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Fog cloud computing management is an emerging topic. It involves accepting generated tasks from users 

and assigning them in the fog nodes or sending them to the cloud with optimizing various objectives. One 

specific type of fog environment is cloudlet which indicates to local servers deployed in wireless 

metropolitan area network and leveraging the existing access points or base-station for communicating 

tasks between users and cloudlets. The existing methods of cloudlet-based computing optimization are 

numerous. This article provides cloudlet computing management process based on multi-objective 

optimization using the concept of non-dominated sorting. The considered objectives are latency, energy 

consumption at the cloudlets, energy consumption at the user, and cost which is calculated based on the 

number of cloudlets. Non-dominated sorting genetic algorithms (NSGA-II) and (NSGA-III) are used for 

comparison. The results reveal equivalent performance between them with slight superiority of NSGA-III 

over NSGA-II in terms of the number of non-dominated solutions. 

Povzetek: Članek obravnava upravljanje računalništva v oblaku z večciljno optimizacijo in nedomirajočim 

razvrščanjem, primerjajoč NSGA-II in NSGA-III algoritme.

1  Introduction 
Cloud services have emerged as a popular solution for 

providing remote computing resources to meet the 

growing demands of users for data processing and 

storage. The cloud computing model provides a scalable, 

flexible, and cost-effective platform for businesses and 

individuals to store, manage and process large amounts 

of data. Despite the numerous advantages of cloud 

services, they still face several critical challenges, one of 

which is latency. Latency refers to the time it takes for a 

request to travel from the client to the server and back, 

and it can have a significant impact on the quality of 

service (QoS) of cloud services [1]. 

 To address this challenge, fog computing has been 

proposed as a way of bringing computing and storage of 

data in closer proximity to the network's periphery [2]. 

Unlike cloud computing, which centralizes all 

computing and data storage in a single location, fog 

computing distributes computing and data storage across 

multiple nodes in the network, including edge devices 

and fog nodes, which are typically located at the network 

edge[3]. This approach helps to reduce latency and 

improve the QoS of cloud services, as the data does not 

have to travel as far to reach the server [4]. 

 However, the deployment and optimization of fog 

nodes or cloudlets is still a significant challenge in fog 

computing. The placement of cloudlets is an important 

problem, as it can have a significant impact on the overall 

performance of the fog computing system. The  

 

deployment of cloudlets must consider various factors, 

such as network topology, traffic patterns, and the 

availability of computing and storage resources. 

Furthermore, the deployment of clouds has a multi-

objective nature. More specifically, it aims at optimizing 

more than one objective at the same time with handling 

the issues of self-conflicting between the objectives [5]. 

 Some of the important objectives are latency, energy 

consumption at the cloudlet, energy consumption at the 

user device, and cost of deployment which is related to 

the number of cloudlets. The self-conflicting nature 

occur in various cases [6].  For example, reducing 

latency might require deploying more cloudlets closer to 

the end-users, which could increase the cost of 

deployment and energy consumption at the cloudlets. 

Similarly, reducing energy consumption at the user 

device might require more processing to be offloaded to 

the cloud, which could increase the energy consumption 

at the cloudlet and increase the latency. In order to 

reconcile these contradictory goals, cloud computing 

researchers and practitioners frequently employ multi-

objective optimization techniques, which seeks to 

identify a collection of solutions that strike a balance 

between the competing objectives. One of the popular 

multi-objective optimizations is non-dominated sorting 

genetic algorithm that has two variants, namely, NSGA-

II, NSGA-III. NSGA-II, NSGA-III are two variants of 

the NSGA algorithm [7]. 
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 NSGA-II was proposed by Deb et al. in 2002 [8], and 

it is a widely used and highly effective algorithm for 

multi-objective optimization. NSGA-II uses a fast non-

dominated sorting approach to rank candidate solutions 

based on their Pareto optimality, and it also uses 

crowding distance to maintain diversity in the population 

of solutions. 

NSGA-III, on the other hand, was proposed by Deb 

et al. in 2014, and it is a more recent and advanced 

version of the algorithm. NSGA-III [9] uses a reference 

point-based approach to guide the search towards the 

desired region of the Pareto front. This approach enables 

NSGA-III to handle problems with more than three 

objectives, which is a limitation of NSGA-II. 

The aim of this paper is to evaluate and contrast the 

NSGA-II and NSGA-III algorithms based on four 

criteria related to cloudlets optimization. These criteria 

include latency, energy usage at the cloudlets, energy 

usage by the user, and the cost determined by the 

quantity of cloudlets. Thus, the key takeaways of this 

paper are as follows: 

• It provides cloudlet computing management process 

based on multi-objective optimization using the 

concept of non-dominated sorting. The considered 

objectives are latency, energy consumption at the 

cloudlets, energy consumption at the user, and cost 

which is calculated based on the number of 

cloudlets. 

• It selects two popular multi-objective algorithms, 

namely, NSGA-II and NSGA-III and use them for 

comparing the Pareto front obtained by each of the 

two algorithms. 

• The comparison provides different aspects of the 

performance including diversity which is 

represented by hyper-volume and delta metric and 

domination which is represented by set coverage. 

The subsequent is the structure of this article: In the 

second section, an exhaustive literature review of related 

works is presented. Following this, Section 3 provides an 

overview of the methodology utilized in the research. 

Section 4 then presents the experimental evaluation and 

its corresponding results. Finally, Section 5 wraps up the 

article with the conclusion and a discussion on potential 

future works. 

 

2 Related works 
Edge computing has seen a surge in growth and 

attention recently, driven by the growing need for rapid 

and efficient data processing across a variety of 

applications. One primary challenge in this domain is the 

strategic positioning and optimization of edge servers. In 

response, numerous strategies and algorithms have 

emerged to facilitate the optimal deployment of edge 

servers across different situations and environments. 

This review aims to shed light on some of the leading 

research efforts in edge computing and the positioning of 

edge servers. 

A significant portion of the initial research focuses 

on task offloading and its alignment with cloudlets. A 

variety of advanced algorithms have been put forward to 

address this issue. An example of this can be seen in the 

research discussed in reference [10], which examines a 

hybrid strategy for outsourcing tasks and deploying 

cloudlets in order to decrease task response time, energy 

consumption, and the overall count of active cloudlets. 

The research in [11] is centered on maximizing the 

computational frequencies and transmission capabilities 

of IoT devices, with an emphasis on reducing task 

completion duration and energy costs. Scholarly articles 

[12] and [13] employ novel methodologies to examine 

the implementation of edge servers in the context of the 

Internet of Vehicles and the placement of cloudlets 

within networks of wireless access points, respectively. 

The paper in [14] delves deep into the best practices for 

task offloading strategies and related parameters. 

Another segment of research employs Linear 

Programming techniques to navigate the challenges of 

edge server deployment. For instance, [15] delves into a 

hybrid approach to cloudlet deployment over a specific 

network infrastructure, leveraging mixed-integer linear 

programming for its optimization endeavors. Other 

papers, like those from [16] to [23], tackle various 

aspects of the deployment challenge, from task 

delegation to load balancing, using a diverse set of 

methodologies. 

In summary, the realm of edge computing and the 

strategic deployment of edge servers have been a hotspot 

of research focus in recent times. A myriad of methods, 

spanning from meta-heuristic algorithms and linear 

programming to machine learning, have been proposed 

to tackle deployment challenges. Particularly noteworthy 

is the fact that meta-heuristics are the area in which 

multi-objective optimization is found to function, 

especially with algorithms such as (NSGA-II, NSGA-III) 

taking the lead. While the use of previous algorithms for 

tasks akin to cloudlet optimization is clear, a direct 

comparative analysis of their efficacy is yet to be 

extensively explored in research. Such a comparison is 

crucial for two main reasons: understanding the 

differences in their optimal solutions and evaluating the 

similarity of their results. This comparative insight can 

guide decision-makers in selecting the most suitable 

algorithm for this and analogous optimization 

challenges. 

3 Methodology 
This section outlines the methodology we've 

formulated. It's broken down into multiple sub-sections. 

Sub-section 3.1 introduces the mathematical model. This 

is followed by a detailed look at the widely recognized 

NSGA-II and a separate overview of the equally 

renowned NSGA-III in sub-sections 3.2. Subsequently, 

we delve into our multi-objective assessment that draws 

on both algorithms in the subsequent sub-section. 

Finally, the evaluation criteria employed in this paper are 

detailed in the concluding sub-section. 
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3.1  Mathematical model 

We adopted the mathematical model presented in [10]. 

The mobile edge computing network in this architecture 

has M users and N Access Points (APs). To service the 

users, cloudlets are set up across the network. Each user 

may access the network via the AP that is linked with 

them since all APs are hooked together. We assumed that 

the creation of cloudlets is solely dependent on the 

locations of the Access Points (APs), with each AP 

having the capacity to facilitate the deployment of a 

solitary cloudlet. The work is described by using the 

exponential distributions to represent the input data size 

and computing resource requirement of a user's job. The 

average values of these parameters are denoted by i  

(bits) and i (CPU cycle), respectively. The computing 

capacity and effective switched capacitance of a user's 

iu  CPU are denoted by 
u

i  and i , respectively. The 

model is depicted in Figure 1. Financial constraints of the 

service provider are denoted by the letter L, which also 

signifies the maximum count of cloudlets that can be set 

up. 

 

Figure 1: Graph representing an existing wireless 

metropolitan area network 

 

3.2 Multi-objective optimization algorithms 

The Non-dominated Sorting Genetic Algorithm 

(NSGA)-II and -III are two widely utilized optimization 

techniques for many objectives in many different 

domains. 

 

▪ Non-dominated sorting genetic algorithm 

(NSGA-II)  

NSGA-II is a genetic algorithm-based optimization 

technique that uses non-dominated sorting and crowding 

distance concept to find the Pareto-optimal set of 

solutions. The Pareto-optimal set is a set of solutions in 

which no solution can be improved in one objective 

without deteriorating at least one of the other objectives. 

NSGA-II operates in a generational manner, in which 

each generation consists of selection, crossover, and 

mutation operators. Here is a rundown of the NSGA-II 

algorithm's operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

▪ Non-dominated sorting genetic algorithm 

(NSGA-III)  

NSGA-III, or the Non-dominated Sorting Genetic 

Algorithm III, is a multi-objective optimization 

algorithm. Developed as an advancement from its 

predecessors, NSGA and NSGA-II, this iteration was 

specifically engineered to address optimization 

challenges involving more than two objectives [24]. 

NSGA-III uses a reference-point-based 

nondominated sorting approach to efficiently handle  

many-objective problems, i.e., problems with more than 

three objectives. We present the pseudocode of the 

algorithm that explains the basic structure of NSGA-III. 

Please note that the crossover and mutation operations 

Algorithm – pseudocode of NSGA-II 

 

Input: populationSize ; numIterations; 

Output: non-dominated solutions  

Start:  

Initialize the population with 'populationSize' 

solutions. 

Evaluate the objective function of each individual. 

For each generation 'i' up to 'numIterations': 

    Perform non-dominated sorting on the population 

    Assign crowding distance to individuals in each 

front. 

    Create an empty offspring population. 

    While the size of the offspring population is less 

than the population size: 

        Select two parents from the population based on 

tournament selection. 

        Perform crossover and mutation to create 

offspring. 

        Evaluate the objective function of each 

offspring. 

        Add the offspring to the offspring population. 

    Merge the population and the offspring 

population. 

    Perform non-dominated sorting on the merged 

population. 

    Assign crowding distance to individuals in each 

front. 

    Truncate the merged population based on the 

crowding distance. 

Return the non-dominated solutions from the last 

generation. 

End 
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are problem-specific, as are the encoding of solutions 

and the definition of the objective functions. The 

reference point-based niching also needs specific 

implementations that aren't detailed here. You should 

also ensure you have adequate mechanisms in place for 

maintaining diversity in the population and for 

determining when to terminate the algorithm. 

Remember, each objective function in 

Objective_Functions [] must take a solution (a member 

of the population) as an input and output a fitness value. 

The Solution_Space_Boundary [] is used to constrain the 

solutions to a feasible space. The Population_Size is the 

number of individuals in the population and 

Max_Generation is the maximum number of iterations 

the algorithm will run for. Lastly, keep in mind this is a 

simplified version of NSGA-III. The actual algorithm 

can be more complex and may require fine-tuning and 

additional operations to work effectively on specific 

problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

▪ Multi-objective optimization based on NSGA-

II and NSGA-III  

In our cloudlet optimization, we compare between the 

two stated algorithms, namely, NSGA-III, NSGA-II 

from the perspective of multi-objective optimization. 

Basically, we use various metrics for this purpose, 

namely, set coverage, hyper-volume, delta metric, 

number of non-dominated solutions. 

 

1) SET_COVERAGE_MEASURE (C) which 

compares the Pareto sets 𝑃𝑠1 and 𝑃𝑠2 as follows 

[25]: 

 

𝑐(𝑃𝑠1, 𝑃𝑠2)= 
|{ 𝑦 ∈ 𝑃𝑠2|∃𝑥 ∈ 𝑃𝑠1: 𝑥 > 𝑦}| 

|𝑃𝑠2|
          (1) 

 

2) HYPER-VOLUME MEASURE (HV): 

Evaluation of the efficacy of search algorithms 

in evolutionary multi-objective optimization 

has made extensive use of it. When compared 

to the reference point, which represents the 

worst solution, the volume of the dominated 

region in the objective space is calculated. This 

region is formed by joining the solutions x from 

the Pareto set PS that are positioned at the 

reference point along the diagonal of the 

hypercube PS [25]. If this indicator has higher 

values, it indicates that the solutions being 

considered are more desirable. The following 

equation can be used to get HV:  

 

𝐻𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 ( 
⋃

𝑥 ∈ 𝑃𝑠  
𝐻𝑦𝑝𝑒𝑟𝐶𝑢𝑏𝑒(𝑥) )     (2) 

 

Algorithm – Pseudocode of NSGA-III 

 

Input: 

Objective_Functions;Solution_Space_Boundary; 

Population_Size ;Max_Generation 

 

Output: Pareto Front   

 

Start:   

Initialize Population of size Population_Size within 

Solution_Space_Boundary. 

Evaluate Population using Objective_Functions. 

For generation = 1 to Max_Generation do: 

 

        Select mating pool from Population. 

Generate Offspring by performing crossover and     

mutation on mating pool. 

        Evaluate Offspring using Objective_Functions. 

        Combine Population and Offspring into 

Combined_Population. 

Compute non-domination fronts of   

Combined_Population. 

 

if size of first non-domination front < 

Population_Size then 

 

Add members of first non-domination front 

to next Population. 

For each subsequent non-domination front 

do: 

 

if size of next Population + size of 

current non-domination front <= 

Population_Size then 

 

Add members of current non-domination front to 

next Population. 

 

 

 

 

                      Else 

 

Use reference point-based niching   

to select remaining members of next 

Population from current non-

domination front. 

                            break. 

 

                      End if 

       End For 

       Else 

 

Use reference point-based niching to select 

members of next Population from first non-

domination front. 

 

End if 

 

       Population = next Population. 

 

End For 

 

Return Population as Pareto front 

 

End 
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3) DELTA MEASURE: or the diversity metric 1 

represents the degree to which spread is 

accomplished among the many solutions that 

were produced. The function accepts as input 

the set of solutions that are not dominated, and 

it generates the delta measure using the 

subsequent equation [25]: 

 

  △=  
𝑑𝑓 + 𝑑𝑖 + ∑ |𝑑𝑖− �̅�|𝑁−1

𝑖=1

𝑑𝑓 + 𝑑𝑖 +(𝑁−1)�̅�
                    (3) 

 
N represents the count of solutions 𝑑𝑖. The 

Euclidean distances between the extreme 

solutions and the boundary solutions are 

represented by 𝑑𝑓 and dl, respectively. 

Meanwhile, 𝑑¯ is the mean of the sequential 

distances di, ranging from i = 1 to N - 1. 

 

4) 4) The cardinality of PS may be determined as 

follows to determine how many non-dominated 

solutions the optimization technique produces 

[25]: 

 

𝑁𝐷𝑆 (𝑁)  =  |𝑃𝑠 |                                            (4) 

 

A higher value for NDS is preferable, signifying 

the presence of a sufficient number of solutions. 
 

4 Experimental evaluation and 

results  
For evaluation, we run each of NSGA-II and NSGA-III 

based on the parameters depicted in table 1. As it is 

depicted in the table, we used range for the parameters, 

namely, number of iterations and population size. This is 

because each algorithm is operated for more than one 

time to capture the statistical behavior of the results 

generated from each algorithm and to reflect this in 

boxplot. Furthermore, the simulation parameters are 

detailed in Table 2. 

Table 1: The parameters of the algorithms used for 

evaluation 

 NSGA-II NSGA-III 

Number of iterations min 100 100 

Number of iterations max 200 200 

Population size min 100 100 

Population size max 200 200 

 

 

 

 

 

 

 

Table 2: The parameters of the simulation used for 

evaluation 

Parameter name  Min  Max  

Area  100 × 100 100 × 100 

Number of users        100 200 

Number of base stations 20 20 

Number of cloudlets  5  10  

 

The experimental results are presented bases on the set 

coverage between NSGA-III, NSGA-II. The set coverage 

indicates to the percentage of domination of one algorithm 

over the other. We find from the results that the domination 

of NSGA-II over NSGA-III has gotten a median value 

equal to 0.25 compared with almost the same median value 

for NSGA-III over NSGA-II. In addition, we find that 

several experiments have generated higher domination of 

NSGA-III over NSGA-II and are plotted as outliers in the 

boxplot as shown in Figure 2. This means that NSGA-III 

has more potential of providing more dominant solutions 

than NSGA-II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2: Boxplot visualization of the domination 

between NSGA-II, NSGA-III using set coverage. 

 

The second metric that is visualized is the delta 

metric which indicates how much the solutions are 

equally distributed in the environment.  
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The lower the value of the delta metric, the more 

fairness of solutions distributions in the Pareto front. 

Observing Figure 3, we find that NSGA-III could 

generate some Pareto fronts with lower values of delta 

metric reaching below 0.75. Hence, NSGA-III had more 

potential of generating a more equally distributed Pareto 

front. 

 

 
 

Figure 3: Delta metric visualization of NSGA-II, NSGA-

III. 

 

The third metric that is visualized is the number of 

non-dominated solutions. For this metric, we find that 

NSGA-II has generated some Pareto fronts with higher 

values of the number of non-dominated solutions 

reaching 35 compared with one Pareto front generated 

from NSGA-III with a value of 34 in Figure 4. Another 

observation is that the median values of the two 

algorithms are almost 20. However, NSGA-III has 

generated a higher value of the third percentile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Number of non-dominated solutions metric 

visualization of NSGA-II, NSGA-III. 

 

The last metric that is visualized is hyper-volume 

which indicates to the allocated volume of the solutions 

in the objective space. Observing the results from    

Figure 5 provides that both algorithms have generated 

the same value of hyper-volume which is zero. This 

might be interpreted by the nature of solutions 

distributions in the space which have taken a straight-

line. In other words, the solutions for all of experiments 

have at least two objective values that have never 

changed their values. This might be interpreted the 

nature of the optimization surface. 

 
Figure 5: Hyper volume metric visualization of NSGA-

II, NSGA-III. 

 

5 Conclusion and future works  
The article focuses on fog cloud computing 

management, which involves assigning tasks to fog 

nodes or sending them to the cloud while optimizing 

various objectives. The authors specifically examine 

cloudlets, which are local servers deployed in wireless 

metropolitan areas that communicate tasks between 

users and cloudlets. They propose a cloudlet computing 

management process based on multi-objective 

optimization using non-dominated sorting, with latency, 

energy consumption at the cloudlets and user, and cost 

(based on the number of cloudlets) as considered 

objectives. 

Set coverage, delta measure, number of non-

dominated solutions, and hyper-volume are some of the 

experimental metrics used to compare the two NSGA 

versions in this article. The set coverage metric shows 

that NSGA-III has more potential to provide dominant 

solutions than NSGA-II. The delta metric indicates that 

NSGA-III can generate Pareto fronts with lower values 

of delta metric, meaning more equally distributed 

solutions. While NSGA-III has produced greater values 

of third percentiles, the number of non-dominated 

solutions metric indicates that NSGA-II is capable of 

generating Pareto fronts with a greater quantity of non-

dominated solutions. Both algorithms have generated the 

same value of hyper-volume, which is zero, possibly due 

to the optimization surface's nature. Overall, the results 

suggest that NSGA-III has some advantages over 
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NSGA-II in terms of providing more dominant solutions 

and equally distributed Pareto fronts.  
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