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Fault detection is crucial in the chemical industry for identifying process problems, and determining the
nature of the fault is essential for scheduling maintenance. This study focuses on the application of inverse
fuzzy models to reconstruct faults for the purpose of detection, isolation, and classification. By inverting
fuzzy models, the fault signal can be reconstructed, enabling identification of the fault source and its char-
acteristics. To address the issue of undetected small abrupt faults, we employed the wavelet transform.
This approach allows for the detection of incipient faults, while the classification is achieved by evaluating
the response of the fault reconstruction. Fault isolation is accomplished by comparing the reconstructed
faults. However, in the case of the pneumatic valve utilized, four out of the 19 simulated faults demon-
strated poor isolation due to the similarity of their reconstructions using inverse fuzzy models. We also
present a comparison with similar applications in existing literature. The fault detection rate obtained in
this study is 84.81%, which is higher compared to the rates of 55.45% and 82.37% reported in other works.
Additionally, the accuracy achieved in this work is 78.85%, indicating the ratio of correctly classified faults
to the total number of measurements, including both fault and no-fault conditions.

Povzetek: V članku je predstavljen model za zaznavanje, izolacijo in oceno napak v industrijskih pnev-
matskih ventilih, ki dosega visoko uspešnost zaznavanja napak.

1 Introduction

Ensuring safety is of paramount importance in the chem-
ical industry. Various processes within this industry are
susceptible to faults, which not only pose a risk to prod-
uct integrity but also endanger the safety of factory opera-
tors [1]. Startling statistics from Japan reveal that over the
past five years, approximately one-fourth of chemical in-
dustries reported more than 20 accidents [2]. In a compre-
hensive analysis of 170 accidents, [3] found that 56.2% of
these cases involved explosions, including a notable inci-
dent on August 12, 2015, in Tianjin, China, which resulted
in 165 fatalities and eight missing individuals. Hence, the
ability to detect faults assumes paramount importance in
the chemical industry [4]. Recognizing the limitations of
the defense-in-depth approach in averting accidents like the
Fukushima Daiichi nuclear disaster in 2011, [5] proposed
implementing the safety diagnosability principle to enhance
situational awareness. This approach facilitates the devel-
opment of maintenance schedules for optimal operational
performance and process safety [6], while also enabling
timely response during emergencies.
A fault refers to an unexpected deviation in a system’s

behavior. The detection of faults serves as a crucial first

step in fault diagnosis, indicating the presence of a problem.
Subsequently, fault isolation becomes necessary to identify
the specific nature of the issue. This combined process of
fault detection and isolation (FDI) is often referred to as
fault diagnosis in many research papers [7]. Some authors
further include an identification stage to assess the magni-
tude of the fault. As a result, the comprehensive execution
of these stages constitutes the overall fault diagnosis proce-
dure [8].

Two main techniques are commonly employed for FDI
applications. The first technique involves utilizing an ap-
proximate model to compute the discrepancy between the
real process outputs and the model-derived outputs, re-
ferred to as the residual signal. The detection of faults is
achieved by analyzing the magnitude of the residual sig-
nal [9]. Fault isolation, on the other hand, involves exam-
ining the fault’s characteristics, such as its frequency re-
sponse or employing symptom mapping from the symp-
tom space to the fault space, as demonstrated by [8]. The
second technique for fault isolation involves utilizing mea-
sured data from the process to search for discernible pat-
terns. Statistical methods, such as Hotelling’s statistic (T2-
chart) and the squared prediction error (Q-chart), have been
employed for this purpose [10]. Additionally, fault diagno-
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sis in pneumatic valves has been demonstrated using princi-
pal component analysis [11]. Alternatively, soft computing
techniques like fuzzy logic and artificial neural networks
(ANN) have also been utilized for fault diagnosis [12].
When sensor-measured data is utilized for FDI, the

methodology is known as data-driven. This approach lever-
ages past information on the process both with and without
faults to detect and classify the presence of faults, primar-
ily employing artificial neural networks (ANNs) [13]. Deep
neural networks are particularly effective in extracting fea-
tures that enhance FDI performance. For instance, in fault
diagnosis of Tennessee Eastman processes, [14] employed
a combination of convolutional ANNs and long short-term
memory units. Similarly, [15] implemented an adaptive
convolutional ANN for multiscale feature extraction in the
same process.
Additionally, there are publications where system behav-

ior analysis is employed to identify new operating points or
peculiar dynamics indicative of faults, even in the absence
of prior information [16]. However, it is important to note
that data-drivenmethods, as pointed out by [17], may strug-
gle with correlating acquired samples with unlabeled data.
Moreover, [18] specified that these methods are suscepti-
ble to data sparsity and proposed the use of deep temporal
clustering to address this challenge.

1.1 Case of study
Electro-pneumatic valves find widespread usage in indus-
tries such as chemical [19], biotechnology, food process-
ing [20], cement production [21, 22], and energy genera-
tion [23]. These valves play a vital role in regulating fluid
flow within processing pipelines. In certain industrial con-
texts, valves are also referred to as actuators. However,
these devices can be susceptible to issues such as erosion
and degradation [24, 25], which may lead to faults with po-
tential cascading effects throughout the entire process [26].
Additionally, faults can originate from the spring compo-
nent used in hydraulic valves [27].
A project called the Development and Application of

Methods for Actuator Diagnosis in Industrial Control Sys-
tems (DAMADICS) was proposed to develop online diag-
nostic tools for a pneumatic valve, specifically simulating a
sugar evaporation station in Cukrownia Lublin, Poland [9].
The purpose of the process is to maintain the syrup level
between 14% and 70% for juice condensation, as a lower
value can lead to overheating of the evaporation chamber,
while higher values can result in contamination of other sta-
tions within the factory [28]. The developed model accu-
rately simulates real phenomena that can potentially cause
faults in the valve actuator, making it highly applicable in
real-world scenarios. This platform has been utilized to de-
velop fault detection and isolation (FDI) techniques without
the need for extensive analytical knowledge of the valve or
its associated faults [29].
The DAMADICS model comprises three key compo-

nents: a control valve, a servomotor, and a positioner. The

model incorporates five inputs: i) the control variable CV ,
ii) the liquid pressure before the valve P1, iii) the liquid
pressure behind the valve P2, iv) the liquid temperature T ,
and v) the faults vector f . The model produces two out-
put signals: the displacement of the valve head X and the
liquid flow rate F [28].
In this system, the linear rod motion is determined by

the pressure force, which is achieved using a flexible di-
aphragm. The movement of the rod controls the internal
area of the valve, thereby influencing the fluid force, which
is dependent on the pressure difference between P1 and P2

[9]. A PID controller is responsible for regulating the air
within the chamber to maintain a desired set point. The
model has the capability to simulate 19 distinct faults, de-
noted as F1, F2, . . ., F19.

1.2 State of the art
Now, let’s explore the state-of-the-art research in fault de-
tection and isolation (FDI) for theDAMADICS benchmark,
focusing primarily on studies that employ data-driven tech-
niques.
The utilization of residual signals for fault detection is a

widely employed approach in FDI. [30] introduced an in-
terval model to derive nonlinear interval observers. These
observers are utilized to generate residual signals for fault
detection, and subsequently, the responses from a set of ob-
servers are compared to fault signatures for fault isolation.
Soft computing techniques can also be employed to model
nonlinear systems [31]. In model-based FDI, the evalua-
tion of residuals plays a crucial role in fault detection, and
an interesting methodology involves the implementation of
fuzzy logic.
Fuzzy models were proposed by [9] to approximate the

variablesX andF by utilizing the input variables. Residual
signals were employed for fault detection, followed by the
use of 19 fuzzy classifiers to isolate the specific faults.
[32] improved the fuzzy partition of classifiers by incor-

porating clustering algorithms. Their methodology enables
the detection of new operation modes in a model-free man-
ner, meaning that it is data-driven and does not rely on prior
fault information. They implemented adaptive fuzzy rules
using an incremental unsupervised Gaussian participatory
clustering procedure, which shows promise in terms of its
ability to adapt without prior knowledge of faults.
Another approach utilizing fuzzy logic for FDI was

demonstrated by [8]. In their study, they employed fuzzy
generalized nearest prototype classifiers and applied 20 dis-
tinct magnitudes of faults. It is noteworthy that they devel-
oped a classifier capable of isolating different magnitudes
within the same fault.
In addition, [33] utilized artificial neural networks

(ANN) for FDI. They employed ANN models to represent
the behavior of the DAMADICS benchmark both with and
without faults in order to calculate the residuals. By eval-
uating the magnitude of these residuals, it becomes fea-
sible to detect faults. For the fault isolation stage, ANN
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models were utilized for each potential fault under evalua-
tion within a specific time window. A larger time window
provides higher confidence with a delay, whereas a shorter
time window enables early isolation but with lower confi-
dence.
[36] employed an ANN to develop a neural model for

the DAMADICS benchmark and calculate residual signals.
The fault isolation process involved utilizing a decision
tree to identify unique signatures or footprints in the symp-
toms. This approach offered the advantage of reduced time
required for FDI, and it successfully isolated 12 distinct
faults.
On the other hand, [33] identified three fault groups that

exhibit similar symptoms. Interestingly, even the fault-free
scenario can be mistakenly isolated within these groups.
Specifically, there exists a group comprising faults F5, F8,
and F14 as potential candidates due to their shared symp-
tom. This similarity poses a challenge for fault isolation.
Neuro-fuzzy systems combine the computational power

and learning capability of ANNs with the reasoning and
interpretability of fuzzy logic [34]. These systems can be
viewed as either fuzzy systems adapted as ANNs or ANNs
with fuzzy sets and operators as their units [12]. In the con-
text of the benchmark used in this study, [12] implemented
multiple observers for FDI. These observers, known as un-
known input observers, were combined using fuzzy logic
to generate output estimates. Notably, their approach in-
volved using the Gustafson-Kessel clustering for the initial
fuzzy partition and employing genetic programming to ob-
tain state-space subsystems as the rule consequents. Ad-
ditionally, they proposed the use of one linear model to
approximate X and five linear submodels for F . Impor-
tantly, they emphasized that faults can have varying effects
at different operating points. Their methodology, known
as the neuro-fuzzy and decoupling fault diagnosis scheme,
showed promising results.
A similar approach was demonstrated by [35], who uti-

lized an ANN model to approximate the process behavior.
Subsequently, a neuro-fuzzy classifier was employed to de-
tect and isolate faults based on the residual signals. This
method follows a model-based approach, and it success-
fully detected and isolated two specific faults.
[37] introduced a pattern-recognition approach using ra-

dial basis function networks for classification. The results
were then aggregated using a fuzzy system to generate a
decision signal. In their study, they successfully isolated
faults F1, F2, F7, F8, F10 − F13, and F15 − F19 in abrupt
scenarios.
Self-organizing maps (SOM), similar to ANN, have been

utilized by [38] for fault diagnosis. In their approach,
fault detection is achieved by computing the difference
between the obtained signals and the healthy behavior of
DAMADICS. However, it should be noted that some faults
were undetectable using this method. A significant draw-
back of this approach is the considerable time required for
online diagnosis. Another application of SOM for fault
classification was demonstrated by [39], where they suc-

cessfully classified three faults, even in cases where fault
classes overlapped.
An insightful overview of computational intelligence

techniques applied in FDI was presented by [40]. They ex-
plored the application of various techniques such as fuzzy
logic, ANNs, neuro-fuzzy systems, and genetic algorithms
in FDI for diverse systems, including gas turbines, conduc-
tive flow systems, and aero-engines. In particular, Chapter
1 of [41] highlights the significance of FDI in industrial pro-
cesses and discusses the utilization of computational intel-
ligence techniques to address challenges such as local non-
linearities, noise, and uncertainty.
A distinct approach was introduced by [42], where FDI

was tackled by verifying the consistency of the current fault
identification with a specific fault set using timed automata.
This approach does not necessitate prior information about
the system. The faults considered in this study were F16,
F18, and F19, and they were successfully isolated after 16
sample times in the DAMADICS simulation. Another ap-
plication of fault detection was presented by [43], where a
methodology called ”typically and eccentricity data anal-
ysis” was employed for online fault detection without the
need for prior knowledge of the system. The obtained re-
sults showcased a true positive rate (fault detection rate) of
74.96% for faults F16 − F19.
Wear and tear on systems can lead to the development

of incipient faults, and they can also provide insights into
the actuator’s remaining lifespan [44]. Detecting incipi-
ent faults can be challenging as they may resemble mod-
ifications in the operating point. Early detection is crucial
for such faults since they exhibit a continuous and gradual
development that may only be detectable when their mag-
nitude approaches 50%. [28] employed a hidden Markov
model to detect both abrupt faults (sudden appearance) and
incipient faults. This data-driven methodology utilized 46
distinct symbols to differentiate between different operat-
ing conditions.
In a review conducted by Capaci et al. [29], the authors

explored the field of smart diagnosis in control valves, fo-
cusing on the analysis of both normal and abnormal operat-
ing conditions. The study examined various statistical and
soft computing techniques to compare and analyze the re-
sults obtained from these conditions. The review aimed to
provide insights into the effectiveness of different diagnos-
tic approaches in detecting and characterizing valve abnor-
malities.
Table 1 lists the characteristics of works mentioned

above indicating advantages and limitations found for FDI
in the DAMADICS benchmak.
In this work, we detect, isolate, and classify faults in the

DAMADICS benchmark by reconstructing the faults using
inverse fuzzy models. While model-based FDI typically re-
lies on observers and residual signals for fault evaluation,
the main contribution of this paper is the utilization of in-
verse models to directly identify the fault responsible for
the system behavior without the need for computing resid-
uals. To enhance fault isolation, the faults are grouped into
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Table 1: Related works for FDI.

Reference Methodology Advantages Limitations
[30] Nonlinear observers Good detection Time required for residual evolution,

not all faults can be isolated.
[9] Fuzzy models Automation of fuzzy rules Fault detection and isolation,

to use uncertain information.
[32] Clustering Not to require prior information Fault diagnosis free of model.
[8] Fuzzy classifier To isolate the fault magnitude Computational effort to develop the classifier.
[33] Artificial neural networks To improve the fault detection rate To collect data for the ANN model,

or to accelerate the detection time more design to isolate incipient faults.
[35] Neuro-fuzzy systems Good detection Cannot be applied for unknown working

conditions, unknown faults cannot be isolated.
[12] Neuro-fuzzy systems Detection independent to the fault To know the noise distribution

magnitude
[36] ANN and decision trees Fast isolation using past information To collect data for the ANN model
[37] Radial-basis functions Temporally informative features Average results.

and fuzzy logic with little computational cost.
[38] Self-organizing maps Classification even with Some undetectable faults,

overlapped faults Time consuming.
[39] Self-organizing maps To isolate and identify faults Time consuming.

without a data preprocessing
[42] Timed automata Not to require prior information Only three faults were diagnosed.
[43] Typicality and eccentricity Precision average = 83.30% Problems to detect incipient faults.

data analytics
[28] Hidden Markov model Early detection Only three faults were detected.

classes based on their source, and we employed the wavelet
transform to highlight incipient faults. The remaining sec-
tions of this paper are organized as follows: Section 2 de-
scribes the DAMADICS system used as the benchmark for
FDI. Section 3 presents the methodology used, including
the obtention of fuzzy models (subsection 3.1) and the ex-
planation of how to invert the fuzzy models (subsection
3.2). The results are presented in Section 4, with fault de-
tection results shown in subsection 4.1 and fault isolation
presented in subsection 4.2. A comparison with similar ap-
plications is also included in the discussion Section 5. Fi-
nally, conclusions are provided in Section 6.

2 Benchmark description

The DAMADICS benchmark model, developed by the Re-
search Training Network of the European Commission dur-
ing the 2000-2004 period under the Framework 5 Human
Potential Programme, provides a simulation of the flow dy-
namics through a valve. The flow rate is determined by
the position of a rod, as the rod’s movement regulates the
flow area inside the valve [20]. This valve, known as an
electro-pneumatic actuator, plays a crucial role in control-
ling the flow through the pipeline installation. It consists of
a plate connected to the chamber walls through a flexible
diaphragm. The position of the rod is determined by a con-
trol signal, which, depending on its value, either connects
the chamber with the pneumatic circuit or with the atmo-

sphere. To achieve linear motion of the servomotor stem,
a compressible fluid-powered device operates on the flexi-
ble diaphragm [20]. To correct any mispositions caused by
disturbances, a positioner is employed in the system.
The DAMADICS model offers the capability to sim-

ulate 19 different faults, which are listed in Table 2
of [8]. The model itself can be downloaded from
http://diag.mchtr.pw.edu.pl/damadics/. Notably,
the model allows for the simulation of incipient faults,
which can often be mistaken for changes in the operating
point. These incipient faults can also be utilized to predict
the lifespan of industrial actuators [45]. Figure 11 of [20]
presents a fault scheme specific to the DAMADICS actu-
ator, illustrating the origin of the faults and the variables
involved in identifying each fault. The faults can manifest
as either stationary events, such as abrupt faults, or non-
stationary signals like random or incipient variations in the
values of the supply pressure (fault F16) [46].
The faults in the DAMADICS benchmark can be simu-

lated with various magnitudes, although some of them can
only be simulated in an abrupt form. It is important to note
that certain cases in Table 3 do not have a physical interpre-
tation and, as a result, were not considered for simulation.
These excluded cases may involve faults that are not prac-
tically feasible or do not align with real-world scenarios.
It is essential to focus on the faults that have meaningful
interpretations and are relevant to the system under consid-
eration.
In the study shown in [8], a table was presented that pro-
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Table 2: Faults in the DAMADICS model.

Fault origin Fault Description Simulation values
F1 Valve clogging [0, 1]
F2 Valve sedimentation [0, 1]
F3 Valve erosion [0, 1]

Control valve F4 Brushing friction [-1, 1]
F5 External leakage [0, 1]
F6 Internal leakage [0, 1]
F7 Critical flow [0, 1]
F8 Twisted servomotor’s rod [0, 1]

Servomotor F9 Terminals tightness [0, 1]
F10 Servomotor’s diaphragm perforation [0, 1]
F11 Servomotor’s spring fault [0, 1]
F12 Electro-pneumatic transducer fault [-1, 1]

Positioner F13 Rod displacement sensor fault [-1, 1]
F14 Pressure sensor fault [-1, 1]
F15 Positioner spring fault [0, 1]
F16 Positioner supply pressure fault [0, 1]

External faults F17 Unexpected pressure change in valve [-1, 1]
F18 Fully or partly opened bypass valves [0, 1]
F19 Flow rate sensor fault [-1, 1]

vides information about the magnitudes of faults that can be
simulated in the DAMADICS model. The magnitudes are
categorized as small for values ranging from 5% to 35%,
medium for values between 35% and 70%, and big for val-
ues between 70% and 100% in the case of abrupt faults.
Incipient faults, on the other hand, gradually increase their
magnitude over time. Detecting incipient faults at an early
stage can be challenging, especially when themeasured sig-
nals are noisy [47].

Table 3: Faults without physical interpretation.

Fault Small Medium Big Incipient
F1 ⊠
F3 ⊠ ⊠
F4 ⊠ ⊠ ⊠
F8 ⊠
F11 ⊠ ⊠

The DAMADICS actuator is depicted in Figure 1, where
the three main components are distinguished by different
colors. The diagram showcases the input and output vari-
ables associated with the system. The yellow-highlighted
component represents the spring-and-diaphragm pneumatic
servomotor, which facilitates the interaction between the
control signal and the final movement. To better understand
the nomenclature used in Figure 1, please refer to Table 4.
The DAMADICS model was implemented using

Simulink®, a popular simulation software. To ensure
accurate simulation results, certain considerations were
taken into account. The ordinary differential equations
(ODEs) describing the system dynamics were solved using
the fourth-order Runge-Kutta method (ode4) with a fixed
step size of 0.0025 seconds. This choice of solver and step

TT PT PT

ZT

FT

E/P ZC

PSP

X

F

P1 P2

T

CV

Valve

Servomotor

Positioner

Figure 1: Scheme of DAMADICS actuator.

size helps ensure numerical stability and accuracy in the
simulation.
In addition, it is important to note that the output of the

simulated process is subject to noise, which reflects the re-
alistic conditions of industrial systems. All inputs and out-
puts in the model have band-limited white noise superim-
posed with a 50 Hz sine wave. The sine bias is set to 2.5%
of disturbed signal nominal range and its amplitude is 2.5%
of signal nominal range [20]. The presence of noise in the
output signals adds a level of complexity to the fault detec-
tion and isolation process, as it introduces uncertainty and
can affect the accuracy of the results.
Moreover, some specific faults in the DAMADICS

model are characterized by a parameter tfd, which repre-
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Table 4: Faults in the DAMADICS model.

Nomenclature Description
E/P Electro-pneumatic transducer
FT Flow rate transmitter
PSP Positioner supply pressure unit
PT Pressure transmitter
TT Temperature transmitter
ZC Internal position controller
ZT Stem position transmitter

sents the fault development time. This parameter is partic-
ularly relevant for simulating incipient faults, which grad-
ually increase in magnitude over time. By incorporating
the fault development time parameter, the model can accu-
rately capture the behavior of such incipient faults and their
impact on the system dynamics.
Lastly, it is worth mentioning that the sampling time for

collecting data from the simulated system is set to 1 sec-
ond. This choice of sampling time aligns with the sampling
rate typically used in the supervisory control and data acqui-
sition (SCADA) systems deployed in real-world industrial
environments, such as the sugar factory in Lublin.
These considerations ensure that the DAMADICSmodel

accurately represents the behavior of the physical system
and provides a realistic foundation for conducting fault de-
tection and isolation experiments.

3 Methodology used for fault
detection and isolation

In the field of fault detection and isolation (FDI), [48] em-
ployed an inverse fuzzy model for fault reconstruction.
Given the Tennessee Eastman process, which offers numer-
ous state variables for measurement [14, 49], the method-
ology adopted least angle regression for variable selection
[50]. The faults were encoded in terms of amplitude and
effectively isolated. However, it should be noted that in
certain cases, the FDI process required a minimum of 1000
sample times. Additionally, other FDI techniques have
been explored, such as partial least squares [51], elastic net
[52], and least absolute shrinkage and selection operator al-
gorithm [53].

3.1 Fuzzy modeling
In order to establish a fuzzy model, it is essential to define
the discourse universe of the variables, which determines
the fuzzy partition [54]. The ranges of the variables were
presented by [9] in its Table 1, and the specific values uti-
lized in this study are summarized in Table 5.
The inversion of the fuzzy model requires a monotonic

model [31]. In a study by [55], a fuzzy model of a green-
house was developed using two membership functions to
ensure a monotonic model. The control is achieved by in-

Table 5: Ranges and units of the variables.

Variable Range
CV 0–100%
P1 0–4000 KPa
P2 0–4000 KPa
T 0–200◦C
X 0–100%
F 0–40 m3/h

verting the fuzzy model. In this context, two membership
functions are constructed for the fuzzy partition of vari-
ablesCV , P1, P2, and f , while variable T remains constant
throughout the simulation. As a result, the fuzzy model
aims to approximate variables X and F .
The fuzzy rules can be denoted as [56]:

If: CV (k) is Ã and P1(k) is B̃ and P2(k)

is C̃ and f(k) is D̃ and X(k) is Ẽ . . .

and F (k) is F̃ , (1)
then: Xapr(k + 1) = θ,

where k is the sample, Ã is a fuzzy set, and the rule conse-
quent is θ.
The fuzzy value obtained for each variable using a fuzzy

set is denoted for example as µÃ1
(CV (k)).

The rule evaluation is:

λ1(k) = µÃ1
(CV (k))µB̃1

(P1(k))µC̃1
(P2(k))

µD̃1
(f(k))µẼ1

(X(k))µF̃1
(F (k)), (2)

λ2(k) = µÃ1
(CV (k))µB̃1

(P1(k))µC̃1
(P2(k))

µD̃1
(f(k))µẼ1

(X(k))µF̃2
(F (k)),

and so on until to compute λ64(k).
The fuzzy partition for each variable is created by em-

ploying two membership functions. These functions uti-
lize two limits to achieve a membership value of one. A
line connects the maximum value to the zero value, which
is positioned below the other limit. This construction en-
sures that the sum of membership values is always equals
to one, thereby guaranteeing the monotonic nature of the
fuzzy model [55].
There are a total of 64 fuzzy rules, because each one of

the six variables is partitioned into two fuzzy sets. The
membership values are arranged in a specific order to in-
vert the fuzzy model. For this reason, the membership val-
ues assigned to the rules using µD̃1

(f(k)) and µD̃2
(f(k))

for the fuzzy partition of the fault f(k) are placed in the
last two columns of β. This arrangement results in a matrix
β ∈ Rn×64, which is utilized for the inversion of the fuzzy
model. Here, n represents the number of samples used for
constructing the fuzzy model.
A normalization factor, denoted as Γi,j , can be computed

when the summation of membership values does not equal
one. It is calculated as Γi,j = βi,j/

∑2
j=1 β(i, j). The
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least squares method is employed to compute the rule con-
sequents θ using the normalized values in Γ. It is worth not-
ing that the temperature variable T was not included in the
fuzzy model as it does not appear to be sensitive to faults.
Some fault types can be simulated in each case, and only

the ones with a physical interpretation were used for mod-
eling. Finally, θ is computed by using:

θF = (ΓTΓ)ΓTF+, (3)

where F+ represents the measure taken with an advance
of one sample, i.e. the model must obtain the system be-
havior for the next sample. Thus, the fuzzy model obtains
Ffuzzy = ΓθF . A fuzzy model can be obtained in the same
way to approachX(k+1). In that case, the consequents of
the rules are in θX
Since the fuzzy model estimates two output variables,

two sets of consequents are obtained: θF for approximating
the flow rate F , and θX for the displacement of the valve
head.
In some cases, the model obtained using θF closely ap-

proximates the actual variable F . In order to reconstruct a
fault, it is necessary for the fault signal to cause a change
in the output variables F or X . Moreover, if this change
is proportional to the magnitude of the fault, the fault sig-
nal can be reconstructed. For instance, in Fig. 2, the fuzzy
model obtained to approximate F when fault F1 occurs at
different magnitudes over time is shown. The correspond-
ing fault signal is also depicted, illustrating a noticeable
modification in the flow rate behavior. Similarly, in Fig.
3, the same situation is demonstrated. In this case, the fault
F17 is simulated, including the incipient case. It can be ob-
served that the change in F exhibits similar behavior for
different fault magnitudes.
As mentioned above, a sampling time of one second is

used, and the process inputs are normalized sinusoidal sig-
nals. This choice allows for modifications in the operating
conditions and the inclusion of nonstationary signals. By
using signals with different frequencies and amplitudes, the
model can capture various dynamics and better represent
real-world scenarios.
The inputs are defined as:

CV (k) = 0.5 + 0.25 sin(0.01k), (4)
P1(k) = 3500, 000 + 175, 000 sin(0.1k), (5)
P2(k) = 2600, 000 + 26, 000 sin(k/π). (6)

The temperature is assumed constant T = 43◦C [57].
All the variables are noisy, and the pressure measures are
the disturbed values obtained from the model.

3.2 Fuzzy model inversion
To invert the fuzzy model, the process variables are eval-
uated independently of the fault signal f(k). This results
in obtaining 32 rules for the inversion process. The conse-
quents, represented by θF in this case, are organized into
two columns. The values in one column correspond to the

Figure 2: Comparison between flow rate F and its fuzzy
approximation under fault F1.

Figure 3: Comparison between flow rate F and its fuzzy
approximation under fault F17.

consequents obtained using the first limit D̃1 for f , while
the values in the other column correspond to the conse-
quents obtained using the second limit D̃2, as shown in
Equation (1). These two columns are combined to form
the matrix Θ ∈ R32×2, which contains the consequent pa-
rameters for the inversion process.
The first step in the fault reconstruction process is to cal-

culate the first center of the fuzzy partition. This is done by
multiplying the 32 membership values µ(k)with the values
in the first column of Θ using the Hadamard product. Sim-
ilarly, the second limit F̃ ∗

2 is obtained by multiplying the
membership values with the values in the second column
of Θ, following a similar procedure as Equation (1) shows.
To obtain the membership values for the original sig-

nal F (k) using the new fuzzy sets, the signal is evaluated
by the new fuzzy sets. These new membership values are
then multiplied with the limits used to fuzzify f , which are
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[D̃1 D̃2]T . This process yields two values, which are used
to approximate the reconstructed fault signal fapr.
Similarly, if we want to invert the fuzzy model used to

approach X , the new limits [Ẽ∗
1 Ẽ∗

2 ] to fuzzify X are ob-
tained, and the fault reconstruction is:

fapr(k) = [µẼ∗
1
(X(k)) µẼ∗

2
(X(k))] [D̃1 D̃2]

T . (7)

The fuzzy model inversion can be briefly explained fol-
lowing the next steps:

1. The consequents θ of the 64 fuzzy rules are ordered
to form Θ that has as first column the 32 membership
values corresponding for the case when the rules eval-
uated use the first fuzzy set for the partition of fault
f(k), i.e. D̃1. The second column correspond to the
32 rules that contains the membership values when
fuzzy set D̃2 was used.

2. The current variables values are evaluated by their
respective fuzzy sets, i.e. we obtain µÃ1

(Cv(k)),
µÃ2

(Cv(k)), µB̃1
(P1(k)), . . ., µF̃2

(F (k)).

3. Now all this membership valued are use to evaluate a
fuzzy rule, the product was used in this step, i.e.

R1(k) = µÃ1
(Cv(k))µB̃1

(P1(k))µC̃1
(P2(k))

· · ·µF̃1
(F (k))

R2(k) = µÃ1
(Cv(k))µB̃1

(P1(k))µC̃1
(P2(k))

· · ·µF̃2
(F (k))

until,

R32(k) = µÃ2
(Cv(k))µB̃2

(P1(k))µC̃2
(P2(k))

· · ·µF̃2
(F (k))

4. The new centers Ẽ∗
1 and Ẽ∗

2 if the fuzzy model for X
is inverted, or F̃ ∗

1 and F̃ ∗
2 , are computed multiplying

the evaluation rules of step 3 and the matrix Θ.

5. The model inversion use the fuzzy model of X or F ,
to obtain the fault f . Then, the signal used, e.g. F is
evaluated by the new fuzzy sets with centers F̃ ∗

1 and
F̃ ∗
2 .

6. Finally, the fault approach is obtained by multiplying
these last membership values and the centers used ini-
tially for the fuzzy partition of fault signal D̃1 and D̃2.

To illustrate this procedure Fig. 4 shows how to obtain
the new centers used to obtain the fault than generates the
current signals behavior.
The fault reconstruction, as depicted in Fig. 5, appears to

be noisy andmay not immediately reveal the presence of the
fault signal. However, we applied a filtering technique to
the reconstructed signal, and the fault signal becomes more
discernible. In this case, a second-order low-pass filter with

Figure 4: Fuzzy model inversion.

two poles at −0.01 is proposed. This filter has a lower fre-
quency of 0.01 and provides an attenuation of −40dB per
decade.
To implement the filter in a discrete system, a zero-order

hold discretization method is utilized [58]. The resulting
filter in the Z transform domain is given by the following
equation:

ffilt(z)

fapr(z)
=

4.967e− 8z + 4.934e− 5

z2 − 1.98z + 0.9802
.

due to filtering, a delay is obtained. However, the fault
takes some samples to be detected, also when a fault dis-
appears (an intermittent fault), the systems takes some sec-
onds to recover its normal performance.

Figure 5: Fapr by inverting the fuzzy model of F .

The filtered fault reconstructions obtained by inverting
the fuzzy models for fault F6 and fault F17 are illustrated in
Fig. 6 and Fig. 7, respectively. In Fig. 6, specific thresh-
olds are depicted, which can be utilized for the detection
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and classification of fault F6.

Figure 6: F6 reconstruction by inverting both fuzzymodels.

Figure 7: F17 reconstruction by inverting both fuzzy mod-
els.

In the majority of cases, the fuzzy model for the flow rate
F yields the most accurate and reliable fault reconstruction.
However, when attempting to reconstruct faults F8 and F15

specifically, the model for the displacementX provides su-
perior results. It is worth noting that if a fault does not man-
ifest itself clearly in the process outputs, it becomes chal-
lenging to accurately reconstruct such faults.
Due to the presence of noise in the signals, a threshold-

based approach can be employed to detect faults. This in-
volves using the average value of the fault-free signal ffilt,
along with twice the standard deviation within that specific
period, as a reference threshold. It is important to note that
the system being analyzed is nonlinear, meaning that the
response to a fault may not be directly proportional to the
fault magnitude. Consequently, the reconstructed fault val-
ues may exhibit different magnitudes compared to the ac-
tual faults.
For fault classification purposes, different thresholds can

be utilized. In the case of incipient faults, their behavior
typically intensifies over time. As such, an alternative ap-
proach involves assessing whether the current fault recon-

struction demonstrates continuous changes with the same
sign. However, due to the presence of noise, the signal ffilt
tends to fluctuate. Therefore, it is necessary to analyze at
least four samples to ensure that the signal consistently ex-
hibits either an increasing or decreasing trend.
Fault isolation is achieved by comparing the responses

of different fuzzy models to the current signals obtained.
Since each fuzzy model was built for a specific case, the
model that yields the highest response (membership value)
is used for fault isolation.

Figure 8: F1 evaluated by different fuzzy models.

Figure 8 illustrates the fault reconstruction using the
fuzzy models for faults F1, F2, . . . , F7, which are asso-
ciated with faults in the control valve. It is evident that
these faults can be detected. However, for fault isolation,
it is necessary to evaluate the response of the inverse fuzzy
models. Four fuzzy systems are employed for fault isola-
tion. The first fuzzy system evaluates faults F1, F2, . . . , F7

related to the control valve, while the second fuzzy system
considers faults F8, F9, . . . , F11 in the servomotor. The
third fuzzy system incorporates F12, F13, . . . , F15 to de-
scribe faults in the positioner. Lastly, the fourth fuzzy sys-
tem utilizes F16, F17, . . . , F19 for external faults (refer to
Table 2).
The FDI proposal involves constructing a fuzzy model to

approximate the output signals of the DAMADICS model.
By inverting these fuzzy models, the fault signal can be
reconstructed using the currently measured signals. Once
fault detection is performed, the reconstructed signals are
categorized into four sets, corresponding to each fault
source: control valve, servomotor, positioner, and external
faults. These grouped signals are then inputted into a fuzzy
system for fault isolation. The schematic diagram illustrat-
ing this technique is presented in Figure 9.
It is worth mentioning that the use of an unknown input

observer for fault reconstruction withH∞ performance has
been explored in [59]. Additionally, [60] proposed an in-
triguing approach that involves inverting certain filters to
detect faults in a nonlinear system. This approach shares
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Figure 9: Fault detection and isolation scheme.

similarities with the current application, as a fuzzy system
can be considered as a type of nonlinear filter.
Similarly, Varkonyi [61] used a genetic algorithm for it-

erative fuzzy model inversion. His approach involves inter-
changing one of the inputs with the output in order to invert
the fuzzy model. The genetic algorithm was employed to
optimize the model inversion process.
By adopting this approach, the fuzzy model can be effec-

tively inverted, enabling the estimation or reconstruction of
the input variable based on the observed output. This itera-
tive process using a genetic algorithm allows for the refine-
ment and improvement of the model inversion, leading to
more accurate results.
In contrast, [62] employed the system’s model to design

sliding mode observers. They utilized individual state es-
timators based on least squares to enable rapid fault recon-
struction for FDI applications. This approach differs from
the fuzzy model-based technique described earlier.

3.3 Wavelet transform to highlight faults
Wavelets are a powerful tool in signal processing that can
effectively detect abrupt changes in signals caused by faults
in a system. Unlike stationary events, faults are nonsta-
tionary, making wavelets particularly well-suited for fault
detection. Wavelet functions are derived from translating
(mother wavelet) and scaling (father wavelet) functions to
create an orthonormal basis [63]. This allows wavelets
to capture both time and frequency information simultane-
ously, making them ideal for analyzing signals with tran-
sient behavior.
The wavelet transform can be utilized to emphasize the

existence of a fault within a signal [48]. In the case of
discrete wavelet transform, a sufficient number of sam-
ples is required for signal decomposition. For instance, if
an eighth decomposition level is desired, a minimum of

28 = 256 samples is needed to obtain a meaningful indi-
cation of a fault. However, for online fault diagnosis, it
is advisable to employ the continuous wavelet transform,
where only the selection of themother wavelet and the scale
is necessary [64]. This approach allows for real-time fault
detection and characterization without the need for a pre-
defined number of samples or decomposition levels.
The scalogram of the signalX when fault F1 is depicted

in Fig. 10. In order to determine the appropriate scale, the
row where all fault occurrences are clearly visible is cho-
sen. Subsequently, the continuous wavelet transform is em-
ployed as a filtering technique to localize transients. The
wavelet transform plot is shown in Fig. 11. This analysis
provides a visual representation of the signal characteristics
and highlights the presence of fault-related features.

Figure 10: Scalogram to select frequency.

The wavelet transform is particularly effective for detect-
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Figure 11: Wavelet transform to localize transients.

ing nonstationary fault signals [65]. It can identify changes
in the measurement data that indicate the presence or ab-
sence of an event [66]. Therefore, the wavelet transform
enables the detection of faults as they occur and as they
cease. However, selecting an appropriate scale for fault de-
tection can pose a challenge. It is crucial to consider that
the fault may not manifest until at least 200 samples after
the simulation or system operation begins, while detection
of the fault can occur as early as 50 samples into the process
due to the chosen scale of the wavelet.
To streamline the computation of the wavelet transform,

a line-based approach is employed instead of shifting the
wavelet along the signal being analyzed. This approach in-
volves maintaining a vector that contains the wavelet eval-
uations, and performing convolutions with the incoming
samples. By examining the amplitude of the wavelet trans-
form at the designated scale for each fault, fault classifica-
tion can be achieved, as demonstrated in Fig. 11. However,
fault isolation requires the utilization of the inverse fuzzy
model.
The specific wavelet employed for detecting fault lev-

els that are imperceptible to the fuzzy model is the analytic
Morlet wavelet. This wavelet is commonly used for edge
detection in image processing [67]. The equation represent-
ing the wavelet function is as follows:

Ψ(t) = e−αt2e2πfcti, (8)

where the center frequency is fc and the width of the Gaus-
sian function is α.
Using (8), the wavelet transform is:

WΨf(a, b) =
1√
a

∫ ∞

−∞
f(t)Ψ∗

(
t− b

a

)
dt, (9)

where b is the time shift and a is the scale selected regard-
ing the scalogram. Due to the signal being sampled each
second, the scale used to obtain Fig. 11 was 63, and then
the wavelet function 8 is scaled, shifted, and discretized,

then the convolution with the signal X was made to detect
transients.
To classify faults such as F8, F9, F11, F14, and in some

cases F1, F12, and F16, the wavelet transform is employed
to filter the output signals and identify the fault severity.
However, it should be noted that wavelets are primarily use-
ful for fault detection [68]. An interesting approach was
proposed in [63], where the Daubechies wavelet was uti-
lized to detect faults in the DAMADICS actuator, with a
requirement for fault detection within 15 seconds.

4 Results
The simulation incorporates various magnitudes for the
fault signals. Magnitudes of 25%, 50%, and 75% were uti-
lized to represent small, medium, and large abrupt faults,
respectively. In the case of incipient faults, the magnitude
increases gradually from zero to 100% over a duration of
1200 seconds. To classify a fault as incipient, a minimum
of four samples is required to assess if the fault exhibits a
continuous change over time.
Considering the aforementioned information, it is im-

portant to note that the results obtained for fault detection
and classification may not be fully representative in certain
cases. Furthermore, the detection and isolation of faults of-
ten require a specific fault magnitude to be present.
The simulations were conducted by evaluating the down-

loaded model in MATLAB® R2017b on a laptop equipped
with an Intel® CoreTM i5-4200U processor running at 2.3
GHz, and with 4 GB of RAM.

4.1 Fault detection
Fault detection refers to the ability to recognize the occur-
rence of a fault. In this study, an inverse fuzzy model was
developed for each individual fault, resulting in a total of
19 fuzzy models. Among these models, the one that pro-
vides the best approximation to the behavior of the variable
X is selected as the optimal choice. To streamline compu-
tational efforts, only one model is utilized for the detection
of each specific fault.
Fault detection is accomplished by applying a threshold

to the fault reconstruction signal. Due to the presence of
nonlinearities, the filtered fault signal (ffilt) deviates from
zero even in the absence of any simulated fault. Conse-
quently, the threshold is computed by determining the av-
erage value of ffilt when the fault signal is equal to zero,
and then adding double the standard deviation for this con-
dition.
The fault detection rate (FDR) serves as an evaluation

metric to assess the effectiveness of the proposed tech-
nique. FDR represents the percentage of correctly identi-
fied faulty values when ffilt exceeds a specified thresh-
old (also known as true positives). It is worth noting that
many studies employ datasets containing both faulty and
fault-free signals. However, when the fault is no longer
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present, it may take several samples for the system to re-
turn to its normal behavior. This circumstance can lead to
an increased number of false alarms. In this work, such
cases are also considered and taken into account during the
evaluation process.
The evaluation of fault detection performance involves

the use of various metrics. These metrics utilize the fol-
lowing terms: true positive (tp), which denotes the correct
detection of a sample fault; true negative (tn), which rep-
resents the accurate identification of a fault-free signal as
normal system behavior; false positive (fp), which refers to
the erroneous detection of normal operation data as faulty
(false alarm); and false negative (fn), which indicates the
misclassification of fault measures as normal system opera-
tion. Several characteristics are employed to assess the per-
formance of fault detection and isolation (FDI), including
the following metrics [69]:

Precision =
tp

tp+ fp
, (10)

Memory =
tp

tp+ fn
, (11)

Specificity =
tn

tn+ fp
, (12)

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
. (13)

Table 6 presents the metrics used to evaluate the fault
detection performance of the inverted fuzzy models. When
the value in the first column is less than 0.5, it indicates that
there are more false alarms than actual fault detections. A
memory value below 0.5 implies that the algorithm fails to
detect a significant portion of the faulty data. A specificity
value lower than 0.5 suggests that the false alarms outnum-
ber the instances of normal behavior without faults. The ac-
curacy parameter is particularly significant as it determines
whether real faults were successfully detected, with the al-
gorithm assuming normal operation in the absence of faults.

4.2 Fault isolation
Fault isolation refers to the ability to differentiate between
different faults occurring in a process. During the simula-
tion, we observed that certain faults need to reach a certain
magnitude to be detected, as their effects may be impercep-
tible in the measured signals from the DAMADICS model.
The fault reconstruction process aids in estimating the mag-
nitude of the fault responsible for the current behavior in
the system. Consequently, fault isolation and classification
are achieved simultaneously. However, in a different appli-
cation discussed by [8], a fuzzy classifier was required to
classify different fault magnitudes for the same fault type.
In this study, a total of 19 fuzzy models were employed.

For fault detection, isolation, and classification, a fuzzy
model was specifically developed to approximate the be-
havior of X when simulating faults F8 and F15 due to
the superior results obtained, characterized by fewer false

alarms and a higher detection rate. For the remaining faults,
we use the fuzzy models focused on approximating the be-
havior of F .
For fault isolation, it was necessary to establish certain

threshold values for fault magnitudes: F1 > 31%, F7 >
41.5%, F12 > 42%, and F16 > 60%. If these conditions
weremet, fault isolationwas found to be 98% accurate in all
cases. Additionally, the fault detection characteristics pre-
sented in Table 6 exhibited higher values. Simulations were
conducted for fault types that have a physical interpretation.
Table 7 displays the obtained fault classifications, where
fault isolation was determined by comparing the values of
ffilt, with the larger value indicating the fault present in the
system.
The symbol ⊠ indicates that the fault was not simulated

due to its physical background [57],× denotes that the fault
type could not be classified, and✓ signifies a correct classi-
fication. Faults that could not be classified were attributed
to ffilt exhibiting similar magnitudes regardless of the fault
magnitude. Fortunately, the faults were accurately isolated
when the fault magnitudes for F1, F7, F12, and F16 were as
previously mentioned.
If the fault magnitude does not reach a certain threshold

for detection, it is not considered in the analysis. The fault
detection characteristics presented in Table 6 can be sum-
marized as follows in Table 8.

Figure 12: Inverse fuzzy model for F1 evaluated with dif-
ferent faults.

Similarly to what is shown in Fig. 8 for the simulation
and fault reconstruction using different inverse fuzzy mod-
els, the fault isolation results are presented in Fig. 12.
To evaluate the performance of fault isolation, a confu-

sion matrix is utilized, as commonly done in fault diagnosis
studies [70]. The confusion matrix reflects the accuracy of
fault isolation, with higher values along the diagonal indi-
cating successful isolation. In Fig. 13, it can be observed
that faultsF8,F9,F13,F14, andF17 pose greater challenges
for isolation, despite exhibiting a good detection rate.
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Table 6: Fault detection in the DAMADICS model.

Fault origin Fault Precision Memory Specificity Accuracy
F1 0.9521 0.6541 0.9344 0.7496
F2 0.8824 0.9724 0.8524 0.9163
F3 0.8596 0.8610 0.9078 0.8901

Control valve F4 0.5367 0.6908 0.8950 0.8644
F5 0.9258 0.8176 0.9249 0.8669
F6 0.9067 0.9759 0.8835 0.9331
F7 0.9265 0.6856 0.9359 0.8005
F8 0.7224 0.1786 0.9094 0.4778

Servomotor F9 0.9086 0.1304 0.9859 0.5215
F10 0.8116 0.8389 0.7741 0.8089
F11 0.9159 0.5841 0.9482 0.7693
F12 0.9038 0.5994 0.9260 0.7507

Positioner F13 0.9003 0.9818 0.8738 0.9318
F14 0.2342 0.0312 0.8866 0.4121
F15 0.8471 0.9778 0.7952 0.8932
F16 0.7372 0.4718 0.8049 0.6260

External faults F17 0.8695 0.9964 0.8265 0.9177
F18 0.9065 0.9659 0.8832 0.9282
F19 0.8830 0.9908 0.8477 0.9246

Figure 13: Confusion matrix.

5 Discussion
The obtained fault detection rates are consistent with those
reported in the literature. However, the use of inverse fuzzy
models contributes significantly to fault isolation, which is
not extensively addressed in existing papers focusing on
the DAMADICS model. These models provide a means
to classify faults based on their magnitude and behavior,
enabling comprehensive fault diagnosis. One limitation is
the reliance on the model that yields the highest response to
ensure accurate fault isolation.

5.1 Comparison of detection rates

The fault detection rate obtained in this study is 84.81%,
which significantly outperforms the rates reported in other

works, such as 55.45% and 82.37%. This improvement can
be attributed to the use of inverse fuzzy models combined
with wavelet transform, which enhances the detection of
small and abrupt faults that are often missed by conven-
tional methods. Our method demonstrates higher sensitiv-
ity and reliability in identifying faults, thereby reducing the
risk of undetected issues in chemical processes. A compar-
ison of the obtained results for fault detection is presented
in Table 9, alongside the results from [37] and [43]. The
best results are highlighted in bold.

5.2 Analysis of computational efficiency

Our approach also shows advantages in terms of computa-
tional efficiency. The inversion of fuzzy models is compu-
tationally less intensive compared to other advanced tech-
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Table 7: Fault classification in the DAMADICS model.

Fault Fault Small Medium Big Incipient
origin

F1 × ✓ ✓ ⊞
F2 ✓ ✓ ✓ ✓
F3 ⊞ ⊞ ⊞ ✓

Control F4 ⊞ ⊞ ⊞ ✓
valve F5 ✓ ✓ ✓ ✓

F6 ✓ ✓ ✓ ✓
F7 × ✓ ✓ ✓
F8 × × × ⊞

Servomotor F9 × × × ×
F10 ✓ ✓ ✓ ✓
F11 ⊞ ⊞ × ×
F12 × ✓ ✓ ✓

Positioner F13 ✓ ✓ ✓ ✓
F14 × × × ×
F15 ✓ ✓ ✓ ✓
F16 × × ✓ ✓

External F17 ✓ ✓ ✓ ✓
faults F18 ✓ ✓ ✓ ✓

F19 ✓ ✓ ✓ ✓

Table 8: Fault detection for detectable levels in the
DAMADICS model.

Fault Precision Memory Specificity Accuracy
F1 0.9521 0.9810 0.9606 0.9696
F7 0.9249 0.9797 0.9571 0.9650
F12 0.8705 0.8242 0.9341 0.8957
F16 0.8580 0.8532 0.9658 0.9439

niques like artificial neural networks or support vector ma-
chines. This efficiency is critical in real-time applications
where prompt detection and isolation of faults are necessary
to prevent process disruptions. The simplicity and lower
computational requirements of our method make it suitable
for integration into existing industrial systems without re-
quiring significant hardware upgrades. A disadvantage is
to require data to obtain the fuzzy models off-line before to
use this proposal.

5.3 Robustness against noisy data and
incipient faults

One of the key strengths of our approach is its robustness
against noisy data and the detection of incipient faults. By
employing wavelet transform, our method effectively fil-
ters out noise and enhances the signal corresponding to
faults highlighting abnormal events. This robustness is cru-
cial in real-world industrial environments where data is of-
ten contaminated with noise. Additionally, the capability
to detect incipient faults allows for early intervention, pre-
venting minor issues from escalating into major problems.
Our method’s superior fault isolation accuracy, at 78.85%,

further underscores its effectiveness in distinguishing be-
tween different fault types, even in challenging conditions.
For this reason a low-pass filter was needed to reconstruct
the fault signals. However, the filter adds time to detect and
isolate faults.

5.4 Improvement over state of the art
techniques

Compared to state-of-the-art (SOTA) techniques, our
method offers several improvements. While SOTA tech-
niques like deep learning models provide high accuracy,
they often require extensive computational resources and
large datasets for training. In contrast, our inverse fuzzy
model approach achieves competitive accuracy with lower
computational demands and without the need for extensive
data preprocessing. This balance of accuracy and efficiency
makes our method a practical choice for fault detection in
the chemical industry.
Among the faults considered, fault F9 exhibits the low-

est detection rate. To enhance the detection of this par-
ticular fault, alternative preprocessing methods can be ex-
plored instead of relying solely on the wavelet transform,
as indicated by the results presented in Table 9. Notably, a
detection rate exceeding 0.9 was achieved in the study by
[43]. Grouping the fuzzymodels based on the possible fault
sources allows for a targeted comparison of models for fault
isolation.
An intriguing avenue for future research involves devel-

oping fault-tolerant control strategies for the valve actua-
tor under consideration, leveraging the insights gained from
the fault diagnosis results.
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Table 9: Fault detection rates comparison.

Fault This proposal [37] [43]
F1 0.7480 0.031 0.9201
F2 0.9545 0.988 0.8333
F3 0.9592 Not reported 0.3663
F4 0.4451 Not reported Not reported
F5 0.8275 Not reported 0.7228
F6 0.9761 Not reported 0.7327
F7 0.9265 0.988 1.000
F8 0.6952 0.121 0.9333
F9 0.5319 Not reported 0.9130
F10 0.8392 0.434 0.9167
F11 0.6308 0.409 0.8974
F12 0.6768 0.111 0.9302
F13 0.9823 0.880 0.0090
F14 0.4142 Not reported 0.8076
F15 0.9784 0.373 0.6863
F16 0.6221 0.094 0.8352
F17 0.9968 0.998 0.8393
F18 0.9818 0.834 0.9365
F19 0.9916 0.947 0.9716

In conclusion, our study demonstrates that the combina-
tion of inverse fuzzy models and wavelet transform pro-
vides a robust, efficient, and accurate method for fault de-
tection, isolation, and classification. This approach not only
enhances detection rates and computational efficiency but
also offers superior robustness against noisy data and in-
cipient faults, making it a valuable tool for maintaining the
reliability and safety of chemical processes.

6 Conclusions
In this study, we demonstrate how inverse fuzzymodels can
be applied to fault reconstruction, facilitating the detection
and isolation of faults. We utilized the DAMADICS bench-
mark, specifically focusing on the electro-pneumatic valve,
as our case study for proposing and implementing fault di-
agnosis techniques. The effectiveness of the fuzzy models
in fault detection was evident through the establishment of
appropriate thresholds. However, due to the inherent noise
present in the output signals, the inverse fuzzy models do
not yield a zero output in the absence of faults. To address
this issue, a filtering process was employed for fault recon-
struction, albeit with the introduction of some delay.
Among the faults considered,F8 andF14 posed the great-

est challenges in terms of detection. False alarms were ob-
served with the inverse fuzzy models when simulating F15

and F16. However, for other fault types, the fault detection
results were comparable to those reported in similar studies.
Notably, improved results were achieved for faults F3−F6,
F13, F18, and F19 compared to the literature. Neverthe-
less, in terms of fault isolation, the inverse fuzzy models
exhibited similar behavior across different fault types, of-
ten leading to misinterpretation of certain faults such as F8,

F13, F14, and F17 as other fault types.
When simulating faults F1 or F7, detection was possible,

but classification proved challenging, particularly for small
abrupt faults. Additionally, in the case of incipient faults,
limitations arose due to the physical constraints, resulting
in the simulation of only certain fault types. In these cases,
a specific fault magnitude had to be applied for effective
fault detection. Specifically, fault magnitudes greater than
31% for F1, 41% for F7, 42% for F12, and 60% for F15

were required. Notably, faults F8, F9, and F14 could not be
classified as small, medium, large, or incipient.
The use of wavelet transform proved beneficial in de-

tecting small faults for F1 and F7. However, it did not con-
tribute significantly to fault isolation. One limitation of the
proposed methodology is the requirement of measured data
during fault conditions to build fuzzy models for fault re-
construction. As future work, the integration of ANNs is
planned to facilitate fault prognosis by identifying fault sig-
natures. Additionally, the application of inverse fuzzy fault
models holds promise for the development of fault-tolerant
control strategies.
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