utilizing
h		LM)	here.	ed or	unlabelle
ıg		LIVI)	The	very	d data
ie			spatial	limited.	u uata
			informat	mmea.	
			ion with		
SS			original		
			spectral		
1-			bands		
ss			was		
			embedde		
			d by		
n			extractin		
			g the local		
۱ ۱					
			mean		
			and		
S			standard		
			subseque		
ti			ntly.		
5			Finally, the		
			imbalanc		
0			e issue		
			was solved		
ie					
			by		
n			applying		
			the		
			composit		
			e kernel		
			method		
			in the		
			ELM		

		algorith				LM)	class, a	when	computat
		m.				LIVI)	subset of	analogiz	ional
Ping et	(MKEL	Multiple	accuracy	Poor			training	ed with	complexi
al.[46]	(MKLL M)-	kernel	98.1%,	minority			data was	tradition	ty with
<i>a</i> .[40]	centered	function	average	class			utilized	al	elevated
	random	s	positive	sample			as the	methods.	dataset
	forest	comprise	predictiv	detection			centroid	methous.	size was
	binary	d of	e value	uelection			of those		resulted
	classifie	different	93.9%,	•			kernel		by
		sub-					function		utilizing
	r		and sensitivit				s chosen		training
	(MKEL	feature							-
	M-RF)	spaces	y 94.4%				by the		samples for the
		were					ensembl		kernel
		utilized					e		
		for space					method. The		matrix.
		mapping							
		. To					balance		
		tackle					data was		
		the CI					chosen		
		issue,					by		
		synthetic					adapting		
		data					the		
		points					random		
		for the					under-		
		minority					sampling		
		samples					method.		
		were			Bhagat	General	The	As it	The
		generate			Singh	ized	class	does not	overfittin
		d by			Raghuwa	Class	proporti	need the	g
		utilizing			nshia <i>et</i>	Specific	on along	weight	problem
		SMOTE.			al. [48]	Kerneli	with the	allotment	was
		Finally,				zed	regulariz	to each	raised in
		the				ELM(G	ation	training	the
		features				CS-	paramete	sample,	approach
		were				KELM)	r's value	the	
		chosen					was	computat	
		by					determin	ional	
		executin					ed by the	cost was	
		g					Class-	diminish	
		bootstra					specific	ed along	
		p					regulariz	with an	
		sampling					ation	accuracy	
		to train					paramete	of 92%.	
		MKEL					rs. The		
		M-					input		
		centered					data was		
		learners.					converte		
Bhagat <i>et</i>	Reduce	То	A	A			d into		
al.[47]	d	maintain	significa	significa			feature		
	Kerneli	equal	ntly	nt			space by		
	zed	instances	lower	augment			utilizing		
	WELM	as of	running	ation in			the		
	(RKWE	each	time	the	<u> </u>		Gaussian		

I						1	1		
		Kernel					base		
		function.					classifier		
							S		
							outcome		
							s were		
							d.		
Bhagat et al.[49]	Reduce d Kerneli zed- WELM(RK- WELM)	The CI issue was handled by utilizing an ensembl e- centered solution initially. The base classifier used here was the RKWEL M which generate d balanced subsets on a training dataset. Finally, utilizing majority voting along with soft voting,	Owing to the diminish ed number of kernels utilizatio n, rapid classifica tion along with 80% accuracy was obtained	Elevated data complexi ty resulted from choosing centroid kernels.	learning ph utilized in b Further, the random fea mapping in adapted to t presented approach's made unsui scheme utili Bhagat et KELM (B ⁰ training sul under-samp engendered balance trai Therefore, I performance However, t balanced tra Hongyun e method alo (K-mean S Utilizing th integrating ANN. Da utilizing D enhanced algorithm representati imbalance i capacity wa algorithm. value of the Yang et al Multilayer solve the C performance	Kernels (N CI issue, th ase, along y ooth binary e non-optim ture mappin a WOS-EL he new data approach performan table for lan ization. <i>al.</i> [51] pr CKELM) by the ens ning subset by the ens ning subset better stabil e was prov the compu- tining subset better stabil e was prov the compu- tining subset petter stabil e was elev the K-me ata weight end the K-me the K-me ata weight end the K-me the K-me	combine d. ented a Weig WOS-ELMK e initializati with sequence class as well al hidden r ing was avoi MK. Thus, a, the instabilithereby electer ce. However rge datasets esented Bal- to tackle t balanced bal- to tackle t by the tation time ets depender developed e ANN-cent ELM) for pproach, the ans SMOTI- ing operati- ted ELM (AdaBoost t-ID) and to centered El orted along by the K the accuracy weights.	C) for CI le ion phase, d tial learning l as multicla node issue 1 ded by utiliz by getting ility was aveced evating the er, the app with the fixe ance Cascad he CI prology adapting the base le od sequential dered in ever ith good ger the presented was elevat nee on the IR the K-mean cered KELM solving CI e data was b E technique on was ex DWELM) t imbalanced an (EH-Dr.)	arning. To ecremental phase was ss datasets. inked with zing kernel not being bided in the presented roach was ed memory de-centered blem. The a random earner was lly. A new y iteration. teralization approach. ed by the s. alanced by hrough an d learning ced deep ELM). The s' learning FE+KELM ted by the el-centered WELM) to assification a weighted
I		those			classificatio	n errora co	used by out	liers and noi	

were eliminated by the fuzzy membership. Moreover, the ML-KFWELM's parameters were optimized by the EGWO strategy. The classification performance, accuracy along with stability was elevated by the optimization approach than other models. However, a slow response was made in the system owing to the existence of noise.

Zhennao *et al.* **[54]** addressed a hybrid ML model grounded on enhanced Grey Wolf Optimization (GWO) along with KELM. The GWO algorithm's global along with local search capabilities was elevated by a new hierarchical mechanism initially. The key parameters for KELM were tuned by utilizing IGWO. Therefore, a better convergence rate along with performance elevation was indicated by the IGWO-KELM's experiential outcomes. However, the computational burden was elevated by utilizing a discrete optimization strategy.

Pattaramon *et al.* **[55]** projected Radial Basis Function Network (RBFN) to tackle the class overlapping problem in imbalanced data. In instances where a common space was shared by more than one class, class overlaps occur generally. Additionally, shifting the decision boundary towards the negative class led to positive instances of misclassification near the class boundary. It cannot be utilized in a real-world application even though elevated classification accuracy was presented by this approach.

El Barakaz Fatima *et al.* **[56]** established three algorithms namely RONS (Reduce Overlapping with Nosampling), ROS (Reduce Overlapping with SMOTE), and ROA (Reduce Overlapping with ADASYN) to solve the CI problem. The classification of class-imbalanced data was optimized by diminishing the overlap degree along with looping the learning to separate datasets. However, the high dimensionality affected the presented system's performance.

Everlandio *et al.* **[57]** exaggerated evolutionary inversion of class distribution in overlapping areas for multi-class imbalanced learning (EVINCI) to tackle the multi-class imbalance problem. A set of samples evolved as of an imbalanced dataset by utilizing a Multiobjective Evolutionary Algorithm (MOEA). In the overlapping regions, while choosing samples that generated precise models, the concentration of majority classes' fewer representative instances was opted. Regarding predictive accuracy, the approach's superiority was evaluated by the experiential outcomes. But the performance was affected by the larger IR.

2.5 Various other ELM-based approaches in imbalance classification.

Mingjing *et al.* [58] introduced a KELM parameter centered on a swarm intelligence algorithm called GWO. By exploring this for optimal parameter prediction, the KELM classifier's generalization capability was maximized by the swarm intelligence algorithms. Owing to the presented approach's superiority, it was utilized in the bankruptcy prediction. However, for datasets containing a large number of samples, it was not suitable.

Dong *et al.* **[59]** engendered an efficient bankruptcy prediction model centered on the KELM method. The optimal parameters were searched by a two-step grid search strategy that unites coarse search with fine search. The prediction was executed by the obtained optimal parameter finally. When analogized with the prevailing models, a better performance was exhibited by the presented model. However, a large variation in the classification accuracy was engendered by randomly assigned weights in distinct trials.

Yan Wei et al. [60] projected effective hybrid Gaussian Barebones (GB) improved Harris Hawk's Optimizer (HHO) centered KELM (GBHHO-KELM) method for predicting imbalance classification issues in students' intentions on self-employment. The global along with local search capabilities was balanced by introducing the GB mechanism into the HHO algorithm. Thus, better parameter combinations along with higher prediction sensitivity with more stable performance were attained by the presented scheme. However, the accuracy was affected by accomplishing the smaller fitness together with variance by the presented model.

Yongshan *et al.* [61] established a new Instance Cloned ELM (IC-ELM) in order to compute the class label of a testing instance. The testing instance's k nearest instances were selected by introducing the instance cloning technique. In the extended data set, each training instance's weight was computed. The underlying class label for the testing machine was predicted by formulating the learning model with an extended training dataset. Thus, the overfitting issue was more effectively handled by the presented model than the prevailing models. However, it cannot be utilized in practical applications like disease diagnosis, etc.

Xiaowei *et al.* [62] developed a Genetic Algorithmcentered ELM approach for the CI problem. The GA's population diversity was elevated by the Extinction and Immigration (EI) strategy. Here, the feature selection process utilized the Error Minimized-ELM (EM-ELM).

As per the ELM's generalizatio ranking method was formed fo process. Finally, the selected EL ensemble. Grounded on higher pr with better stability, the efficacy v experiential outcomes. However, more time-consuming by the ensemble methods than the other s

Ali Asghar et al. [63] introduce Learning Grey Wolf Optimization for solving the CI problem. Thi greedy selection operator and Ll leaders, along with the strategy of Regarding the faster convergence revealed the presented approach's The model selection issue wa However, the scalability was affe the average error and standar augmented by the population dime

Xu Xiaolong et al. [64] prese DSMOTE. Initially, the minority partitioned into core samples, b noise samples by the optimized D more effective samples, the samples were eliminated. Thus, with borderline samples were ov distinct strategies. Regarding pr value, a better outcome was experiential outcomes. However, information was not properly util model was susceptible to noise dat

Approach

Individual

Bayes

Imbalance

Impact

Index

(IBI³)

Autho

Lu et

al.

[65]

r name Yang

eneralizatior	n theory, a	n effective			imbalanc		
formed for	the ELM's	s selection			ed data		
elected ELN	Ms compute	d the final			set was		
n higher pre	diction accu	racy along			determin		
e efficacy w	as demonstr	ated by the			ed by		
However,	the system	was made			BI ³ .		
by the	filter and	embedded	Zhinin	Self-paced	The	Robust	The
the other so	chemes.		g et al.	Ensemble	concern	perform	performa
			[66]	(SPE)	in	ance	nce was
	the Opposi			approach.	classifyin	even	affected
-	(OBLGWO	-		11	g the	under	by the
	algorithm				classifier'	highly	computat
	mechanism				s samples	overlapp	ional
•••	random spir				was	ing	cost's
-	e rates, the				tackled	classes.	dependen
	better soluti				by a		cy on the
	s tackled	•			classifica		dataset.
•	ted by the e				tion		
	l deviation	that was			hardness		
lation dime	nsion.				strategy.		
[64] prese	nted a Der	nsity-based			Here,		
-	class's san	-			better		
	orderline sau	-			outcomes		
-	BSCAN. To	-			were		
-	ninority cla	-			attained		
	he core sam				by the		
	ersampled b				resampli		
	ecision, rec				ng		
	demonstrate				strategy		
	the majorit	•			which		
	ized and the				was		
to noise data		1			guided		
	1				by this		
Steps	Advant	Drawbac			hardness		
involved	age	ks			approach		
					•		
The	Obtaine	The	Mugd	Convolutio	Initially,	By	Some
imbalanc	d higher	imbalanc	ha <i>et</i>	nal Neural	filters	diminish	issues
e	correlate	e issue	al.	Network-	were	ing the	like
problem	d data	was not	[67]	based	used to	overfitti	elevated
of a	with	solved		ELM	learn the	ng	error rate
single	high F-	effectivel			intuitive	problem,	and
minority	scores.	y since			features	the	instabilit
class		each type			like	translati	y in
sample		of			edges	on	classifica
		-1:f:					
was		classifier			and basic	variance	tion were
measured		had			shapes.	was	generated
measured by IBI ³ .		had distinct			shapes. More	was elevated	generated by the
measured by IBI ³ . The		had distinct sensitivit			shapes. More abstract	was elevated by the	generated by the imbalanc
measured by IBI ³ . The degradati		had distinct			shapes. More abstract features	was elevated by the CNN's	generated by the
measured by IBI ³ . The degradati on		had distinct sensitivit			shapes. More abstract features like	was elevated by the	generated by the imbalanc
measured by IBI ³ . The degradati		had distinct sensitivit			shapes. More abstract features	was elevated by the CNN's	generated by the imbalanc

Base followed by by by by by foratoms max was Linbin Classifica - <th></th> <th>1</th> <th></th> <th></th> <th></th> <th>A .]</th> <th>C</th> <th>A Chara</th> <th>C</th> <th>The</th>		1				A .]	C	A Chara	C	The
by features by features by features features inc.			acquired			Adam	Generative	A fine-	Superior	The
Implie classifica ion.The classifica ion.Elevated efficienc y was affected by the processNetwork(G 							Adversaria	-	-	-
Linbin totclassifica tonlevatedThe recogniti efficienc y was affected inbalane incority edgreesThe ercogniti efficienc y was affected method's dipendent eclassificaANNassured hy putilizing introduce alloclassifica andong utilizing multiple eclassificahy the formation of por minority dataget alloLinbin et et allo(D)nedgreed process instances top of by a new allo by a new by a new by a new by a new lossprocess instances top of by a new hatprocess instances top instances top classificaallo diminority classifica instances allo top instances top classificaallo diminority classifica instances top classificaallo diminority classifica instances top classificasumple distance top classifica instances top allo top instancesfile top top classificafile top top classificafile top top classifica instances top top classificafile top top classificafile top top classificafile top top classificafile top top classificafile top top classificafile top top top classificafile top top top top top topfilefile top top top top top topfilefile top top top top top top top topfile top top top top top top topfile top top top topfile top top top 			•			[70]		-	-	
Linbin et et et officientThe IteratedElevatedThe iteratedby efficientatom infinoity allosatom infinoity allosal.[68]The edegreeon rate. afficientefficient stateinfinoity afficientalong accessalong accessal.[68](ID)inby the processinprosented dependenalong accessgenerate along allositedal.[64]gradient descentinconorinalong accessalong accessal.[64]gradient descentinconorininininal.[65]gradient descentininininininininal.[65]gradient descentin<in <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>									-	
Linbin et al.[68] CI loss The imbalanc e degree (ID) in he process of of of gradient Elevated efficienc y was afficeted by he presented of of gradient The efficienc by he process on rate. The efficienc y was afficeted by he process number efficienc (asses afficeted by he process number utilizing (about allog (b) in the process number perform (about allog (classes) n of poor minority (classes) Borow ska et al. A Rough (GGA)App roach The by anwe allog (about the process number The or rate. The or rate. Xiaofe (classes) Weighted (classes) nof process number n of poor minority (classe instance's) n of poor minority (classe instance's) Borow ska et al. A Rough (GGA)App roach The samples. Xiaofe (classes) Weighted (classes) The ABC (classe) Superior ed. Failed to work in multiple (B9) (KGA)App roach The swere initrally. Siaofe (classe) Weighted (classe) The ABC (classe) Superior ed. Failed to work in multiple (B9) (KGA)App roach The swere timed, the RGA carefully warance The secrify by sheeter The swere timed and the RGA involved The swere timed, the paramete g followed The swere timed and the RGA involved The swere timed and the reach time and time and ti							AN)			•
et al.[68]imbalanc e degree (D) in (D) in (•		
ad.[68] e degree (ID) in the b on rate: (ID) in the b y was affected by the process in the by the process in the by the process in the proces in the process <t< th=""><th>Linbin</th><th>CI loss</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>perform</th><th>-</th></t<>	Linbin	CI loss						-	perform	-
Image: section of the section of th				recogniti	efficienc			-		•
Borow allA Rough grantes all vasThe samples dependen descent was lossSmall that thatThe that thatSmall that that thatSmall that that that that that that damong arbitrary imbalanc ed datasets.Small that t	al.[68]		e degree	on rate.	-			fake	U	
Borow ARough The Small Small Variance Small Gasamin Borow ARough The Small Small <t< th=""><th></th><th></th><th>(ID) in</th><th></th><th>affected</th><th></th><th></th><th>classes</th><th>with</th><th>samples.</th></t<>			(ID) in		affected			classes	with	samples.
Image: section of the section of t			the		by the			along	generate	
Image: section of the section of th			process		presented			with	d sample	
Borow ARough Case Construction Case Case Borow ARough Case Internet Internet Internet Internet Borow ARough Case Internet Internet Internet Internet Borow ARough The Small Internet Internet Internet Internet Borow ARough The Small Internet Interne Interne Interne			of		method's			minority	quality.	
Normer alleviatedwas alleviatednumber of samples.classifica tion. Addition ally, minority class instances aimed at rebalanci agrinum d among arbitry imbalanc ed d among arbitry imbalanc ed edinterpretain to the to t			gradient		dependen			class		
ARough alleviated of samples. iton. Addition alleviate Ibsa function iton Addition ally, minority ibsa function iton ally, minority class ibsa iton iton ally, minority class iton ibsa iton iton iton ally, iton ally, iton ibsa iton iton iton iton ally, iton iton ibsa iton iton iton iton iton iton iton iton ibsa iton iton iton iton iton iton iton iton iton ibsk et Granular granules disjuncts comply iton classific work in intoduc galog toto iton generaliz iton algorithm classific work in intoduc alog toto generaliz iton diton iton iton			descent		cy on the			instance's		
by a new lossby a new losssamples.samples.lossAddition ally, minitor classfunction that could be employeintentionintentionally, mistancescould be employeintentionintentioninstancesdamong d admong arbitrary imbalanc edintentioninstancesadtistrary imbalanc edintentionintentionedintentionintentionintentiongataGranulargranulesdisjunctscomplexifuelGranulargranulesdisjunctscomplexigranchparametordentionintentionfuelintroducealongintroduceintroduceintroducealongtendencyintroduceintroduceintroducealongtendencyintroduceintroduceintroducealongtendencyintroduceintroduceintroducealoneintroducegeneralizintroduceintroduceintroduceintonialintroducein			was		number			classifica		
			alleviated		of			tion.		
Image: section of the sectin of the section of the section of th			by a new		samples.			Addition		
Image: section of that that could be employe d among arbitrary imbalaneImage: section of that could be employe d among arbitrary imbalaneImage: section of that the section of the section of that the section of the sectio			•		1			ally,		
Image: section of the section of th			function					-		
ARough ska et al. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed datasets. ed ed datasets. ed ed ed datasets. ed ed ed ed ed ed ed ed ed ed ed ed ed								•		
employe d among arbitrary imbalanc ed datasets.employe d among arbitrary imbalanc ed datasets.imploy imbalanc ed datasets.imploy imbalanc ed datasets.imploy imbalanc ed ed imbalanc ed imbalancThe statestXiaofe in et al.imploy imbalanc ed.Superior imbalanc ed.Failed to work in multi-Borow ska et d. Granula (RGA)App roachThe granmete introduce introduce introduce introduce introduce introduceThe ist introduce along introduce 										
d among arbitrary imbalanc ed datasets.rand imbalanc edrebalanci ng were also engenderrebalanci ng were also engenderBorow ska et d.A Rough Granular granulesThe granulesSmall disjunctsThe complexi ty wasXiaofe n et al.Weighted tent al.The ABC tent al.Superior work in multi-[69](RGA)App roachparamete introduceoverlapp alongelevated to over- tendencyNet al.Failed to work in multi-[69](RGA)App roachparamete introduceoverlapp alongelevated to over- to over- to over- generalizArtificial to over- Colonyinitially.efficient alase[69](RGA)App roachrs were initially.noises overlappgeneraliz to over- ation and to over- to along(WELM- tendencyThe the AUC.AUC.[71]noises generalizgeneraliz to over- to over- diamad(WELM- tendencyThe the tendencyAUC.[71]noises generalizgeneraliz to over- to over- to over- to over- to over- to over- diamadHABC)HABC[71]noises approach removedeato along to over- to over- to over- to over- to over- to over- diamadHABCHABC[71]noises approach removedeato along to over- to over- to over- to over- to over- to over- to over- to over- to the training samples.HABCHABC </th <th></th>										
arbitrary imbalanc edarbitrary imbalanc edarbitrary imbalanc ednet al. ednet al. ednet al. ednet al. edSuperior edFailed toBorow ska et al.A Rough Granular granulesThe granulesMais disjuncts owerlappName complexi elevatedWeightedThe elevatedSuperior elevatedSuperior elevatedSuperior elevatedSuperior elevatedSuperior elevatedSuperior elevatedSuperior elevatedCanser algorithmCanser algorithmAttic enteredMore algorithmAttic elevatedMore algorithmAttic elevatedMore algorithmAttic elevatedMore algorithmAttic elevatedMore algorithmAttic elevatedMore algorithmAttic elevatedAttic elevatedMore algorithmAttic elevatedAttic elevat										
imbalanc ed datasets.imbalanc ed datasets.imbalanc ed datasets.imbalanc ed datasets.imbalanc ed datasets.imbalanc ed ed.imbalanc engender ed.imbalanc engender ed.imbalanc engender ed.Failed to senderBorowA Rough granuleThe granulesSmall disjunctsThe complexi ty was by the introduceNate al. ent ed.Weighted the ABCThe ABC algorithm classificFailed to work in multi- omritize[69](RGA)App parameteparamete overlappoverlapp elevated[71]centered on Hybridofthe performclass datasets.[69](RGA)App parameteoverlapp overlappelevatedArtificial on Hybridinput anceance datasets.[69](RGA)App roachrs were introducealong tendencytendency elevatedBee biasbiaswith elficient[69](RGA)App roachdwith to over- garameteto over- alon and variance.Colony initially.efficient datasets.[69]dwith to over- garametecarefully variance.variance.HABCHABCHABC[60]with the RGA approachremovedintendedintendedintendedintended[60]the RGAintendedintendedintendedintendedintendedintended[60]RGAintendedintendedintendedintendedinten			-							
end datasets.end datasets.endend endengender ed.endBorowA RoughTheSmallTheXiaofeWeightedThe ABCSuperiorFailed toska et dlGranulargranulesdisjunctscomplexin et al.ELMalgorithmclassificwork inallcomputingwith, classty was[71]centeredoptimizeationmulti-[69](RGA)Appparameteoverlappelevatedon Hybriddtheperformclassroachrs wereingby theArtificialinputancedatasets.introducealongtendencyEndencyColonyinitially.efficientinitially.noisesgeneraliz(WELM-TheAUC.Hiberutilizingwereation andIntelHABCHABCIntelapproachremovedision andIntelHABCIntelIntelapproachremovedision andIntelIntelIntelIntelapproachremovedision andIntelIntelIntelIntelapproachremovedision andIntelIntelIntelIntelintelision andIsion andIsion andIsion andIsion andIsion andintelision andision andIsion andIsion andIsion andIsion andintelision andision and			-					-		
Image: boxdatasets.Image: boxImage: box <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
BorowA RoughThe GranularSmall granulesThe disjunctsXiaofe complexiWeighted n et al.The ABC ELM algorithmSuperior classificFailed to work in multi-al.computingwith, classty was (RGA)App[71]elevatedIThe elavatedalgorithm optimizealgorithm alionmulti- classific[69](RGA)App roachparamete introduceoverlapp alongelevated tendencyIThe enteredArtificial inputinput anceance datasets.dwith initially.to over- alon and the RGA approachdo over- removedColony initially.RGA duthHABCHABCheHABCHABCHABCheparamete tunedgggfollowedgfollowedgfolloweduu <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>								-		
ska et al.Granular computinggranules with with parametedisjuncts ocuserlappcomplexi ty was elevatedn et al. [71]ELM centered optimizealgorithm ationclassific ationwork in multi- ultin[69](RGA)App roachparamete introduceoverlapp alongelevatedITELM (centered)algorithm optimizeclassific ationwork in multi-[69](RGA)App roachparamete introduceoverlapp alongby the tendency to over- generalizELM (centered)algorithm optimizeclassific ationwork in multi-dwith initially.noises generalizgeneraliz ation and variance.Bee Beebiaswith efficientdatasets.Utilizing approach removed , the paramete rs were tunedHABCHABCAUC.IIIIHABC approach removed processin g followedg followedg followedg followedintroduceu<	Borow	A Pough		Small	The	Viaofo	Weighted		Superior	Failed to
al.computing (RGA)App roachwith paramete, classty was verlapp[71]centered on Hybridoptimize dation perform classmulti- class[69](RGA)App roachparamete introduceoverlapp alongelevated by the tendencyArtificial Beeinput biasance datasets.datasets.dwith introduceto over- generalizColony tinitially.multi- classdatasets.Utilizing approach removed , the tuned.noises generalizgeneraliz to over- wriance.(WELM- HABC)The HABC)AUC.HABC)the RGA carefully approach rs were tuned.removed removed rs wereallocated to the training samples.allocated to the training samples.g followed by selective oversampginvolvedinvolved isselectiveinvolved isselectiveinvolved isselectiveinvolved isselectiveinvolved isselectiveuinvolved isselective oversampinvolvedinvolved isselectiveinvolved isselectiveinvolved isselectiveinvolved isselectiveinvolved isselectiveinvolved isselectiveinvolved isselectiveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>-</th> <th></th>		-					-		-	
[69](RGA)App roachparamete is wereoverlapp ing, ing, introduceelevated by the tendency don Hybridd the the hut classperform anceclass datasets.1introducealong withtendency to over- initially.on Hybridd the performon Hybridd the performance ancedatasets.1dwith to over- initially.noises generalizgeneraliz ation and variance.Colony initially.mitially.efficient datasets.1Utilizing approach r merovedwere ation and variance.removed allocatedHABC)HABC optimizeHABC1the RGA approach r moved1garamete rs were1paramete rs were1g1pre- processin1g1g1g1g1g1g1g <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th></th>			-	-	-			-		
roachrs wereing, introduceby the alongArtificialinput secance datasets.dwithto over- initially.noisesgeneraliz ation andColonyinitially.efficientUtilizingwere the RGA the RGA the RGAation and variance.WELM- HABC)The HABCAUC.HABC)the RGA the RGA removed , the trainingremoved removedd the weightsd allocatedrs were tunedgraamete processin by selective oversampg followedg followedg followedg followedg followedby selective oversampaaaaaaaaaa <th></th> <th></th> <th></th> <th></th> <th></th> <th>[/1]</th> <th></th> <th>-</th> <th></th> <th></th>						[/1]		-		
introducealong withtendency to over- initially.Beebias initially.with efficientinitially.noisesgeneraliz ation and the RGA carefully(WELM- HABC)The HABCAUC.Utilizing approachvariance. removedd the weightsoptimize allocatedd the to the trainingparamete tunedrs were tunedg processin by selective oversampg followedby selective oversampallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed by selectiveallowed 	[09]		-				•		-	
dwith to over- generalizColony initially.initially. efficient AUC.Initially.noises generalizgeneraliz ation and the RGA(WELM- HABC)HABC optimizeapproach removedremovedHABCHABC, the paramete, the tuned, tuned, tuned<		roach			•					ualasets.
initially.noises ation and the RGA approach removed , the rs weregeneraliz ation and variance.(WELM- HABC)The HABC optimize d the weights allocated to the training samples.RGA pre- processing followed by selective oversampg followedg followedg followedg followedg followedg followedg followedg followed <td< th=""><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th></td<>				-	-					
Utilizingwere ation and variance.HABC)HABC optimizeapproachremovedvariance.d the weightsapproachremoved-d the weightsparameters weretunedRGAinvolvedpreprocessingfollowedbyselectiveoversampall-							-	-		
the RGAcarefullyvariance.optimizeapproachremovedd the, the.allocated, the.allocatedparameters weretunedRGAinvolvedpreprocessingfollowedbyselectiveoversampal.			-		-				AUC.	
approach , the , the parameteremoved .d the weights allocated to the trainingrs were tuned.to the trainingRGA involvedThe perturbed processing followed by selectiveto the trainingg followedfollowed s of aliby selectivealioversampali			-				HABC)			
, the.weightsparamete.allocatedrs wereto thetuned.trainingRGAsamples.involvedThepre-perturbedprocessinparametegr vector'sfolloweds ofbys ofselectivedifferentioversampal				-	variance.			-		
parameteallocatedrs wereto thetuned.trainingRGAsamples.involvedThepre-perturbedprocessinparametegr vector'sfolloweds ofbys ofselectivealoversampal				removed						
rs wereto thetuned.trainingRGAsamples.involvedThepre-perturbedprocessinparametefolloweddiversitiebys ofselectiveal				•				-		
tuned.tuned.trainingRGAsamples.involvedThepre-perturbedprocessinparametegr vector'sfolloweddiversitiebys ofselectivedifferentioversampal			-							
RGA involved pre- processinsamples. The perturbed paramete r vector's diversitie s of selective oversamp										
involvedThepre-perturbedprocessinparametegr vector'sfolloweddiversitiebys ofselectivedifferentioversampal								-		
pre- processinpre- processinperturbed parameteg followedr vector's diversitieby selectives of differenti al								-		
processin paramete g r vector's followed diversitie by s of selective differenti oversamp al			involved							
g followed by selective oversamp			-					-		
followed diversitie by s of selective differenti oversamp al			processin					-		
by selective oversamp by al			g							
selective oversamp al			followed					diversitie		
oversamp al			by							
			selective					differenti		
			oversamp					al		
ling. evolution	1		-	1		1			1	

				,
		combine		
		with the		
		ABC's		
		best		
		solution		
		informati		
		on in the		
		HABC		
		effectivel		
		у.		
Fatim	Multilayer	The	New	The
a et al.	Perceptron	Credit	fraudule	performa
[72]	(MLP) and	card	nt	nce was
	ELM.	transactio	transacti	affected
		n's	ons were	by the
		vector	predicte	false
		features	d rapidly	alarm's
		were	with	presence.
		comprise	95.46%	
		d in the	accuracy	
		input	•	
		layer		
		initially.		
		The		
		weighted		
		inputs as		
		of the		
		input		
		layer		
		were		
		received		
		by the		
		first HL		
		that		
		forward		
		the		
		earlier		
		layer's		
		data to		
		the		
		subseque		
		nt one.		
		The		
		classifica		
		tion		
		outcome		
		was		
		contained		
		in the		
		output		
		layer		
		finally.		

2.6 Performance analysis

The ELM algorithm's performance is validated here by means of a CI problem. Various models like SMOTE-CSELM [11], UBKELM [12], Ensemble-based WELM [17], and Demand Response Algorithm OSCSELM [13] were utilized by the prevailing schemes for the CI issue in crime scenes. Regarding Geometric Mean (G-Mean), Accuracy, and IR, the performance analysis are exhibited in Figures 3, 4, and 5.

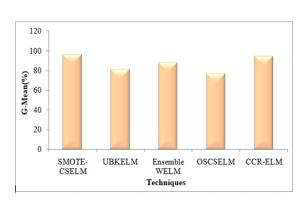


Figure 3: Performance evaluation based on G-Mean.

The model's G-mean is depicted in figure 3. 96.02% G-Mean was attained by the SMOTE-CSELM method whereas the UBKELM obtained only 81%. Similarly, 88.13%, 76.87%, and 94.50% G-mean were shown by the Ensemble-based WELM, OSCSELM, and the CCR-ELM method. Here, the SMOTE-CSELM approach is identified as more efficient than the other methodologies.

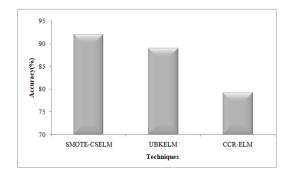


Figure 4: Performance assessment based on accuracy.

Grounded on accuracy rate, the performance of diverse models utilized in imbalance classification was revealed in figure 4. The number of appropriately predicted data points out of all data points is defined as Accuracy. Here, SMOTE-CSELM's accuracy is higher than the prevailing schemes. The SMOTE-CSELM's accuracy is 92%, whereas lower accuracy was attained by the CCR-ELM than the prevailing schemes; the UBKELM method's accuracy is 89%, which is much better than the CCR-ELM having 79.22%. It is concluded

that better outcomes were attained by the SMOTE-CSELM than other approaches.

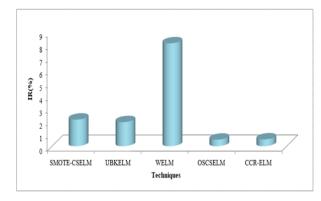


Figure 5: Performance evaluation based on Imbalance Ratio.

Regarding IR, other prevailing model performance evaluations were depicted in figure 5. The ratio of the number of examples belonging to the minority class to the majority class is named IR. The imbalance problem is higher if the IR value is smaller. It is evident that a lower IR value was exhibited by the OSCSELM method (0.52%) inflicting large imbalance issues in the dataset. Also, 2.1%, 8.11%, and 1.90% were the IR of SMOTE-CSELM, UBKELM, and ensemble-based WELM, respectively.

3 Conclusion

A significant issue in ML is classification with imbalanced class distributions. Regarding this topic, more related studies along with findings have been presented. A research review on several extreme ML techniques for classifying imbalances is presented here, along with a brief discussion on their drawbacks. Various prevailing models of extreme ML approaches for imbalance classification like Ensemble-based ELM for CI problems, Semi-supervised ELM algorithms for CI problems, and Kernel-based ELM for CI problems was explained by this literature work. Grounded on G-Mean, Accuracy, and IR performance indicators, the techniques' performance is examined. Finally, superior outcomes were exhibited by SMOTE-CSELM-based approaches than other methods that were concluded from this review. This review article recommends that future studies focus on making the system more reliable for imbalance classification via optimization and hybridized ML enhancements.

Declarations

Funding: No funds, grants were received by any of the authors.

Conflict of interest: There is no conflict of interest among the authors.

Data availability: All data generated or analysed during this study are included in the manuscript.

Code availability: Not applicable.

Author's contributions: All Author is contributed to the design and methodology of this study, the assessment of the outcomes and the writing of the manuscript.

References

- Haseeb Ali, Mohd Najib Mohd Salleh, Rohmat Saedudin, Kashif Hussain and Muhammad Faheem Mushtaq. Imbalance class problems in data mining a review. Indonesian Journal of Electrical Engineering and Computer Science, 14(3):1560-1571, 2019.
- [2] Paula Lauren, Guangzhi Qu, Feng Zhang and Amaury Lendasse. Discriminant document embeddings with an extreme learning machine for classifying clinical narratives. *Neurocomputing*, 277:129-138, 2017.
- [3] Li Li, Ruizhi Sun, Saihua Cai, Kaiyi Zhao and Qianqian Zhang. A review of improved extreme learning machine methods for data stream classification. *Multimedia Tools and Applications*, 78(24):33375-33400, 2019.
- [4] Jinhong Huang, Zhu Liang Yu and Zhenghui Gu. A clustering method based on extreme learning machine. *Neurocomputing*, 277:108-119, 2017.
- [5] Jian Wang, Siyuan Lu, Shui-Hua Wang and Yu-Dong Zhang. A review on extreme learning machine. *Multimedia Tools and Applications*, 80(11-13):1-50, 2021.
- [6] Peter Adeniyi Alaba, Segun Isaiah Popoola, Lanre Olatomiwa, Mathew Boladele Akanle, Olayinka Ohunakin, Emmanuel Adetiba, Opeoluwa David Alex, Aderemi A. A Atayero and Wan Mohd Ashri Wan Daud. Towards a more efficient and costsensitive extreme learning machine a state-of-the-art review of recent trend. *Neurocomputing*, 350:70-90, 2019.
- [7] Huimin Pei, Kuaini Wang, Qiang Lin and Ping Zhong. Robust semi-supervised extreme learning machine. *Knowledge-Based Systems*, 159:203-220, 2018.
- [8] Xiong Luo, Changwei Jiang, Weiping Wang, Yang Xu, Jenq-Haur Wang and Wenbing Zhao. User behavior prediction in social networks using weighted extreme learning machine with distribution optimization. *Future Generation Computer Systems*, 93:1023-1035, 2018.

- [9] Kemal Akyol. Comparing of deep neural networks and extreme learning machines based on growing and pruning approach. *Expert Systems with Applications*, 140:1-14, 2019.
- [10] Parashjyoti Borah and Deepak Gupta. Unconstrained convex minimization based implicit Lagrangian twin extreme learning machine for classification (ULTELMC). *Applied Intelligence*, 50(4):1327-1344, 2020.
- [11] Bhagat Singh Raghuwanshi and Sanyam Shukla. SMOTE based class-specific extreme learning machine for imbalanced learning. *Knowledge-Based Systems*, 187:1-46, 2019.
- [12] Bhagat Singh Raghuwanshi and Sanyam Shukla. Class imbalance learning using underbagging based kernelized extreme learning machine. *Neurocomputing*, 329:172-187, 2018.
- [13] Sanyam Shukla and Bhagat Singh Raghuwanshi. Online sequential class-specific extreme learning machine for binary imbalanced learning. *Neural Networks*, 119:235-248, 2019.
- [14] Hualong Yu, Xibei Yang, Shang Zheng and Changy. Active learning from imbalanced data a solution of online weighted extreme learning machine. *IEEE Transactions on Neural Networks and Learning Systems*, 30(4):1088-1103, 2018.
- [15] Wendong Xiao, Jie Zhang, Yanjiao Li, Sen Zhang and Weidong Yang. Class-specific cost regulation extreme learning machine for imbalanced classification. *Neurocomputing*, 261:70-82, 2016.
- [16] Bhagat singh Raghuwanshi and Sanyam Shukla. Class-specific extreme learning machine for handling binary class imbalance problem. *Neural Networks*, 105:206-217, 2018.
- [17] Yong Zhang, Bo Liu, Jing Cai and Suhua Zhang. Ensemble weighted extreme learning machine for imbalanced data classification based on differential evolution. *Neural Computing and Applications*, 28(12):259-267, 2016.
- [18] Hui Li, Xi Yang, Yang Li, Li-Ying Hao and Tian-Lun Zhang. Evolutionary extreme learning machine with sparse cost matrix for imbalanced learning. *ISA Transactions*, 100:198-209, 2019.
- [19] Chengbo Lu, Haifeng Ke, Gaoyan Zhang, Ying Mei and Huihui Xu. An improved weighted extreme learning machine for imbalanced data classification. *Memetic Computing*, 11(1):27-34, 2017.
- [20] Tianlei Wang, Jiuwen Cao, Xiaoping Lai and Badong Chen. Deep weighted extreme learning machine. *Cognitive Computation*, 10(6):890-907, 2018.
 - [21] Honghao Zhu, Guanjun Liu, Mengchu Zhou, Yu Xie, Abdullah Abusorrah and Qi Kang. Optimizing weighted extreme learning machines

for imbalanced classification and application to credit card fraud detection. *Neurocomputing*, 407:50-62, 2020.

- [22] Arnis Kirshners, Sergei Parshutin and Henrihs Gorskis. Entropy-based classifier enhancement to handle imbalanced class problem. *Procedia Computer Science*, 104:586-591, 2017.
- [23] Xiaoyan Zhu, Chenzhen Ying, Jiayin Wang, Jiaxuan Li, Xin Lai and Guangtao Wang. Ensemble of ML-KNN for classification algorithm recommendation. *Knowledge-Based Systems*, 221:1-10, 2021.
- [24] Wentao Mao, Jinwan Wang and Zhanao Xue. An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. *International Journal of Machine Learning and Cybernetics*, 8(4):1333-1345, 2016.
- [25] Junhai Zhai, Sufang Zhang and Chenxi Wang. The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. International Journal of Machine Learning and Cybernetics, 8(6):1009-1017, 2015.
- [26] Shifei Ding, Nan Zhang, Jian Zhang, Xinzheng Xu and Zhongzhi Shi. Unsupervised extreme learning machine with representational features. *International Journal of Machine Learning and Cybernetics*, 8(2):1-9, 2015.
- [27] Fulong Ren, Peng Cao, Wei Li, Dazhe Zhao and Osmar Zaiane. Ensemble based adaptive oversampling method for imbalanced data learning in computer aided detection of microaneurysm. *Computerized Medical Imaging and Graphics*, 55:54-67, 2016.
- [28] Zhenyu Wu, Wenfang Lin and Yang Ji. An integrated ensemble learning model for imbalanced fault diagnostics and prognostics. *IEEE Access*, 6:8394-8402, 2018.
- [29] Guillem Collell, Drazen Prelec and Kaustubh R Patil. A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data. *Neurocomputing*, 275:330-340, 2017.
- [30] Hossam Faris, Ruba Abukhurma, Waref Almanaseer, Mohammed Saadeh, Antonio M Mora, Pedro A Castillo and Ibrahim Aljarah. Improving financial bankruptcy prediction in a highly imbalanced class distribution using oversampling and ensemble learning a case from the Spanish market. *Progress in Artificial Intelligence*, 9(1):31-53, 2019.
- [31] Yanjiao Li, Sen Zhang, Yixin Yin, Wendong Xiao and Jie Zhang. Parallel one-class extreme learning machine for imbalance learning based on Bayesian

approach. Journal of Ambient Intelligence and Humanized Computing, 2018, https://doi.org/10.1007/s12652-018-0994-x.

- [32] Zhiqiong Wang, Junchang Xin, Hongxu Yang, Shuo Tian, Ge Yu, Chenren Xu and Yudong Yao. Distributed and weighted extreme learning machine for imbalanced big data learning. *Tsinghua Science* and Technology, 22(2):160-173, 2017.
- [33] Junjie Wang, Zhenghui Gu, Zhuliang Yu and Yuanqing Li. An online semi-supervised P300 speller based on extreme learning machine. *Neurocomputing*, 269:148-151, 2016.
- [34] Nan Zhang and Shifei Ding. Unsupervised and semi-supervised extreme learning machine with wavelet kernel for high dimensional data. *Memetic Computing*, 9(2):129-139, 2016.
- [35] Yongxiang Lei, Lihui Cen, Xiaofang Chen and Yongfang Xie. A hybrid regularization semisupervised extreme learning machine method and its application. *IEEE Access*, 7:30102-30111, 2019.
- [36] Jin Xie, Sanyang Liu and Hao Dai. Manifold regularization based distributed semi-supervised learning algorithm using extreme learning machine over time-varying network. *Neurocomputing*, 355:24-34, 2019.
- [37] Hongyu Zhu and Xizhao Wang. A cost-sensitive semi-supervised learning model based on uncertainty. *Neurocomputing*, 251:106-114, 2017.
- [38] Carlos A. S da Silva and Renato A Krohling. Semisupervised online elastic extreme learning machine for data classification. *International Joint Conference on Neural Networks (IJCNN)*, 08-13 July 2018, Rio de Janeiro, Brazil, 2018.
- [39] Jie Yang, Jiuwen Cao, Tianlei Wang, Anke Xue and Badong Chen. Regularized correntropy criterion based semi-supervised ELM. *Neural Networks*, 122:117-129, 2019.
- [40] Parsa Vafaie, Herna Viktor and Wojtek Michalowski. Multi-class imbalanced semisupervised learning from streams through online ensembles. *International Conference on Data Mining Workshops (ICDMW)*, 17-20 November 2020, Sorrento, Italy, 2020.
- [41] Zheng Liu, Shiluo Huang, Wei Jin and Ying Mu. Broad learning system for semi-supervised learning. *Neurocomputing*, 444:38-47, 2021.
- [42] Adnan OM Abuassba, Zhang Dezheng and Zahid Mahmood. Semi-supervised multi-kernel extreme learning machine. *Proceedia Computer Science*, 129:305-311, 2018.
- [43] Chuangquan Chen, Yanfen Gan and Chi-Man Vong. Extreme semi-supervised learning for multiclass classification. *Neurocomputing*, 376:103-118, 2019.

- [44] Weipeng Cao, Jinzhu Gao, Zhong Ming, Shubin Cai and Zhiguang Shan. Fuzziness based online sequential extreme learning machine for classification problems. *Soft Computing*, 22(13-14):3487-3494, 2018.
- [45] Lu Li, Chengyi Wang, Wei Li and Jingbo Chen. Hyperspectral image classification by adaboost weighted composite kernel extreme learning machines. *Neurocomputing*, 275:1725-1733, 2017.
- [46] Ping Yang, Dan Wang, Wen-Bing Zhao, Li-Hua Fu, Jin-Lian Du and Hang Su. Ensemble of kernel extreme learning machine based random forest classifiers for automatic heartbeat classification. *Biomedical Signal Processing and Control*, 63:1-13, 2021.
- [47] Bhagat Singh Raghuwanshi and Sanyam Shukla. UnderBagging based reduced Kernelized weighted extreme learning machine for class imbalance learning. *Engineering Applications of Artificial Intelligence*, 74:252-270, 2018.
- [48] Bhagat Singh Raghuwanshi and Sanyam Shukla. Generalized class-specific kernelized extreme learning machine for multiclass imbalanced learning. *Expert Systems with Applications*, 121:244-255, 2018.
- [49] Bhagat Singh Raghuwanshi and Sanyam Shukla. Classifying imbalanced data using ensemble of reduced kernelized weighted extreme learning machine. International *Journal of Machine Learning and Cybernetics*, 10(8):3071-3097, 2019.
- [50] Shuya Ding, Bilal Mirza, Zhiping Lin, Jiuwen Cao, Xiaoping Lai, Tam V Nguyen and Jose Sepulveda. Kernel based online learning for imbalance multiclass classification. <u>Neurocomputing</u>, 277):139-148, 2017.
- [51] Bhagat Singh Raghuwanshi and Sanyam Shukla. Classifying imbalanced data using BalanceCascade-based kernelized extreme learning machine. *Pattern Analysis and Applications*, 23(3):1157-1182, 2019.
- [52] Hongyun Qin, Houpan Zhou and Jiuwen Cao. Imbalanced learning algorithm based intelligent abnormal electricity consumption detection. *Neurocomputing*, 402:112-123, 2020.
- [53] Yang Wang, An-Na Wang, Qing Ai and Hai-Jing Sun. Enhanced kernel-based multilayer fuzzy weighted extreme learning machines. *IEEE Access*, 8:166246-166260, 2020.
- [54] Zhennao Cai, Jianhua Gu, Jie Luo, Qian Zhang, Huiling Chen, Zhifang Pan, Yuping Li and Chengye Li. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf

optimization strategy. *Expert Systems With Applications*, 138:1-29, 2019.

- [55] Pattaramon Vuttipittayamongkol, Eyad Elyan and Andrei Petrovski. On the class overlap problem in imbalanced data classification. *Knowledge-Based Systems*, 212:1-17, 2021.
- [56] El Barakaz Fatima, Boutkhoum Omar, El Moutaouakkil Abdelmajid, Furqan Rustam, Arif Mehmood and Gyu Sang Choi. Minimizing the overlapping degree to improve class-imbalanced learning under sparse feature selection application to fraud detection. *IEEE Access*, 9:28101-28110, 2021.
- [57] Everlandio R. Q Fernandes and Andre C. P. L. F de Carvalho. Evolutionary inversion of class distribution in overlapping areas for multi-class imbalanced learning. *Information Sciences*, 494:141-154, 2019.
- [58] Mingjing Wang, Huiling Chen, Huaizhong Li, Zhennao Cai, Xuehua Zhao, Changfei Tong, Jun Li and Xin Xu. Grey wolf optimization evolving kernel extreme learning machine application to bankruptcy prediction. Engineering *Applications of Artificial Intelligence*, 63:54-68, 2017.
- [59] Dong Zhao, Chunyu Huang, Yan Wei, Fanhua Yu, Mingjing Wang and Huiling Chen. An effective computational model for bankruptcy prediction using kernel extreme learning machine approach. *Computational Economics*, 49(2):1-17, 2016.
- [60] Yan Wei, Huijing Lv, Mengxiang Chen, Mingjing Wang, Ali Asghar Heidari, Huiling Chen and Chengye Li. Predicting entrepreneurial intention of students an extreme learning machine with gaussian barebone harris hawk's optimizer. *IEEE Access*, 2017,

https://doi.org/10.1109/ACCESS.2020.2982796.

- [61] Yongshan Zhang, Jia Wu, Chuan Zhou and Zhihua Cai. Instance cloned extreme learning machine. *Pattern Recognition*, 68:52-65, 2017.
- [62] Xiaowei Xue, Min Yao and Zhaohui Wu. A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm. *Knowledge and Information Systems*, 57(2):389-412, 2017.
- [63] Ali Asghar Heidari, Rahim Ali Abbaspour and Huiling Chen. Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. *Applied Soft Computing*, 81:1-57, 2019.
- [64] Xu Xiaolong, Chen Wen and Sun Yanfei. Oversampling algorithm for imbalanced data classification. *Journal of Systems Engineering and Electronics*, 30(6):1182-1191, 2019.

- [65] Yang Lu, Yiu-Ming Cheung and Yuan Yan Tang. Bayes imbalance impact index a measure of class imbalanced data set for classification problem. *IEEE Transactions on Neural Networks and Learning* Systems, 31(9):3525-3539, 2019.
- [66] Zhining Liu, Wei Cao, Zhifeng Gao, Jiang Bian, Hechang Chen, Yi Chang and Tie-Yan Liu. Selfpaced ensemble for highly imbalanced massive data classification. *IEEE 36th International Conference* on Data Engineering (ICDE), 20-24 April 2020, Dallas, TX, USA, 2020.
- [67] Mugdha Jain, William Andreopoulos and Mark Stamp. Convolutional neural networks and extreme learning machines for malware classification. *Journal of Computer Virology and Hacking Techniques*, 16(17):1-16, 2020.
- [68] Linbin Zhang, Caiguang Zhang, Sinong Quan, Huaxin Xiao, Gangyao Kuang and Li Liu. A class imbalance loss for imbalanced object recognition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:2778-2792, 2020.
- [69] Borowska K and Stepaniuk J. A rough–granular approach to the imbalanced data classification problem. *Applied Soft Computing*, 83(4):1-40, 2019.
- [70] Adamu Ali-Gombe and Eyad Elyan. MFC-GAN Class-imbalanced dataset classification using multiple fake class generative adversarial network. *Neurocomputing*, 361:212-221, 2019.
- [71] Xiaofen Tang and Li Chen. Artificial bee colony optimization-based weighted extreme learning machine for imbalanced data learning. *Cluster Computing*, 22(3):6937-6952, 2018.
- [72] Fatima Zohra El hlouli, Jamal Riffi, Mohamed Adnane Mahraz, Ali El Yahyaouy and Hamid Tairi. Credit card fraud detection based on multilayer perceptron and extreme learning machine architectures. *International Conference on Intelligent Systems and Computer Vision (ISCV)*, 09-11 June 2020, Fez, Morocco, 2020.