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Human Activity Recognition (HAR) holds significant potential in healthcare, smart homes, sports, and 

security, mainly benefiting the well-being of elderly individuals and dependents. This research 

introduces an innovative deep learning-based approach to HAR, using wearable sensors in smart home 

environments. In this paper, we conduct a comprehensive review of the state of the art, offering insights 

into existing methods, classification techniques, their performances, hyperparameter tuning strategies, 

findings, limitations, and future directions. We propose an LSTM-based deep model enriched with batch 

normalization and perform a hyperparameter tuning using Bayesian Optimization; then, we evaluate 

the model on the PAMAP2 public dataset. The model outperforms previous studies, achieving 

remarkable performance metrics, including accuracy at 97.71%, F1 score, precision, and recall, 

approaching 96.66%, 96.85%, and 96.55%, respectively. We plan to assess the model's generalization 

capabilities for future work by training it on diverse datasets such as Opportunity and WISDM. 

Furthermore, we aim to enhance the model by exploring hybrid deep model architectures and 

alternative hyperparameter tuning approaches. These efforts maximize the model's efficiency and 

adaptability in real-world scenarios. 

Povzetek: 

1  Introduction  
HAR has emerged as a crucial research area with wide-

ranging applications in healthcare, smart homes, sports, 

and security [1]. Automatically recognizing and 

categorizing human activities can significantly enhance 

the well-being and independence of elderly individuals 

and those needing care [2]. In smart home settings, 

Human Activity Recognition (HAR) systems are essential 

for delivering context-aware services, monitoring 

residents' activities, and promptly notifying caregivers in 

the event of unusual situations [3]. 

While video-based approaches can achieve HAR, they 

often raise privacy concerns due to continuous 

surveillance requirements [4]. Sensor-based HAR using 

wearable devices has gained popularity to address these 

privacy issues. The data can be discreetly collected 

without compromising individuals' privacy using 

wearable sensors, such as accelerometers, gyroscopes, 

and temperature sensors [5]. 

This study focuses on sensor-based HAR using deep 

learning models, specifically LSTM. This network is 

suitable for handling time series data, which is essential 

for HAR tasks as activities are often characterized by 

sequential patterns over time. LSTM's ability to capture 

long-term dependencies and handle variable-length input 

sequences makes it an ideal choice for this time-sensitive 

problem. 

The main contributions of this paper are as follows. 

1) We conduct an in-depth review of the state of the 

art in sensor-based HAR using deep learning. This  

 

review provides valuable insights for readers, offering a 

thorough understanding of existing methods, 

classification techniques, hyperparameter tuning 

approaches, key findings, limitations, and future 

research directions. This comprehensive overview 

serves as a benchmark for comparing advancements in 

this domain. 

2) We systematically extract the performance 

metrics achieved by models in previous studies, 

including accuracy, F1 score, precision, and Recall. 

Additionally, we assess whether these studies employed 

validation methods such as k-fold cross-validation.  

3) We propose a novel LSTM-based model 

featuring batch normalization. To enhance its 

performance, we conduct hyperparameter tuning using 

Bayesian optimization.  

4) We evaluate the efficacy of our proposed LSTM-

based model on the publicly available wearable sensor 

dataset PAMAP2. We demonstrate the model's 

effectiveness through a rigorous assessment using 

accuracy, F1 score, precision, and Recall metrics. 

Furthermore, we ensure the reliability and 

generalizability of our model by performing a 10-fold 

cross-validation. 

5) In addition to showcasing our experimental 

results, we compare them with those reported in the 

state-of-the-art. This comparative analysis positions our 

proposed method within the broader context of existing 

research, highlighting its strengths and contributions. 
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The paper is organized into distinct sections as follows: 

Section 2 provides a thorough review of prior studies 

related to sensor-based Human Activity Recognition 

(HAR). In Section 3, the proposed materials and methods 

are presented. Section 4 is dedicated to detailing the 

experiments and presenting the results. Finally, Section 5 

concludes the paper. This structured approach ensures 

clarity and coherence throughout the document. 

 

 

 

 

 

 

 

 

Table 1: State-of-the-art of sensor-based HAR using deep learning 

Study Year 
Classification 

Method 
Datasets 

Hyperparameter 

(HP) 
Findings 

Limitations/ 

Future Works 

Hammerla et 

al[6] 
2016 

CNN -Opportunity 

-PAMAP2 

-Daphnet Gait 

dataset 

-fANOVA to 

investigate the 

impact of HP on 

model 
performance 

-The best-performing 

model is CNN  

-DL guidelines for 

practitioners 

-Explore more hp to optimize the 

models  

-explore more datasets and more 

complex models LSTM 

Ma et al.[7] 2019 

AttnSense 

(CNN, GRU, 

Attention 

Mechanism) 

Heterogeneou
s, UniMiB-

SHAR, and 

PAMAP2 

The study explores 
HP impact, 

including CNN 

structure and 

sliding window 

width. 

The results confirm the 
model's effectiveness in 

capturing dependencies 

in sensing signals' spatial 

and temporal domains.  

Not mentioned 

Xu et al.[8] 2019 

Inno HAR 

(inception 
NN+RNN+GR

U) 

Opportunity  

PAMAP2  
Smartphone 

Dataset 

No mention of HP 

Tuning. 

The proposed model 

exhibits superior 

performance and 

demonstrates strong 
generalization. Also, it 

has significant potential 

for real-time 

applications. 

- Consider adjusting the network 

structure, including kernel sizes and 

connection methods. 

-Address the problem of class 
imbalance for HAR. 

Wan et al[9] 2020 

CNN 

UCI  

PAMAP2. 

YES, but the HP 

tuning techniques 

and ranges are not 

clearly explained. 

The results showed that 

the CNN model 

outperforms other 

models  

Explore new sensors for HAR. 

Investigate transfer learning's 

impact. If explore diverse HP 

impacts and identify optimal settings 

for varied datasets and applications. 

LSTM 

Bi-LSTM 

Gao et 

al.[10] 
2020 

DanHAR (CNN 

and Attention 

Mechanism) 

WISDM 
PAMAP2 

UNIMIB 

SHAR 

OPPORTUNI

TY  

No mention of HP 
tuning 

The proposed model 
provided good results  

Explore the impact of different HP 
on the performance of danhar and 

investigate the effectiveness on other 

datasets. 

Xu et al.[11] 2022 

Inception-
LSTM with 

Attention 

Mechanism 

Self-built 
dataset 

PAMAP2 

No HP tuning, the 

HP are set by the 

authors and kept 

consistent. 

The proposed model 

outperforms traditional 

algorithms in terms of 

accuracy and 
convergence speed 

Limitation: Requires substantial 

training data, posing potential 

overfitting risks. 

Future Directions: Explore 
alternative models and 

regularization techniques. Extend 

model application to diverse 

contexts. 

 

Thakur et 

al.[12] 
2022 

ConvAE-LSTM 

Model (CNN, 

LSTM, Auto 

Encoder) 

WISDM 

UCI 

PAMAP2 

Opportunity 

The authors 

examine the 

impact of 

hyperparameters, 
such as the type of 

Optimizer used, 

the number of 

epochs, and the 

batch size, which 

affect the model 

performance. 

The proposed Conv-AE-

LSTM model provided 

good performance. 

-The proposed method should be 

analyzed for its applicability in real-

life applications 

-To compare the proposed method 
with other DL models, and examine 

other datasets. Also, further HP 

tuning could be performed to 

optimize the model's performance. 

Tehrani et 

al.[13] 
2023 Bi-LSTM 

AreM 

Mhealth 

PAMAP2 

The study 

investigates the 
Optimal window 

size and 

percentage of 

votes. 

The proposed method 

attained a higher 
performance. 

Improve the network's performance 

by optimizing the hyperparameters 
and exploring other types of neural 

networks. 

Challa et 

al.[14] 
2023 

CNN+biLSTM+ 

HP Tuning 

PAMAP2  

UCI-HAR 
MHEALTH 

The study used the  

Rao-3 

metaheuristic 

optimization to 
search for optimal 

HP. 

The authors searched for 

optimal HP values for 

DL models because they 

are crucial for the best 
performance. 

The proposed model 

achieved good results  

Full text not open access   

Kumar et al. 

[15] 
2023 GRU 

WISDM 

PAMAP2  

KU-HAR  

Full text not open 

access   

The model achieved 

good results  

The experimental outcomes offer an 

understanding of the practicality of 

the proposed model and suggest 

potential avenues for future research. 
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2 Related works 
2.1 Human activity recognition overview: Human 

Activity Recognition (HAR) has become a pivotal 

research area with widespread applications in healthcare, 

smart homes, sports, and security [1]. The automatic 

detection and classification of human activities are crucial 

for enhancing the quality of life for elderly individuals and 

dependents, especially in smart home environments [2]. 

As the introduction mentions, this study will focus on 

sensor-based HAR to preserve the resident's privacy in a 

smart home.  

2.2 Current trends of the state-of-the-art (SOTA): In 

the realm of deep learning models, various architectures, 

including Convolutional Neural Networks (CNN), 

Recurrent Neural Networks (RNN), Long Short-Term 

Memory (LSTM), and Gated Recurrent Unit (GRU), have 

been employed for HAR. These models have 

demonstrated promising results in recognizing human 

activities based on sensor data. Table 1 summarizes the 

state of the art of sensor-based HAR using deep learning. 

the noticeable trends in deep learning for HAR  

Trends in deep learning models for HAR: CNN emerged 

as the most widely used deep learning model across 

studies (Hammerla et al. [6], Ma et al. [7], Wan et al. [9], 

Gao et al. [10], Challa et al. [14]). CNNs are preferred for 

their ability to capture spatial features, making them 

suitable for sensor-based activity recognition. Besides, 

LSTM networks are also ubiquitous (Wan et al. [9], Xu et 

al. [11], Tehrani et al. [13]). Bi-directional LSTMs, in 

particular, are explored for their effectiveness in capturing 

temporal dependencies [13]. Some Studies integrated 

Attention mechanisms into models (Ma et al. [7], Gao et 

al. [10], Xu et al. [11]) to enhance the focus on specific 

segments of input sequences, contributing to improved 

performance. Another study conducted by Kalabakov et 

al.[16] uses DeepConvLSTM to transfer knowledge 

between two datasets, revealing that transferring the 

weights of fewer convolutional layers is more effective. 

Some practical implications of sensor-based Human 

Activity Recognition (HAR) in areas such as sports[17], 

surveillance [18], and fall detection[19] aim to ensure a 

healthier lifestyle for older people. 

Hyperparameter tuning: Several studies (Hammerla et 

al. [6] and Thakur et al. [12]) explicitly explore 

hyperparameters, emphasizing their impact on model 

performance. However, there is a lack of consistency 

across studies regarding hyperparameter tuning. 

Dataset diversity: In the field of human activity 

recognition, researchers have used publicly available 

datasets such as Opportunity[20], WISDM V1.1[21], and 

PAMAP2[22]. These datasets have allowed them to 

develop and test activity recognition methods using 

motion sensor data, reflecting an effort to generalize 

models across different contexts. It is noticeable that the 

PAMAP2 dataset is among the most used for HAR due to 

the size of the dataset, the Variety of the performed 

activities, and multiple subjects. 

Evaluation metrics and model performance: Table 2 

presents a variety of evaluation metrics across different 

studies, reflecting a lack of standardized reporting 

practices. While some studies provide accuracy, F1 score, 

precision, and Recall (Wan et al. [9], Xu et al. [11]), others 

have incomplete metrics (Hammerla et al. [6], Gao et al. 

[10]). This inconsistency makes direct comparisons 

challenging and emphasizes the need for standardized 

evaluation practices in sensor-based HAR research. Two 

standout models in sensor-based Human Activity 

Recognition are the Inception-LSTM proposed by Xu et 

al. (2022) with an accuracy of 95.04% [11]. Additionally, 

the hybrid CNN and bi-LSTM model with 

hyperparameter tuning introduced by Challa et al. (2023) 

achieved a slightly lower accuracy of 94.91% [14]. Challa 

et al. underscores the critical role of hyperparameter 

tuning for optimizing the performance of their model in 

activity recognition tasks.  

Table 2: Related works model performance on PAMAP2 dataset 

Study Year Classification Model Accuracy F1 score Precision Recall 
K-fold cross 

Validation 

Hammerla et al[6] 2016 CNN - 93,70% - - No 

Hammerla et al[6] 2016 LSTM - 92,90% - - No 

Ma et al.[7] 2019 AttnSense - 89,30% - - Yes (4 folds) 

Xu et al.[8] 2019 Inno HAR - 93,50% - - No 

Wan et al[9] 2020 CNN 91,00% 91,16% 91,66% 90,85% No 

Wan et al[9] 2020 LSTM 85,86% 85,34% 86,51% 84,67% No 

Wan et al[9] 2020 Bi-LSTM 89,52% 89,40% 90,19% 89,02% No 

Gao et al.[10] 2020 DanHAR 93,16% - - - No 

Xu et al.[11] 2022 Inception-LSTM  95,04% 95,13% 95,06% 95,21% No 

Thakur et al.[12] 2022 ConvAE-LSTM  94,33% 94,46% - - Yes (5 folds) 

Tehrani et al.[13] 2023 Bi-LSTM -  93.41% 93.41%  93.47 % No 

Tehrani et al.[13] 2023 Bi-LSTM -  93,41% 93,41% 93,47% No 

Challa et al.[14] 2023 CNN+biLSTM+HP Tuning  94,91% - - - No 

Kumar et al. [15] 2023 GRU 94,77% - - - No 
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Most sensor-based Human Activity Recognition studies 

lack the essential practice of employing K-fold cross-

validation to evaluate the reliability and generalizability 

of deep learning models. Notably, only Ma et al. [7] 

(2019) and Thakur et al. [12] (2022) have incorporated 4-

fold and 5-fold cross-validation, respectively, 

highlighting the need for a more standardized evaluation 

methodology. The absence of K-fold cross-validation 

across studies underscores the importance of a consistent 

approach for reliable comparisons. 

 

2.3 Identified gaps in the literature: Despite the 

progress in HAR using deep learning models, a critical 

analysis reveals several gaps in the existing literature: 

• Limited hyperparameter tuning: One notable gap 

is the lack of emphasis on hyperparameter tuning in 

several 

studies (e.g., Ma et al. [7], Gao et al. [10]) highlight 

a potential gap in the exploration of optimal model 

configurations, potentially impacting the models' 

entire performance. 

• Inconsistent evaluation metrics: Another 

identified gap is the inconsistency in the choice of 

evaluation metrics across studies. While some focus 

on accuracy, others may neglect other essential 

metrics like F1 score, precision, and Recall, leading 

to an incomplete assessment of model performance. 

• Sparse adoption of K-Fold cross validation: Few 

studies employ K-fold cross-validation to validate 

their models rigorously. This approach provides a 

more robust understanding of a model's 

generalizability, yet it remains underutilized in the 

current literature. 

2.4. Future directions: In our state-of-the-art analysis, 

numerous future directions proposed by previous studies 

provide valuable insights into the evolving landscape of 

research and innovation. 

• Standardized practices: There is a need for 

standardized practices, including consistent 

hyperparameter tuning and reporting guidelines, to 

facilitate reproducibility and comparison across 

studies. 

• Transfer learning exploration: Future research 

could further explore the potential of transfer 

learning in sensor-based HAR, leveraging 

knowledge from pre-trained models to improve 

generalization. 

• Handling class imbalance: Strategies to address 

class imbalance should be a focus of future work to 

enhance the robustness and applicability of models 

in real-world scenarios. 

 

2.5 Addressing gaps in our proposed model: In light of 

the identified gaps, our work makes significant strides in 

advancing the field: 

• In-depth hyperparameter tuning: Our proposed 

model incorporates hyperparameter tuning using 

Bayesian optimization. This deliberate approach 

enhances our model's adaptability and performance, 

addressing the previously observed gap. 

• Comprehensive evaluation metrics: To overcome 

the inconsistency in evaluation metrics, we conduct 

a comprehensive assessment, including accuracy, F1 

score, precision, and Recall. This ensures a thorough 

understanding of our model's performance across 

various dimensions. 

• Rigorous K-Fold cross validation: Recognizing 

the importance of model validation, we implement a 

rigorous 10-fold cross-validation methodology. This 

validation strategy ensures the reliability and 

generalizability of our model's performance, 

addressing the underutilization of K-fold cross-

validation in previous studies. 

In summary, our work contributes to the evolution of 

sensor-based HAR by introducing an optimized LSTM 

model, specifically addressing gaps related to 

hyperparameter tuning, evaluation metrics, and model 

validation. Through these advancements, we offer a 

refined and optimized deep-learning model tailored to the 

intricacies of wearable sensor data in smart home 

environments. 

3 Material and methods 

The study introduces an LSTM-based Human Activity 

Recognition framework (as shown in Figure 1) that 

utilizes wearable sensor data from the PAMAP2 dataset. 

The sensors are placed on the chest, ankle, and hand to 

collect data related to 12 activities performed by 

individuals. The methodology involves three main stages: 

data preprocessing and segmentation in the first stage, 

data splitting into training and testing sets in the second 

stage, and training and hyperparameter tuning, followed 

by the model evaluation in the final stage. During the 

model training and tuning phase, the data is split into 70% 

for the training set and 30% for the testing set. Our 

proposed LSTM model is tested using the validation data, 

and hyperparameters are optimized using the Bayesian 

optimization approach. Subsequently, the 

hyperparameter-tuned models are evaluated using the test 

data to measure their recognition performance and to 

compare their effectiveness. 

3.1    PAMAP2 dataset: 

The dataset used in this study is The PAMAP2 dataset, 

which is widely employed in HAR research due to its 

extensive usage and relevance in this field. It contains 

sensor data from wearable devices, including inertial 

measurement units (IMUs) and physiological sensors. 

The dataset comprises recordings of various physical 

activities performed by participants, covering a wide 

range of movements and intensities. Multiple participants 

were involved, allowing for the study of individual 

variations in activity recognition. Each activity recording 

is labeled, providing ground truth data for Training and 

evaluating HAR models. The dataset's structured format 

includes separate files for different sensor modalities, 
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facilitating analysis and combining data for activity 

recognition. The PAMAP2 dataset is a valuable resource 

for advancing sensor-based activity recognition research. 

Table 3 presents a comprehensive overview of the 

PAMAP2 dataset, incorporating information from the 

provided documentation and our conducted experiment 

[22]. 

Figure 1: The schematic diagram of the proposed LSTM-Based model for sensor-based HAR 

 

 

Table 3: PAMAP2 dataset description 

Dataset Labels Sampling rate 
Windows 

size 
Overlap 

Features 
vector 

Total of Segments (20588) 

Training 70% Testing 30% 

PAMAP2 12 100 Hz 1s 50% (20588, 42) (14412,100,42) (6176,100,4) 
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Table 4 and Figure 2 show the number of instances per 

activity in the PAMAP2 dataset. Despite the imbalanced 

distribution, both the training and testing sets contain 

instances for all activities, ensuring that the model can be 

evaluated on the entire range of activities present in the 

dataset. 

 
Table 4:  PAMAP2 dataset instances per activity data 

distribution  

Activity No 
Class 

id 
Activity label #Instances 

1 0 Lying 142931 

2 1 Sitting 83738 

3 2 Standing 99973 

4 3 Walking 122906 

5 4 Running 43050 

6 5 Cycling 91340 

7 6 Nordic Walking 111832 

12 7 Ascending stairs 59314 

13 8 Descending stairs 46830 

16 9 Vacuum cleaning 86959 

17 10 Ironing 125228 

24 11 Rope jumping 15453 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:   Instances per activity data distribution in 

PAMAP2 dataset  

 

3.2   Long short-term memory (LSTM) 

LSTM networks are a subset of recurrent neural networks 

(RNNs) and play a crucial role in time series applications, 

especially in Human Activity Recognition (HAR). HAR 

categorizes activities based on sensor data like 

accelerometer and smartphone gyroscope readings. The 

effectiveness of LSTM networks in HAR stems from their 

ability to effectively capture and represent long-term 

dependencies inherent in sensor data [23]. 

Figure 3 shows the internal structure of LSTM consists of 

several components, including: 

1)Input gate: (it) This gate manages the flow of 

information from the input to the memory cell. It consists 

of a sigmoid activation function that produces an output 

value ranging from 0 to 1, determining the extent to which 

the input should be allowed to pass through. 

it = σ (Wi xt + Ui ht-1 + bi) (Equation 1) 

 

2)Forget gate: (ft) This gate manages the flow of 

information from the previous memory cell to the current 

memory cell. Additionally, it consists of a sigmoid 

activation function that produces an output value between 

0 and 1, denoting the degree to which the previous 

memory cell should be forgotten. 

 

𝑓𝑡 =  𝜎(𝑊𝑓 ∗  𝑥𝑡 +  𝑈𝑓  ∗  ℎ𝑡−1  +  𝑏𝑓) (Equation 2) 

 

3) Output gate (Ot): This gate manages the flow of 

information from the memory cell to the output. It 

consists of a sigmoid activation function that generates an 

output value between 0 and 1, signifying the proportion 

of the memory cell to be output. 

 

ot = σ (Wo xt + Uo ht-1 + bo) (Equation 3) 

 

4) Temporary Cell Content (˜Ct): A candidate vector of 

new cell content that can be added to the cell state. 

 

˜Ct = tanh (Wc xt + Uc ht-1 + bc) (Equation 4) 

 

5)Cell state(ct): This is the internal state of the memory 

cell that is updated based on the input gate, the forget gate, 

and the memory cell. 

 

  ct = ft ct-1+ it ˜Ct (Equation 5) 

 

6)Hidden State (ht): The output of the LSTM cell is a 

filtered version of the cell state. 

 

ℎ𝑡  =  𝜎𝑡  ∗  𝑡𝑎𝑛ℎ(𝑐𝑡) (Equation 6) 

 

In the above equations: 

   - xt is the input at time step t. 

   - ht-1 is the previous hidden state (output) of the LSTM 

at time step t-1. 

   - σ represents the sigmoid activation function. 

   - Wf, Wi, Wo, Wc are weight matrices for the input. 

   - Uf, Ui, Uo, Uc are weight matrices for the previous 

hidden state. 

   - bf, bi, bo, bc are biased terms. 

   - tanh represents the hyperbolic tangent activation 

function. 

By employing these gate operations along with the 

memory cell, LSTM can adeptly capture long-range 

Figure.3.  The Internal Structure of The LSTM Cell[31] 
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dependencies in sequential data and make precise 

predictions for future time steps. 

LSTM Process for HAR:  

1) Data Preparation: The initial step involves 

preprocessing the raw sensor data to extract essential 

features like acceleration, velocity, and orientation. 

Subsequently, the data is partitioned into fixed-length 

sequences, each representing a distinct activity. 

2)Input Encoding: To facilitate input into the LSTM 

network, sensor data sequences undergo encoding. This 

typically entails transforming the data into a three-

dimensional tensor with dimensions (samples, time steps, 

features). 

3)Model Training: Next, the LSTM network is trained on 

the encoded sensor data to discern patterns and 

correlations between input sequences and their respective 

activity labels. During Training, the LSTM network's 

internal state is continually updated based on the input 

sequence, enabling predictions about the activity label. 

4) Model Prediction: Once the LSTM network completes 

its Training, it becomes equipped to predict activity labels 

for new sensor data sequences. These sequences are fed 

into the LSTM network, which dynamically updates its 

internal state according to the input and produces the 

anticipated activity label. 

3.3   Hyperparameter tuning with bayesian 

optimization 

Hyperparameters are critical parameters in deep learning 

approaches as they directly influence the behavior of 

training algorithms and substantially impact the 

performance of deep learning models. Bayesian 

optimization emerges as a practical and efficient method 

for solving function optimization problems prevalent in 

computing, especially when seeking optimal model 

configuration. This approach is particularly suited for 

tackling related-function problems characterized by the 

absence of a closed analytical form. Bayesian 

optimization proves applicable to addressing various 

related function challenges, including computationally 

demanding tasks, intricate derivative evaluations, and 

non-convex functions [24] [25]. 

To use Bayesian optimization for time series problems 

and sensor HAR LSTM, the following steps can be 

followed: 

1. Define the search space: Specify the hyperparameters 

to be optimized, such as the number of LSTM layers, 

the number of hidden units, the learning rate, the 

dropout rate, etc. 

2. Define the objective function: This function evaluates 

the performance of the LSTM model using the given 

hyperparameters. 

3. Initialize the Bayesian optimization algorithm: Set the 

initial hyperparameter values and corresponding 

objective function values. 

4. Iterate the optimization process: The Bayesian 

optimization algorithm leverages a probabilistic model 

and an acquisition function to determine the subsequent 

set of hyperparameters for evaluation. Subsequently, the 

objective function is assessed with these 

hyperparameters, and the outcomes are utilized to 

update the probabilistic model. 

5. Repeat step four until convergence: The optimization 

procedure persists until a specified stopping condition is 

satisfied, such as completing a predetermined number 

of iterations or achieving a targeted level of 

performance.  

 

3.4   Batch normalization  

Batch normalization is a technique utilized in deep 

learning, including LSTM networks, to address the 

internal covariate shift problem during Training. It 

normalizes each layer's inputs in a mini-batch, making the 

data more centered around zero with unit variance. This 

leads to improved training stability, faster convergence, 

and reduced sensitivity to weight initialization. Batch 

normalization is a crucial tool for enhancing the 

efficiency and accuracy of neural network models, 

including those used in HAR and time-series 

classification tasks[26].  

 

3.5   Validation protocol 

The K-fold cross-validation protocol is a widely 

employed technique in machine learning for assessing 

model performance. It entails partitioning the dataset into 

subsets or folds [27]. In this study, we use the 10-fold 

cross-validation. The model is trained on nine folds in 

each iteration and then validated on the remaining fold. 

This process is repeated multiple times to ensure robust 

evaluation. This process is repeated ten times, and 

performance metrics are averaged across iterations to 

obtain an overall performance estimate. In this study, we 

use this validation protocol to provide a more robust and 

less biased assessment of the model's ability to generalize 

to new data, making efficient use of available data for 

evaluation.  

 

3.6   Evaluation metrics 

The experiment used various evaluation metrics to assess 

the HAR model's performance. These metrics included 

accuracy, F1 score, precision, Recall, and the confusion 

matrix. Accuracy measures the general correctness of the 

model's predictions. The F1 score balances precision and 

Recall. Precision assesses the accuracy of positive 

predictions made by the model, whereas Recall evaluates 

the model's capability to identify positive instances 

correctly. The confusion matrix offers a comprehensive 

view of the model's performance across various classes, 

providing insights into true positive, true negative, false 

positive, and false negative classifications. Together, 

these metrics comprehensively evaluate the HAR model's 

accuracy, reliability, and predictive capabilities for 

various human activities. Table 5 summarizes these 

evaluation metrics, including accuracy, precision, Recall, 

and F-measure. Understanding these performance metrics 

requires knowledge of four fundamental terms used in 

their measurement: true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN). [28] 
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Table 5:  Evaluation metrics [28] 
Metric Formula Definition 

Accuracy 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

the ratio of correct predictions 

and overall predictions 

Precision  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

The ratio of correct 

predictions to the total 
predicted 

Recall of 

sensitivity 

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

the ratio of correct predictions 

to the samples in the actual 
class 

F1 score / 
F-measure 

2(𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

The weighted average of 

precision and Recall if the 

data is imbalanced 

4  Experiments and results 

4.1 Experimental design 

The experimental design of this study is structured to 

systematically investigate the effectiveness of optimizing 

the LSTM-based proposed model for sensor-based 

Human Activity Recognition (HAR) in smart homes 

through hyperparameter tuning. The research questions 

(RQ) and corresponding hypotheses(H) guide the study's 

objectives and validate the proposed model's 

performance. 

RQ1: How does hyperparameter tuning impact the 

performance of LSTM models in sensor-based Human 

Activity Recognition? 

H1: Systematic hyperparameter tuning significantly 

enhances the accuracy and robustness of LSTM models 

compared to default configurations 

RQ2: How does the proposed optimized LSTM model 

perform compared to previous Studies?  

H2: The optimized LSTM model will outperform other 

models in terms of accuracy, precision, Recall, and F1 

score. 

RQ3: How does the inclusion of batch normalization in 

the LSTM model affect its convergence speed and overall 

performance in Human Activity Recognition tasks? 

H3: The addition of batch normalization will contribute 

to faster convergence and improved model performance 

by mitigating internal covariate shifts. 

RQ4: How applicable are the findings of our optimized 

LSTM model to real-life smart home environments, 

considering practical challenges and variations in user 

behaviors? 

 H4: The model's performance will remain robust in real-

world scenarios, offering practical implications for smart 

home applications. 

4.2 Experimental environment and hyperparameter 

optimization setup 

This section presents the results obtained from the 

experiments performed on an NVIDIA GPU T4 using the 

Google Colab platform. The LSTM network's 

hyperparameters were optimized through Bayesian 

Hyperparameter Optimization, utilizing the Keras Tuner 

library[29]. The experiment setup is detailed in Table 6. 

 

 

Table 6: Experiment environment setup  
Platform Google Colab 

GPU NVIDIA GPU T4 

RAM 15 GB 

Tenserflow version 2.12.0 

Keras Version 2.12.0 

Keras Tuner 

Version 

1.3.5  

 

4.3 The proposed model 

Our proposed model is an LSTM-based HAR (as shown 

in Figure 4). The model consists of three LSTM layers, 

which are particularly effective for capturing sequential 

patterns in time-series data. 

Dropout layers are incorporated between the LSTM 

layers to prevent overfitting and enhance generalization. 

Dropout randomly deactivates certain neurons during 

Training, effectively reducing the model's reliance on 

specific features and encouraging more robust learning. 

Additionally, batch normalization is applied to stabilize 

the training process by normalizing the input to each 

layer. This ensures a more consistent and faster 

convergence during Training. The combination of 

dropout and batch normalization contributes to the 

model's ability to handle the complexity of sensor data, 

leading to improved performance in classifying human 

activities accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Structure of the proposed model 

 

4.4 Experiments process   

The experiment is conducted in three distinct stages: data 

preprocessing, Training, and hyperparameter tuning, and 

model Evaluation. 

4.4.1. Data preprocessing 

In the experiment's data preprocessing stage, the raw 

sensor data obtained from wearable devices is prepared 

for the proposed model. The data is first cleaned by 

dropping irrelevant orientation columns and removing 

transient activity rows. Non-numeric data is converted to 
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numeric, and missing values are interpolated to ensure 

data completeness. The data is then scaled to normalize 

the input features, enabling uniformity in the data 

distribution. 

Next, the labels are encoded and converted into 

categorical variables. This step is crucial for classifying 

the activities during model training. The data is then split 

into training and testing sets, with 70% of the data used 

for Training and 30% for testing. The data is segmented 

into overlapping windows to facilitate the LSTM model's 

input format. The window size is set to 1s, and 

overlapping is 50 %. 

The data segmentation stage creates segments and 

corresponding labels for Training and testing. The 

segments and labels are reshaped to ensure compatibility 

with the LSTM model's input format. Finally, the 

experiment confirms the shape of the training and testing 

segments before proceeding to the model training and 

evaluation stages (demonstrated in Table 3). 

 

4.4.2. Training and hyperparameter tuning  

This stage aims to optimize the model's performance. 

Hyperparameter tuning is conducted using Bayesian 

optimization, intelligently training the model while 

searching for the best combination of hyperparameters. 

This fine-tuning process enhances accuracy and 

generalization in classifying human activities. 

 

Table 7:  Hyperparameter ranges for model optimization 

Hyperparameter   Range                                         

LSTM Units Integer from 64 to 256 with a step of 

32      

Dense Units Integer from 32 to 128 with a step of 

32      

Dropout Rate Float from 0.1 to 0.5 with a step of 

0.1      

Optimizer Choice of 'ADAM,' 'RMSprop', or 

'SGD' 

Learning Rate Choice of 1e-3, 1e-4, or 1e-5                  

Batch Size Choice of 32, 64, or 128                      

 

Table 7 summarizes the hyperparameter Ranges. These 

ranges represent the search space for hyperparameters 

during the Bayesian Hyperparameter Optimization 

process using the Keras Tuner. The models are fine-tuned 

by adjusting several critical hyperparameters: the LSTM 

Units, Dense Units, Dropout Rate, Optimizer, Learning 

Rate, and Batch Size. Through exploration and Tuning of 

the proposed models, this eventually results in improved 

accuracy and robust performance.  

In this study, the Bayesian Optimization process using the 

Keras Tuner library performs 10 trials to intelligently 

explore the hyperparameter space and identify the most 

optimal configurations for the proposed LSTM-based 

HAR model. Each trial involves tuning the 

hyperparameters while training the model for 50 epochs 

to ensure comprehensive learning and convergence. The 

combination of 10 trials and 50 epochs contributes to a 

thorough search and fine-tuning of the model, leading to 

improved accuracy and robust performance in HAR tasks. 

 Table 8 summarizes the hyperparameters found 

by the Keras Tuner library using Bayesian Optimization 

for the best LSTM-based HAR model. These 

hyperparameters include 64 LSTM units, 96 dense units, 

a dropout rate of 0.1, a batch size of 128, a learning rate 

of 0.001 with the ADAM optimizer, and 50 epochs for 

Training. These optimized hyperparameters lead to a 

well-balanced and efficient model that effectively 

classifies human activities with improved precision and 

performance. 

 

Table 8: The Summarized hyperparameters of the 

proposed model found by keras tuner 

Structure Hyperparameters 

LSTM Units 64 

Dense Units 96 

Dropout rate 0.1 

Training Hyperparameters 

Batch Size 128 

Learning rate 0.001 

Optimizer Adam 

Epochs 50 

Loss Function 
Cross-

entropy 

 

4.4.3. Model evaluation 

To evaluate the proposed model's performance on the 

PAMPA2 dataset, a 10-fold cross-validation approach 

was employed. The evaluation metrics used include 

accuracy, precision, Recall, and F1-score. These metrics 

were compared against those reported in previous 

literature studies conducted on the same dataset, enabling 

a comprehensive assessment of the proposed model's 

effectiveness and advancements in HAR. 

  

4.5 Experimental results  

In this section, we discuss the experimental results of the 

proposed method in terms of accuracy, F1 score, 

precision, and Recall. To prove the capability of our 

proposed model, we also compare its results with other 

approaches from numerous previous studies, as 

demonstrated in section 2.  

The performance of our proposed LSTM-based model 

was assessed using 10-fold cross-validation, as shown in 

Table 9. The results showed consistent and reliable 

performance across all folds, with a mean cross-validation 

score of 97.71% and a small standard deviation of +/- 0.4. 

The model achieved an average F1 score of 0.96660, 

accurately classifying positive and negative instances. 

The precision score averaged at 0.96855, reflecting the 

model's ability to correctly predict positive instances, 

while the average recall score was 0.96549, showing its 

capability to identify positive instances out of all actual 

positives. The model's accuracy ranged from 97.16% to 

98.54% across folds, with an average accuracy of 97.71%. 

The consistent high performance and minor variation in  
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these metrics indicate that the proposed LSTM-based 

HAR model effectively classifies human activities.

 

Table 9: The model performance on 10-fold cross-

validation. 
Fold Cross-

validation 

score 

F1 

score 

Precisio

n 

Recall Accurac

y 

Fold1 0.97365 0.96233 0.96435 0.96093 97.36% 

Fold2 0.97157 0.96127 0.96107 0.96171 97.16% 

Fold3 0.97641 0.96925 0.97149 0.96914 97.64% 

Fold4 0.97363 0.96312 0.96830 0.95911 97.36% 

Fold5 0.97363 0.96323 0.96558 0.96122 97.36% 

Fold6 0.98126 0.97075 0.97248 0.96923 98.13% 

Fold7 0.97918 0.96522 0.96495 0.96626 97.92% 

Fold8 0.98543 0.97364 0.97676 0.97135 98.54% 

Fold9 0.97918 0.96447 0.96671 0.96292 97.92% 

Fold1
0 

0.97710 0.97267 0.97382 0.97302 97.71% 

Mean 0.97.71 

+/- 0.4 

0.96660 0.96855 0.96549 97.71% 

 

The classification report Table 10 presents the evaluation 

metrics for a multi-class classification model. The report 

shows precision, Recall, and F1-score for each activity. 

Overall, the model demonstrates strong performance with 

an accuracy of 97%, indicating a high level of correct 

predictions across all classes.  

 

Table 10: Classification report of the proposed model 

 
The plot of accuracy and loss demonstrates the model's 

performance during Training, showcasing the increase in 

accuracy and decrease in loss over epochs, as shown in 

Figure 5. The confusion matrix of the proposed model is 

illustrated in Figure 6. 

 

 
Figure 5: Accuracy and loss training performance of our 

proposed model 

 

 
Figure 6: Confusion matrix of the proposed model. 

 

4.6 Comparative results analysis   

In this comparative results analysis, we evaluate the 

performance of our proposed LSTM-based model with 

hyperparameter tuning and batch normalization against a 

selection of previous studies in Human Activity 

Recognition (HAR), examining key metrics including 

accuracy, F1 score, precision, and recall as demonstrated 

in Table 11.
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Figure 7: Accuracy comparison of our proposed model against previous studies 

Table 11: Comparison with previous works 

Study Year Classification method Accuracy F1 score Precision Recall 

Hammerla et al[6] 2016 CNN - 93,70% - - 

Hammerla et al[6] 2016 LSTM - 92,90% - - 

Ma et al.[7] 2019 AttnSense - 89,30% - - 

Xu et al.[8] 2019 Inno HAR - 93,50% - - 

Wan et al[9] 2020 CNN 91,00% 91,16% 91,66% 90,85% 

Wan et al[9] 2020 LSTM 85,86% 85,34% 86,51% 84,67% 

Wan et al[9] 2020 Bi-LSTM 89,52% 89,40% 90,19% 89,02% 

Gao et al.[10] 2020 DanHAR 93,16% - - - 

Xu et al.[11] 2022 Inception-LSTM  95,04% 95,13% 95,06% 95,21% 

Thakur et al.[12] 2022 ConvAE-LSTM  94,33% 94,46% - - 

Tehrani et al.[13] 2023 Bi-LSTM -  93,41% 93,41% 93,47% 

Challa et al.[14] 2023 CNN+biLSTM+HP Tuning  94,91% - - - 

Kumar et al. [15] 2023 GRU 94,77% - - - 

Our proposed model  
An LSTM-based model with 

HP Tuning 
97,71% 96,66% 96,85% 96,55% 



120   Informatica 47 (2023) 109–122                                                                                                                            M.E. Ghazi et al. 

 

 
Figure 8: F1 score comparison of our proposed model against previous studies 

 
Figure 9: Precision comparison of our proposed model against previous studies 

 
Figure 10: Recall comparison of our proposed model against previous studies 
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Table 11 compares the performance of our proposed LSTM-

based model and previous studies on the PAMAP2 dataset. 

The results demonstrate the remarkable efficacy of our 

model, achieving an accuracy of 97.71%, an F1 score of 

96.66%, a precision of 96.855%, and a recall of 96.549%. 

These metrics collectively outperform all previously 

detailed state-of-the-art studies listed in Table 11. 

Particularly noteworthy is the improvement over the closest 

competitor, the Inception-LSTM by Xu et al. (2022) [11], 

with enhancements of approximately 2.67% in accuracy, 

1.53% in F1 score, 1.795% in precision, and 1.329% in 

Recall. Figures 7 to 10 present visualization charts 

comparing our model to previous studies regarding 

accuracy, F1 score, precision, and Recall, respectively. 

This considerable advancement underscores the 

effectiveness of our model's architecture, hyperparameter 

tuning, and batch normalization in pushing the boundaries 

of sensor-based Human Activity Recognition. The 

substantial improvement in accuracy holds significant 

implications for real-world applications, emphasizing the 

practical relevance of our contributions. 

4.7    Discussion  

In addressing the complex challenges of sensor-based 

Human Activity Recognition (HAR) for smart home 

environments, our study aimed to optimize Long Short-

Term Memory (LSTM) models through hyperparameter 

tuning, batch normalization, and rigorous evaluation and 

validation. We delve into the results, providing a detailed 

analysis to answer our research questions and validate our 

hypotheses. 

 

4.7.1. Impact of hyperparameter tuning  

Our investigation into the impact of hyperparameter tuning 

on our proposed LSTM model performance unveils 

nuanced insights into specific model parameters. The 

sensitivity of deep learning models, such as LSTM, to 

hyperparameter changes makes the manual search for 

optimal configurations challenging.  

Our study employed tools like Keras Tuner, leveraging 

Bayesian optimization to systematically fine-tune critical 

hyperparameters, including LSTM Units, Dense Units, 

Dropout Rate, Optimizer, Learning Rate, and Batch Size. 

The adjustments made in LSTM Units demonstrated a 

notable effect on the model's ability to capture long-term 

dependencies, contributing significantly to enhanced 

accuracy. Similarly, fine-tuning Dense Units allowed for a 

more nuanced representation of complex patterns within the 

sensor data, further improving the model's robustness. 

Our exploration of the Dropout Rate emphasized its impact 

on regularization, mitigating overfitting risks and 

promoting model generalization. The choice of Optimizer 

played a pivotal role in optimizing convergence speed and 

overall model performance, with the model showcasing 

superior results with the selected optimization strategy. 

Additionally, adjustments in Learning Rate and Batch Size 

showcased their influence on the model's learning dynamics 

and computational efficiency. Bayesian optimization 

through Keras Tuner facilitated an efficient search for the 

best configuration, considering the intricate interplay of 

these hyperparameters. 

The quantitative improvements observed across these 

individual parameters collectively underscore the 

importance of meticulous hyperparameter tuning. This 

validated our hypothesis and provided a granular 

understanding of how each parameter contributes to the 

overall robustness and accuracy of our LSTM-based model. 

 

4.7.2. The effect of batch normalization  

Our exploration of batch normalization's effects on the 

LSTM model reveals notable improvements. Batch 

normalization contributes to faster convergence and 

enhances overall model performance, mitigating internal 

covariates [26]. This technique normalizes the inputs of a 

layer during Training, leading to faster and more stable 

Training of deep neural networks. This aligns with our 

hypothesis and underscores the significance of    

normalization techniques in optimizing deep learning 

models for HAR tasks. 

4.7.2. Comparison with previous studies  

Quantitatively comparing our optimized LSTM model with 

state-of-the-art studies on the PAMAP2 dataset 

demonstrates its superior performance. The model excels in 

accuracy, precision, Recall, and F1 score, outperforming 

previous models. The model's mean accuracy across all 

folds was approximately 97.71%, with a small standard 

deviation of 0.4%. The mean F1-score was approximately 

96.66%, indicating a good balance between precision and 

Recall. Compared to previous literature, the proposed 

model outperformed most other approaches.  

The practical implications of our optimized LSTM model 

indicate that the model's robustness extends to real-world 

smart home scenarios, including applications in healthcare, 

fitness tracking, and human-computer interaction. When 

discussing potential applications, risks, and ethical 

implications, we recognize the need for ongoing ethical 

discourse in the rapidly evolving landscape of technology. 

4.7.4. Statistical analysis 

In this analysis, we opted for the Wilcoxon signed-rank test, 

a robust non-parametric method tailored for evaluating a 

single algorithm's performance across diverse studies [30]. 

This approach aligns with our objective of comparing the 

efficacy of your proposed model against other studies in a 

scenario marked by a single algorithm being tested across 

multiple contexts. The Wilcoxon test, being non-

parametric, is particularly advantageous for these analyses, 

as it eliminates the necessity for strict assumptions 

regarding the distribution of the data. The p-values obtained 

from the Wilcoxon test are instrumental in providing 

valuable indications about the statistical significance of the 
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observed differences [30]. With a conventional significance 

level of 0.05, the obtained p-value of 0.0079 for accuracy 

signifies a statistically significant distinction. This result 

underlines a significant divergence in the accuracy of your 

model compared to other studies. Similarly, the F1 score 

exhibits a p-value of 0.00195, emphasizing a substantial 

difference in your model's F1 score relative to the studies. 

Precision and Recall, while yielding p-values of 0.0625 

each, fall just short of conventional significance levels.  

The statistical analysis underscores the significant 

outperformance of your proposed model in terms of 

accuracy and F1 score. While precision and recall 

differences may not be statistically significant at the 0.05 

threshold, they signal intriguing nuances deserving further 

exploration, contributing to a comprehensive understanding 

of your model's comparative performance. 

In Summary, Our Proposed framework, deep multi-layer 

LSTM with Bayesian Optimization and batch 

normalization, achieved outstanding results in accurately 

classifying human activities using data from various 

wearable sensors. The three-stage experimental setup, 

including data preprocessing, hyperparameter tuning using 

Bayesian optimization, and model validation with 10-fold 

cross-validation, contributed to the model's robustness and 

effectiveness. The optimized hyperparameters, including 

LSTM units of 64, dense units of 96, and a dropout rate of 

0.1, were identified through Bayesian optimization. The 

model's mean accuracy across all folds was approximately 

97.71%, with a small standard deviation of 0.40%. The 

mean F1-score was approximately 0.9666, indicating a 

good balance between precision and Recall. Compared to 

previous literature, the proposed model outperformed most 

other approaches. The model's capability to handle multi-

sensor data and its successful hyperparameter tuning make 

it highly applicable in real-world scenarios. However, 

further testing on diverse datasets and real-world conditions 

is warranted to validate its generalizability. Overall, our 

proposed model showcases remarkable performance and 

potential for practical applications in various domains. 

 

5   Conclusion 
In conclusion, our research significantly advances the 

Human Activity Recognition (HAR) field using wearable 

sensor data, with a particular focus on smart home 

environments. Through an exhaustive review of the state of 

the art, we have presented a comprehensive understanding 

of existing methods, classification techniques, 

hyperparameter tuning approaches, findings, limitations, 

and future directions. 

Our proposed LSTM-based deep model, enhanced by batch 

normalization and hyperparameter tuning using Bayesian 

optimization, has demonstrated exceptional performance. 

Achieving an accuracy of 97.71% and impressive values for 

F1 score, precision, and Recall (approximately 96.66%, 

96.85%, and 96.55%, respectively), our model outperforms 

previous studies, underscoring the crucial role of 

hyperparameter optimization in activity classification. 

Looking ahead, we aim to evaluate our model further on 

diverse datasets such as OPPORTUNITY and WISDM to 

enhance its generalization capabilities. Our commitment to 

ongoing optimization involves exploring more complex 

deep model architectures and alternative hyperparameter 

tuning approaches. This pursuit aligns with our goal of 

maximizing efficiency and adaptability in real-world 

scenarios. 
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