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Weeds pose significant challenges in agriculture, impacting crop yields and increasing the reliance on 

herbicides. Accurate and timely identification of weeds is crucial for effective weed management 

strategies. This study proposed a novel approach for automated identification of weeds using various 

machine learning classifiers. Our study explores the effectiveness of diverse algorithms, including 

Support Vector Machine (SVM), Random Forest, Decision Tree, k-Nearest Neighbors (KNN), Extra 

Tree, and Gaussian Naive Bayes (NB). By pre-processing and engineering features from a diverse 

dataset of weed images, we ensure optimal model performance. Through rigorous experimentation and 

evaluation, we assess the performance of each classifier in weed identification. Notably, the Extra Tree 

classifier achieves an impressive accuracy of 96.35% and an outstanding kappa coefficient of 96.21%. 

These findings offer valuable insights into the effectiveness of different classifiers and their potential 

applications in precision agriculture for targeted weed management and crop optimization 

     Povzetek: Analizirana je uporaba strojnega učenja za avtomatizirano prepoznavanje plevela v kmetijstvu, 

vključno s SVM, naključnimi gozdovi in CNN, ter uporaba UAV slik. 

 

1 Introduction 
Weed identification plays a pivotal role in agriculture 

and environmental management, involving the 

distinction of unwanted plant species from desired 

vegetation. The conventional manual process is laborious 

and time-intensive, prompting the integration of machine 

learning and computer vision techniques for automated 

identification. Utilizing tools like Convolution Neural 

Networks (CNNs) and ensemble classifiers, modern 

approaches analyze visual features, leaf shapes, and 

textures in captured images to efficiently detect and 

classify weeds. This technological advancement 

enhances accuracy and expedites the identification 

process, with applications extending to agriculture, 

ecological conservation, and land management for 

optimized resource utilization and sustainable practices 

[1]. In a study by [2], the utilization of a Random Forest 

Classifier for weed identification yielded an initial 

accuracy of 82% and a kappa coefficient of 0.73 in 

preliminary assessments. A study [3] used tiny YOLOv3 

for Convolvulus sepium detection in sugar beet fields. 

They combined 2271 synthetic images with 452 field 

images for model training. YOLO anchor box sizes were 

determined via k-means clustering on the training 

dataset. Testing on 100 field images showed that using 

the combination of synthetic and original images 

provided improved mAP from 0.751 to 0.829 compared 

to using field images alone. In a study detailed in [4], the 

differentiation of crops and weeds based on visible and 

near-infrared spectrums is achieved through the 

application of Support Vector Machine, Artificial Neural  

 

Network, and Decision Tree techniques. The research 

attains a notable accuracy of 68.40%. The investigation 

outlined in [5] delves into an automated weed detection 

system that employs Convolutional Neural Networks 

(CNN) with Unmanned Aerial Vehicle (UAV) imagery. 

The proposed CNN LVQ (Learning Vector Quantization) 

model emerges as a remarkable contender for effectively 

classifying various categories. Notably, the soil class 

achieves an impeccable 100% user accuracy, closely 

trailed by soybean (99.79%), grass (98.58%), and 

broadleaf (98.32%). After meticulous hyper parameter 

refinement, the developed CNN LVQ model achieves an 

exceptional overall accuracy of 99.44% for weed 

detection, decisively surpassing the performance of 

previously documented studies. Within the domain of 

machine learning, a multitude of techniques are 

harnessed for weed identification. An illustrative instance 

involves the application of machine learning 

methodologies for weed detection in an Australian chilli 

crop field. In this context, diverse algorithms, including 

random forest (RF), support vector machine (SVM), and 

k-nearest neighbours (KNN), are systematically explored 

to ascertain their efficacy in leveraging UAV images for 

weed detection. The achieved results underscore notable 

accuracies: 96% for RF, 94% for SVM, and 63% for 

KNN, as documented in reference [6]. In a recent 

scholarly investigation [7], the identification of weeds 

within vegetable plantations was accomplished 

employing Centre Net, a fusion of deep learning and 

image processing methodologies. This approach yielded  
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Figure 1: Extra tree classifier 

 

Remarkable outcomes, with a precision of 95.6%, a 

recall of 95.0%, and an impressive F1 score of 0.953. To 

further enhance Bayesian classification accuracy, Genetic 

Algorithms (GAs) were skilfully employed to optimize 

the colour index. A hybrid CNN-SVM classifier is 

proposed for weed recognition in winter rape fields, 

aiming to improve accuracy. Utilizing VGG network 

model, the approach achieved average accuracies of 

99.2% in training and 92.1% in classification [8]. This 

[9] overview explores RNN- and CNN-based weed 

detection within crop enhancement, showcasing deep 

learning's potential for agriculture challenges. The 

Convolutional Neural Network emerges as the most 

Efficient technique for weed detection, leading to the 

development of a smart system for in-place weed 

identification and spraying. In study [10], the SLIC-RF 

algorithm is proposed for differentiating crops and weeds 

in upland rice fields using UAV imagery, achieving 

accuracies up to 0.915. The approach combines HSV-

based SLIC with various features, demonstrating 

potential for effective site-specific weed management. In 

their study [11] proposed an automatic weed mapping 

method using UAV imagery in oat fields. Four 

classification algorithms were tested, with the automatic 

object-based approach achieving the highest accuracy of 

89.0% and 87.1% for two subsets, enabling potential use 

in precision weed treatment. In their work [12] developed 

a vision-based weed detection system for soybean crops 

using custom lightweight deep learning models. Their 

proposed 5-layer CNN architecture achieved a high 

accuracy of 97.7% with minimal latency and memory 

usage, promising efficiency and productivity 

enhancements in the soybean industry. In their work [13] 

introduced a method utilizing deep features and one-class 

classification on unsupervised data for weed detection in 

UAV images. The approach achieved up to 90% 

accuracy on test datasets, comparable to supervised 

models, by employing one-class classifier trained on crop 

row-detected unsupervised data. This research [14] 

assesses the Random Forest (RF) classifier's 

effectiveness in classifying forest cover from Land sat 

TM imagery, achieving a 96% accuracy using auxiliary 

data and systematically collected aerial photography. The 

study presents an operational and cost-effective approach 

for generating accurate forest cover maps across diverse 

sclerophyll forests using open-source software. In [15]  

 

 

 

The realm of smart agriculture, a revolutionary robotic 

system diminishes reliance on traditional spraying 

methods like pesticides and herbicides, aiming to meet 

global food demands and enhance crop production. To 

achieve this, a Deep Learning (DL) approach utilizing a 

blend of Convolutional Neural Networks (CNN) and 

Long-Short-Term Memory (LSTM) is proposed for weed 

identification and classification. The method achieves an 

impressive 99.36% average classification accuracy 

across nine weed categories, surpassing other established 

techniques. A study [16] employed YOLOv3 deep 

learning to identify volunteer cotton plants amidst corn 

fields using UAV-captured RGB images, achieving over  

80% detection accuracy and highlighting the potential of 

DL for real-time pest mitigation via computer vision and 

UAV technology. 

In this context, this study introduces a hybrid 

methodology that integrates Convolutional Neural 

Networks (CNN) with the Extra Trees classifier to 

address the task of identifying weeds within agricultural 

fields. The CNN part specializes in capturing 

distinguishing features from input images, and the Extra 

Trees classifier employs these acquired features to 

execute the classification process. By merging the 

advantages of deep learning and the Extra Trees 

approach, this novel method strives to achieve both 

accurate and efficient weed identification outcomes. 

Leveraging advanced technologies such as Convolutional 

Neural Networks (CNNs) and the Extra Trees classifier 

offers a promising avenue for automating weed 

identification in agriculture. This approach, combining 

CNNs and Extra Trees, has the potential to enhance 

accuracy, streamline efficiency, and optimize resource 

utilization. Consequently, it holds the key to 

transforming weed management practices and driving 

improved agricultural productivity. 

This study presents an innovative approach that merges 

Convolutional Neural Networks (CNN) for feature 

extraction and classification with the Extra Trees 

classifier to identify weeds in diverse crops, with a 

specific focus on soybean. Additionally, it differentiates 

between grass and broadleaf weeds. The dataset 

encompasses 4400 UAV images, spanning categories 

like soybean, soil, grass and broadleaf. Notably, the 

method enhances the performance of the Extra Trees 

classifier.  

This optimized setup improves training effectiveness and 

maximizes the utility of the extensive UAV weed dataset. 

The subsequent sections of the paper are structured as 

follows: Section 2 introduces the CNN model, while 

Section 3 describes various machine learning algorithms, 

followed by Section 4 which elaborates the dataset used, 

and Section 5 presents the methodology employed in this 

paper. Section 6, presents the experimental results. 

Subsequently, Section 7 discusses the results and 

discussion and the conclusion is provided in Section 8. 
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2 Convolutional neural network 
This research leverages the capabilities of Convolutional 

Neural Networks (CNNs) to serve as a comprehensive 

framework for both feature extraction and classification. 

CNNs have garnered substantial recognition for their 

prowess in processing grid-like data, particularly images, 

and have exhibited exceptional performance in critical 

computer vision tasks such as object detection and image 

classification. In this study, a sophisticated CNN 

architecture is employed, comprising several pivotal 

layers, namely convolutional layers, pooling layers, 

Global Average Pooling (GAP) layers, and fully 

Connected layers. The architecture begins with the 

implementation of multiple Convolutional layers, 

strategically employing learnable filters to extract 

essential features at distinct spatial resolutions. Three 

Convolutional layers are thoughtfully configured, with 

each layer tailored to specific characteristics. 

Subsequently, pooling layers are introduced to the 

design, tasked with spatially down-sampling the feature 

maps while preserving vital information that underpins 

accurate classification. Of notable importance is the 

incorporation of the Global Average Pooling (GAP) 

layer, a fundamental component that furthers feature 

consolidation. By performing average pooling across the 

entirety of the feature map, the GAP layer efficiently 

condenses spatial information while retaining the most 

critical features. This contributes to the network's 

resilience against translation variances, thereby 

enhancing its ability to generalize. 

.

 

 
 

Figure 2: Raw UAV Images of Broadleaf, Grass, Soil, Soya bean 

 

 

 

Figure 3: Architecture of proposed model 

 

Building on these foundations, the architecture integrates 

fully connected layers, which serve to aggregate the 

extracted features and drive accurate predictions. 

Through the application of softmax activation, these fully 

connected layers translate the feature amalgamation into 

class probabilities, particularly beneficial for multi-class 

classification tasks. 

This unified framework embodies the remarkable 

Potential of CNNs in deciphering complex features and 

facilitating precise classification, thereby serving as a 

cornerstone in advancing state-of-the-art image analysis 

methodologies. 

 

3  Machine learning algorithms used 
Machine learning algorithms are computational models 

designed to enable computers to learn from data and 

improve their performance on specific tasks without 
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being explicitly programmed. They fall into categories 

such as supervised learning, where algorithms are trained 

on labeled data to make predictions, unsupervised 

learning, where they find patterns in unlabeled data, 

semi-supervised learning, combining elements of both 

supervised and unsupervised learning, reinforcement 

learning, where agents learn to take actions to maximize 

rewards, and deep learning, which involves training deep 

neural networks. The choice of algorithm depends on the 

problem at hand, available data, and desired outcomes. 

The successful application of machine learning has 

transformed various industries, allowing computers to 

make complex decisions and predictions once exclusive 

to human intelligence. 

 

3.1 SVM 
Support Vector Machines (SVMs) are classification 

algorithms that seek the best hyper plane to separate 

different classes by maximizing the margin. They focus 

on support vectors, near the decision boundary. SVMs 

handle high dimensions, outliers, and complex data via 

kernels. While binary by design, they extend to multi-

class scenarios using strategies like One-vs-Rest or One-

vs-One. 

 

3.2 Random forest 
The Random Forest classifier is an ensemble learning 

algorithm that combines multiple decision trees, each 

trained on random subsets of data and features. This 

aggregation of predictions improves accuracy, reduces 

over fitting, and offers insights into feature importance, 

making it a robust and popular choice for classification 

and regression tasks. 

 

3.3 Decision tree 
A Decision Tree is a machine learning algorithm that 

uses a tree-like structure to make decisions based on 

features. Each internal node represents a decision, 

branches indicate outcomes, and leaf nodes give 

predictions. While intuitive and suitable for non-linear 

data, they can over fit and struggle with generalization. 

 

3.4 Gaussian naive bayes 
Gaussian Naive Bayes is a probabilistic classification 

algorithm based on Bayes' theorem. It assumes that 

features follow a Gaussian distribution and are 

conditionally independent given the class label. It's 

particularly useful for continuous numerical data and 

works well even with limited training data. Despite its 

simplicity and the naive assumption, it often performs 

surprisingly well in real-world scenarios and is a popular 

choice for text and image classification tasks. 

 

3.5 KNN 

K-Nearest Neighbours (KNN) is a supervised algorithm 

for classification and regression. It identifies the K 

closest training data points to a query point and predicts 

Using the majority class or average value of neighbors. 

KNN assumes similar data points share outcomes, 

offering simplicity but sensitivity to distance metric and 

K value. 

 

3.6 Extra tree 
The Extra Trees classifier, short for Extremely 

Randomized Trees classifier, is an ensemble learning 

algorithm used for classification tasks. It builds multiple 

decision trees using random subsets of features and data. 

Unlike Random Forest, Extra Trees selects random splits 

at each node, reducing variance and enhancing 

generalization. This randomness also makes it 

computationally efficient. The algorithm aggregates 

predictions from all trees to make the final classification 

decision, resulting in improved accuracy and reduced 

over fitting. Extra Trees is shown in Figure 1. 

 

4  Dataset 
This study employs a dataset sourced from [21], 

consisting of 400 UAV snapshots of soybean crops 

captured from a 4 m altitude using the DJI Phantom 3 

Professional. The images have a ground sampling 

distance of 1 cm, as shown in Fig. 2. The images 

underwent segmentation using the SLIC algorithm, 

resulting in 15,336 segments in the dataset. Of these 

segments, 7,376 correspond to soybean, 3,520 to grass, 

3,249 to soil, and 1,191 to broadleaf weeds. For more 

comprehensive dataset information, refer [21]. The 

dataset is used for weed identification in soybean crops, 

as well as distinguishing the crops from grass, soil, and 

broadleaf weed classes. Using classifier ensemble 

approach rice crop yield is predicted in India [22]. 

 

5  Methodology 
In this study, 15,334 images were randomly selected 

from a total collection of 15,336 photographs within the 

dataset. The dataset encompasses four classes: broadleaf, 

grass, soil, and soybean. The dataset was divided into a 

ratio of 80:20 for training and testing. The images were 

processed, and a CNN with 12     layers was developed 

for imagery classification (Fig. 3). The model was built 

using Keras 2.3.0 API with Tensor Flow 2.0 backend and 

Python 3.8. It consists of three hidden convolution layers, 

three max-pooling layers, a Global Average Pooling 

(GAP) layer, and dense layers. The Convolutional layers 

employ the Rectified Linear Unit (ReLU) activation 

function to capture complex patterns through non-

linearity. Max-pooling layers are used to down-sample 

feature maps and reduce spatial dimensions. A GAP 

layer is applied after the final max-pooling layer. This 

approach allows the model to efficiently learn and retain 

essential information while reducing dimensions. The 

ReLU activation function is defined as (F(x) = max (0, 

x)), which maintains higher values and sets negative ones 

to zero, enabling complex learning. The code snippet 

specifies the activation='ReLU' parameter while adding 

convolutional layers using Tensor Flow’s Keras API. 

Incorporating max-pooling layers helps down-sample 

feature maps, reducing spatial dimensions while retaining 

crucial data. Max pooling selects the most significant 
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value within small regions of the input feature maps, 

effectively reducing dimensions while preserving 

relevant information. A GAP layer is introduced to 

Capture global features after the final max-pooling layer. 

The Global Average Pooling (GAP) layer serves a 

fundamental purpose: condensing feature map spatial 

dimensions while capturing global features. Following 

the GAP layer, the procedure entails conducting global 

average pooling across feature maps, yielding a single 

value for each channel. This operation reduces spatial 

complexity and encapsulates the overarching presence of 

acquired features in the input image. Consequently, the 

GAP layer generates a 1D vector, representing the 

globally averaged features extracted from feature maps. 

This vector subsequently serves as input for succeeding 

fully connected layers, where the extracted features are 

processed and applied to classification. Thus, the GAP 

layer's pivotal role lies in bridging convolutional layers 

and fully connected layers, furnishing a concise and 

informative depiction of input data. 

       In the proposed approach, Convolutional Neural     

Networks (CNN) is employed for feature extraction and 

classification, while the Extra Trees classifier is adopted 

as the classification algorithm. The architecture 

comprises initial and subsequent fully-connected dense 

layers, followed by the Extra Trees layer, which serves as 

the output layer for prediction. Additionally, a 

Competition layer is integrated, featuring four neurons  

Representing distinct classes. Various epoch counts for 

the Extra Trees classifier were tested, including 50, 100, 

and 200. However, after experimentation, it was found 

that setting the epoch count to 300 yielded higher 

training and validation accuracy. The learning rate was 

set at 0.001, and the input vector was initialized using 

random values. The decision to utilize 300 epochs 

considerably enhanced the model's accuracy during both 

training and testing stages.  

  

6  Experimental results 

In the experimental results, the proposed approach 

integrates Convolutional Neural Networks (CNN) for 

both feature extraction and classification, along with the 

Extra Trees classifier. The CNN model is initially trained 

to extract meaningful features from input images through 

Convolutional and pooling layers. However, it's 

important to note that the Extra Trees involve training by 

assigning epochs as the CNN model does. To address 

this, CNN is employed not only for feature extraction but 

also for classification, while the Extra Trees classifier is 

harnessed as the predictive model. This configuration 

allows for the generation of training and validation 

graphs, which are crucial for visualizing the learning 

process. 

 

 
Figure 4: Flowchart of proposed method 

 

 
Figure 5: Performance of various ML classifiers 
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Once trained, the Extra Trees classifier predicts labels for 

the test dataset. The efficacy of the Extra Trees classifier 

is evaluated using assessment metrics like the confusion 

matrix and classification report. This combined 

methodology capitalizes on CNN's dual roles for feature 

extraction and classification, while the Extra Trees 

classifier contributes as the classification model. The 

complete methodology is given in Fig. 4.The various 

machine learning classifiers used in this model are SVM, 

Random Forest, Decision Tree, Gaussian-NB, KNN and 

Extra Trees. Out of all these mechanisms Extra Trees 

exhibits higher accuracy value. This setup synergizes the 

feature extraction and classification capabilities of the 

CNN model with the Extra Trees classifier, potentially 

leading to enhanced classification accuracy and overall 

performance on the test set.      

From Fig. 4 it's evident that one approach involves 

utilizing the extracted features directly after the feature 

extraction step as input for the machine learning 

classifiers. Another method incorporates an intermediate 

step of showcasing training and validation graphs. In this 

method, the classification is applied subsequent to the 

feature extraction. The outputs obtained from the 

classification process serve as input for the classifier, 

leading to the final classification. 

 

6.1 Assessment metrics 
Evaluation metrics are essential tools for gauging the 

effectiveness of the proposed method, encompassing 

accuracy, precision, recall, and other factors. These 

metrics provide valuable insights for comprehensive 

assessment 

Accuracy: It quantifies a classification model's 

correctness by comparing correct predictions to the total 

predictions 

Accuracy =
TP+TN

TP+FP+TN+FN
 ……………………….. (1) 

Precision: It signifies true positives (TP) relative to the 

total of positive predictions (TP + FP): 

 Precision = TP ⁄ (TP + FP)……………………..… (2) 

Recall: It reflects the proportion of accurately classified 

positive samples among all actual positive samples: 

Recall=TP ⁄ (TP + FN)   …………………..……… .(3) 

F1-Score: It balances precision and recall for an accurate 

model evaluation: 

F1Score = 2 ∗ (Precision ∗ Recall)⁄ ((Precision +

Recall))……………………………………………. (4)  

 

TP: In the context of classification models, TP 

represents the number of correctly predicted positive 

instances. 

TN: It represents the number of correctly predicted 

negative instances.  

FP: It represents the number of incorrectly predicted 

positive instances.  

FN: It represents the number of incorrectly predicted 

negative instances. The Kappa coefficient (Cohen's 

Kappa) gauges agreement between raters or classifiers 

assigning categorical labels. It ranges from negative to 

positive, indicating agreement levels like slight, fair, 

moderate, Substantial, or   almost perfect. 

Mean Average Precision (MAP) is computed by 

averaging the AP values across all queries. SLIC is an 

algorithm used for super pixel segmentation, which 

involves dividing an image into compact, perceptually 

meaningful regions or segments. Accuracy is computed 

from SLIC. 

7 Results and discussion 

Various Machine leaning algorithms such as SVM, 

Decision Tree, KNN, Random Forest, Gaussian-NB, and 

Extra Trees are implemented for classification. Fig. 5 

depicts the performance for various algorithms in terms 

of accuracy, precision, f1 score and recall. Extra Trees 

shows higher values when compared with other 

algorithms. Table.1. shows the values of the various 

metrics. 

Table1: Summary of various machine learning classifiers 

 

Table 1 provides a performance comparison of 

different models on the classification task. The 

evaluation metrics include overall accuracy, which 

measures the proportion of correctly classified instances, 

And the Kappa coefficient, serves as a metric to gauge 

the level of agreement or reliability between two raters 

when categorizing items into distinct groups. Kappa 

between 0 to 1 indicate agreement that is better than 

chance, with superior values indicating stronger 

agreement. 

Additionally, precision, recall, and F1 score are 

provided to evaluate the model's performance concerning 

class-specific metrics. Higher values of these metrics 

generally indicate better model performance. From Table 

1 it is inferred that Extra Trees exhibits higher accuracy 

of 0.9635 when compared with all other machine 

learning algorithms. The overall accuracy measures the 

proportion of correctly classified instances, and a higher 

value indicates better performance in terms of the total 

number of correct predictions. According to [13] the 

obtained kappa coefficient of Extra Trees is 0.9621 

which is stated that lies within the range. The results 

Model Overall 
accura
cy 

Kappa Precision Recall F1score 

Extra 
Trees 

0.9635 0.9621 0.9705 0.9904 0.9804 

SVM 0.9508 0.9482 0.9685 0.9784 0.9739 

RF 0.9579 0.9561 0.9655 0.9897 0.9775 

KNN 0.9589 0.9572 0.9740 0.9816 0.9778 

DT 0.9332 0.9284 0.9646 0.9628 0.9637 

G-NB 0.8288 0.7935 0.8780 0.8330 0.8997 
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obtained from the trained models indicate the 

performance of the CNN-based feature extraction model 

and the Dense Neural Network classifier. The test loss 

and accuracy provide an overall assessment of the 

model's predictive capability on unseen data. 

The confusion matrix reveals the model's 

performance for each class, identifying True Positives, 

True Negatives, False Positives, and False Negatives. 

The classification report presents metrics such as 

precision, recall, and F1-score giving insights into the 

model's performance across different classes. By 

analyzing these results, it is possible to evaluate the 

model's effectiveness, predict its strengths, and identify 

areas for improvement. The discussion of the results 

provides valuable insights into the model's performance, 

which can inform decision-making and potential 

applications in various domains. 

The waveforms of CNN Extra Trees training and 

validation loss and accuracy are illustrated in Fig.6 and 

confusion matrix is shown in Fig.7. 

 

7.1 Comparison with other studies 
Comparing the outcomes of the proposed model with 

existing cases from the literature involves subjectivity. 

To facilitate this comparison, 13 recent studies are  

Extra Tree Techniques, as outlined in Table 2. Notably, 

the highest accuracy of 96.35% was achieved through the 

utilization of the CNN model coupled with the Extra 

Tree classifier. 

 

7.2 Limitations and complexity of proposed 

model 
The proposed method of utilizing a CNN for feature 

extraction and classification, followed by an Extra Trees 

classifier, offers a powerful fusion of deep learning and 

traditional machine learning techniques. However, this 

approach entails complexities and limitations. The 

intricate interplay between the CNN's learned features 

and the Extra Trees algorithm requires careful alignment 

and validation.  

While the CNN's capacity to capture intricate patterns 

can be advantageous, potential challenges include hyper 

parameter tuning for both models, data availability for 

effective CNN training, and difficulties in interpreting 

CNN-derived features. Balancing these complexities and 

limitations is essential to harness the combined strengths 

of the two methods effectively. 

 

 
 

Figure 6: Wave forms of training, validation loss and accuracy of CNN Extra Tree 

 

 
 

Figure 7: Confusion Matrix of CNN 
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Model Accuracy Recall F1- Score      Precision Reference 

Random Forest 82 93.3 92.1 - [2] 
Decision Trees 68 - - - [4] 

SVM 94 91 89 91 [6] 

KNN 63 62 89 62 [6] 

VGG16 92 92.1 52 92 [8] 

SLIC-RF 91 99 91 100 [10] 

Object-based 89 90 - 93.40 [11] 

One-class 90 - - - [13] 

Single Shot Detector 84 80 78.5 81 [16] 

SVM 66 - - - [7] 

RCNN 95 94.7 - 95.3 [18] 

YOLO-V3 91 66 68 65 [17] 

Relief-F 80 87.26 91.24 91.73 [19] 

Extra Trees 96 99 98 97 Proposed 
method 

 

8 Conclusion 
The classifiers like Random Forest, Support Vector 

Machine, K-Nearest Neighbours, and Extra Trees are 

used in this paper.  The proposed method of combining 

CNN for feature extraction, classification and Extra 

Trees as the classifier offers a promising approach for 

image classification and obtained an accuracy percentage   

of 0.9635. This method presents a versatile approach to 

image classification that merges the capabilities of deep 

learning and traditional machine learning. This strategy 

offers a promising solution for complex tasks, yet 

navigates challenges such as hyper parameter tuning, 

data availability, and interpretability. While demanding 

in terms of complexity, the model's potential to capture 

intricate patterns through the CNN's feature extraction 

and refine those using Extra Trees demonstrates its 

potential utility in tackling diverse classification 

problems.  The Extra Tree classifier obtained an 

impressive accuracy of 96.35% along with an 

outstanding kappa coefficient of 96.21%. 
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