
https://doi.org/10.31449/inf.v47i10.5273 Informatica 47 (2023) 71–78 71

A Modified Emperor Penguin Algorithm for Solving Stagnation in

Multi-Model Functions

Ahmed Serag1, Hegazy Zaher2, Naglaa Ragaa3, Heba Sayed4
1Operations Research, faculty of graduate studies for statistical research, Cairo University, Giza, Egypt
2Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University

E-mail: ahmede.serag1978@gmail.com, hgsabry@cu.edu.eg, naglaa777subkiii@yahoo.com, hmhmdss@yahoo.com

Keywords: optimization, metaheuristics, emperor penguin algorithm

Received: October 13, 2023

Abstract: Metaheuristic algorithms have gained attention in recent years for their ability to solve complex

problems that cannot be solved using classical mathematical techniques. This paper proposes an

improvement to the Emperor Penguin Optimizer algorithm, a population-based metaheuristic. The

original algorithm often gets stuck in local optima for multi-modal functions. To address this issue, this

paper presents a modification in the relocating procedures that allows the algorithm to utilize information

gained from the previous positions of each penguin. To demonstrate the effectiveness of the modified

algorithm, 20 test optimization functions from well-known benchmarks were selected. The implemented

comparative analysis assesses the proposed algorithm against both the traditional Emperor Penguin

Optimizer algorithm and one of the most recent algorithm modifications in current research. The findings

indicate that the proposed algorithm demonstrates significant efficiency, particularly in addressing multi-

modal functions, as evidenced by superior mean results and robustness.

Povzetek: Predstavljen je izboljšani algoritma "cesarskega pingvina", ki učinkovito rešuje kompleksne

probleme zlasti v multimodalnih funkcijah.

1 Introduction
Problem-solving can be approached in various ways, such

as trial and error, experimental design, or mathematical

techniques [1]. Operations research is a field that employs

mathematical formulation to solve complex engineering

and management problems and gain insight into potential

solutions [2]. Mathematical approaches used in this field

can be classified into classical techniques like simplex

method and dynamic programming, and heuristic and

metaheuristic methods like the Emperor Penguin

Optimizer algorithm (EPO) [3].

EPO is a population-based metaheuristic algorithm

proposed by Dhiman & Kumar [4], inspired by the

behavior of emperor penguins in utilizing crowds to

survive the Antarctic winter. While the original algorithm

is efficient in solving unimodal problems, it stagnates with

complex problems like multi-local minima problems.

Previous work on EPO in the literature includes the binary

version by Dhiman et al. [5], multi-objective optimization

by Kaur et al. [6], photovoltaic system optimization by

Sameh et al. [7], support vector machine optimization for

face recognition by Yang and Gao [8], RGB image

threshold optimization by Jia et al. [9], and energy-

efficient residential building design by Tang et al. [10].

Kaur et al. [11] adapted the emperor penguin optimizer

algorithm to solve multi-objective optimization problems

using the concept of dynamic archive. Xing [12] proposed

an EPO algorithm for solving the multilevel threshold for

color image segmentation. Lu et al. [13] improved the

EPO algorithm by optimizing its output using the

sequential quadratic programming. They used the

improved algorithm to minimize the market clearing price

probability function.

 However, most of these studies focused on applying

the EPO algorithm to solve real-world problems and did

not address its stagnation issue in multi-modal problems.

Table 1 summarizes the previously mentioned literature in

this paper.

This paper proposes a modification to the EPO

algorithm to increase its efficiency. The second section

discusses the original algorithm's main steps, followed by

the proposed modification in the third section. The fourth

section presents comparative results between the original

and modified EPO, and the fifth section concludes the

paper.

2 The original emperor penguin

optimizer algorithm
The Emperor Penguin Optimizer (EPO) is a population-

based metaheuristic inspired by the crowd behavior of

emperor penguins. The algorithm's steps include

calculating the ambient temperature, distances toward the

emperor penguins, and effective movers. To calculate the

temperature around the crowd (𝑇𝐴), the temperature of

each penguin (𝑇) is considered, depending on the radius

(𝑅) that surrounds the crowd. The temperature profile

around the crowd can be calculated using Equation (1),

where the iteration number (𝐼𝑡𝑟) and the maximum

number of iterations (𝑀𝑎𝑥𝐼𝑡𝑟) are taken into account.

𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 −𝑀𝑎𝑥𝐼𝑡𝑟
 , ∀𝐼𝑡𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑟 (1)

mailto:naglaa777subkiii@yahoo.com

72 Informatica 47 (2023) 71–78 A. Serag et al.

Table 1: Literature summary

𝑇 = {
0, 𝑖𝑓 𝑅 > 1
1, 𝑖𝑓 𝑅 < 1

The distance between the penguins and their emperor (𝐷)

is to be calculated using some sort of parameters related to

avoiding collision between penguins (𝐴), the position of

the best penguin (𝑃𝑏𝑒𝑠𝑡), the position of each penguin (𝑃),

the ambient temperature, 𝑇𝐴, and the social force (𝑆) that

forces the penguins to move towards the direction of best

solution. The parameter 𝐴 is to be calculated for the

position 𝑃𝑖 using the movement parameter (𝑀), which is

set to 2, in equation (2).

𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴 (2)

Equation (3) is used to calculate the social force. This

equation is a decreasing function that has three variables,

𝑓, 𝑙, and 𝐼𝑡𝑟. Both of 𝑓 and 𝑙 are random numbers that each

as its lower and upper bound. Figure 1 shows an example

of having 𝑓 belongs to the interval [2, 5] and 𝑙 belongs to

the interval[2, 10].

𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)

2

 (3)

Figure 1 Social force parameter’s graph

The parameter 𝑆 is used to calculate the distance𝐷,

where it increases in the very first iterations to guarantee

high locality and decrease it gradually until reaching very

low locality in the higher iterations. So, the distance 𝐷 is

to be calculated using equation (4) as follows:

𝐷 = |𝑆 . 𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| (4)

Now, the position of the penguin in the next iteration

(𝑃𝑖+1) can be calculated using equation

(5) as follows:

𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷

(5)

The best position is updated by changing the penguin's

position in each iteration until the stopping criteria are

met, and then the best solution is returned. The

pseudocode for the algorithm can be summarized as

follows:

1
𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

2 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

3
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒

𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡)
4 𝐼𝑡𝑟 = 1

5 𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜:
6 𝑖 = 1

7 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜:

8 𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 −𝑀𝑎𝑥𝐼𝑡𝑟

9 𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴

10 𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

11 𝐷 = |𝑆 . 𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡|
12 𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷

13 𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛:
14 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1

15 𝑖 = 𝑖 + 1

16 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1

17 𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡

3 The proposed modified EPO

algorithm
In this section, a new modification to the EPO algorithm

is proposed, which involves utilizing information gained

from the current position of each penguin before

relocating it. This modification constructs an information

vector using a threshold selected from the interval [0, 1].
The purpose of this proposed mutation process is to

achieve increased locality when the lower threshold is

reached. This is done by creating a new solution with more

components from the current solution. Conversely, when

Author Modification Application

Dhiman and Kumar [4] First Proposed Test Optimization Problems

Jia et al. [9] disruptive polynomial mutation
Levy flight

thermal exchange operator

Satellite image segmentation

Xing [12] Gaussian mutation
Levy flight

multilevel threshold for color image segmentation

Kaur et al. [6] Muti-objective optimization

Yang and Gao [8] Face recognition

Kaur et al. [11] Multi-objective optimization

Lu et al. [13] Sequential quadratic programming Market clearing price

Dhiman et al. [5] Binary emperor penguin optimizer

Sameh et al. [7] Photovoltaic control system

Tang et al. [10] Energy consumption of the residential buildings

A Modified Emperor Penguin Algorithm for Solving Stagnation… Informatica 47 (2023) 71–78 73

the higher threshold is reached, the process aims to

enhance diversity by incorporating more components

from the relocated solution. The current position, 𝑃𝑖 , and

the position generated using equation

(5) are used to create the information vector, 𝑃𝐼𝑉. The new

procedure selects the components of 𝑃𝐼𝑉 using the

threshold. The first step of the new procedure is to

generate a uniform random number that will be compared

to the selected threshold. If the generated uniform random

number is greater than the threshold, then component 𝑗 is

selected from 𝑃𝑖+1; otherwise, it is selected from 𝑃𝑖 . The

following steps show the procedure for creating the

𝑃𝐼𝑉 position:

1 𝑗 = 1
2 𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜:
3 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:
4 𝑃𝐼𝑉[𝑗] = 𝑃𝑖+1[𝑗]
5 𝑒𝑙𝑠𝑒:
6 𝑃𝐼𝑉[𝑗] = 𝑃𝑖[𝑗]
7 𝑗 = 𝑗 + 1

After creating the information vector, 𝑃𝐼𝑉, it will be

evaluated using the objective function, and if its

evaluation is better than both 𝑃𝑖 and 𝑃𝑖+1, then 𝑃𝐼𝑉 will

replace 𝑃𝑖 to be used in the next iteration of the algorithm.

The full steps of the Modified Emperor Penguin

Algorithm Optimizer (MEPO) can be shown as follows:

1 𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

2 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

3 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡)

4 𝐼𝑡𝑟 = 1

5 𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜:

6 𝑖 = 1

7 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜:

8 𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 −𝑀𝑎𝑥𝐼𝑡𝑟

9 𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴

10 𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

11 𝐷 = |𝑆 . 𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡|

12 𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷

13 𝑗 = 1

14 𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜:

15 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:

16 𝑃𝐼𝑉[𝑗] = 𝑃𝑖+1[𝑗]

17 𝑒𝑙𝑠𝑒:

18 𝑃𝐼𝑉[𝑗] = 𝑃𝑖[𝑗]

19 𝑗 = 𝑗 + 1

20 𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛:

21 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1

22 𝑖 = 𝑖 + 1

23 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1

24 𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡

The time complexity of the algorithm is the same as the

classical EPO presented by Dhiman and Kumar [4], which

is 𝑜(𝑘 × 𝑛 × 𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑑 × 𝑁). The next section shows

the comparative results which implemented to compare

the MEPO with the classical EPO and another

modification of the EPO algorithm presented by Xing

[12]. All of the are coded using python programming and

they code is available on https://github.com/

ahmedsssssA/EPOIV.

4 Comparative results
Both algorithms, EPO and MEPO, were implemented

using Python programming language on a PC equipped

with a Core i5 processor clocked at 3.40GHz and 4

gigabytes of RAM. Another algorithm is selected for the

comparative results from the previous work listed in Table

1. The selected algorithm is the EPO that utilizes the Levy

flight and gaussian mutation (EPOLG) presented by Xing

[12].To evaluate the performance of the algorithms, a set

of benchmark problems available at https://www.sfu

.ca/~ssurjano/optimization.html are selected as shown in

Table 2. The parameters of the algorithms are set as high

as possible to demonstrate their effectiveness in finding

the global minimum. Specifically, the population size (𝑁)

is set to 100, the maximum number of iterations (𝑀𝑎𝑥𝐼𝑡𝑟)

is set to 100, and 𝑅 is randomly selected for each solution

in each iteration from the interval [0, 1].
The selected optimization test functions are chosen to

cover functions with different shapes, including those with

many local minima, bowl-shaped, plate-shaped, steep

ridges/drops, and valley-shaped. Figure 2 and Figure 3

present the comparison between EPO, EPOLG, and

MEPO. The figures show that the proposed MEOP

algorithm has a higher efficiency in terms of convergence

and solving the stagnation problem of the multi-modal

functions. The functions Ackley, Bent Ciger, Easom,

Michalewicz, and Schwefel show stagnation with both

EPO and EPOLG algorithms, and this stagnation is solved

with the MEPO algorithm. Moreover, Table 3 presents the

results of the implementation for each algorithm. The

optimized results are shown in bold, and all of them are

associated with the MEPO algorithm. MEPO shows

significant improvement in terms of mean results and the

absolute relative standard deviation (RSD), which reflects

the robustness of the MEPO algorithm’s results.

https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html

74 Informatica 47 (2023) 71–78 A. Serag et al.

Table 2 Selected test optimization problems

No.
Function

Name
𝑓(𝑥) Global Minimum

1 Ackley 20 (𝑒
−0.2 √

1
𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1) − (𝑒

1
𝑑
∑ cos(2𝜋𝑥𝑖)
𝑑
𝑖=1) + 20 + 𝑒, 𝑥𝑖 ∈ [−33, 33]

𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

2 Bent Cigar x1
2 + 106∑𝑥𝑖

2

𝑛

𝑖=2

, 𝑥𝑖 ∈ [−100, 100]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

3 Bohachevsky
𝑥1

2 + 2𝑥2
2 − 0.3 cos(31𝜋𝑥1) − 0.4 cos(31𝜋𝑥2) + 0.7,

𝑥𝑖 ∈ [−100, 100]
𝑓(𝑥∗) = 0, 𝑥∗

= (0, 0)

4 Booth (𝑥1 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2, 𝑥𝑖 ∈ [−10, 10]
𝑓(𝑥∗) = 0, 𝑥∗

= (1, 3)

5 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|, 𝑥𝑖 ∈ [−15, 3]

𝑓(𝑥∗) = 0, 𝑥∗

= (−10, 0)

6 Cross-in-Tray −0.0001

(

|

|
𝑠𝑖𝑛(𝑥1) 𝑠𝑖𝑛(𝑥2)𝑒

||100 −
√𝑥1

2+𝑥2
2

𝜋 ||

|

|
+ 1

)

0.1

, 𝑥𝑖 ∈ [−15,15]

𝑓(𝑥∗)
= −2.06261, 𝑥∗

= (1.3491,−1.3491)

7 Drop Wave −
1 + cos (12√𝑥1

2 + 𝑥2
2)

0.5(𝑥1
2 + 𝑥2

2) + 2
, 𝑥𝑖 ∈ [−5.12, 5.12]

𝑓(𝑥∗) = −1.5, 𝑥∗

= (0,0)

8 Discus 106𝑥1
2 +∑𝑥𝑖

2

𝐷

𝑖=2

, 𝑥𝑖 ∈ [0, 100]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

9 Easom −cos(𝑥1) cos(𝑥2) 𝑒
(−(𝑥1−𝜋)

2−(𝑥2−𝜋)
2) , 𝑥𝑖 ∈ [−100, 100]

𝑓(𝑥∗) = −1, 𝑥∗

= (𝜋, 𝜋)

10 Eggholder
−(𝑥2 + 47) sin (√|𝑥2 +

𝑥1
2
+ 47|) − 𝑥1 sin (√|𝑥1 − (𝑥2 + 47)|) , 𝑥

∈ [−500, 500]

𝑓(𝑥∗)
= −959.6407, 𝑥∗

= (512, 404.2319)

11 Griewank ∑
𝑥𝑖
2

4000
−∏cos(

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

, 𝑥 ∈ [−600, 600]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

12 Holder Table −
|

|
sin(𝑥1) cos(𝑥2)𝑒(

 ||1−
√𝑥1

2+𝑥2
2

𝜋 ||

)

|

|
, 𝑥𝑖 ∈ [−10, 10]

𝑓(𝑥∗)
= −19.2085, 𝑥∗

= (8.05502,−9.66459)

13 Michalewicz −∑sin(𝑥𝑖) sin
20 (

𝑖𝑥𝑖
2

𝜋
)

𝑑

𝑖=1

, 𝑥 ∈ [0, 𝜋]
𝑓(𝑥∗) = −1.8013, 𝑥∗

= (2.20,1.57)

14
Modified

Schwefel

418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

, 𝑧𝑖 = 𝑥𝑖 + 4.209687462275036e + 002, 𝑥𝑖

∈ [−500, 500]
𝑔(𝑧𝑖)

=

{

 𝑧𝑖 sin (|𝑧|

1
2) , 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)) sin (√500− |𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

1000𝐷
, 𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500) sin (√|𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500|) −
(𝑧𝑖 + 500)

1000𝐷
, 𝑖𝑓 𝑧𝑖 < −500

𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0]

15 Rastrigin 10𝑑 + ∑[𝑥2 − 10 cos(2𝜋 𝑥𝑖)]

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−5, 5]
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0]

16 Rosenbrock ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑑−1

𝑖=1

, 𝑥𝑖 ∈ [−5, 10]
𝑓(𝑥∗) = 0, 𝑥∗

= (1,… , 1)

A Modified Emperor Penguin Algorithm for Solving Stagnation… Informatica 47 (2023) 71–78 75

No.
Function

Name
𝑓(𝑥) Global Minimum

17 Schwefel 418.9829𝑑 −∑𝑥𝑖 sin (√|𝑥𝑖|)

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−500, 500]
𝑓(𝑥∗) = 0, 𝑥∗

= (420.9687,… , 420.9687)

18 six-hump (4 − 2.1𝑥1
2 +

𝑥1
4

3
)𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2, 𝑥𝑖 ∈ [−3, 3]
𝑓(𝑥∗) = −1.0316, 𝑥∗

= (0.0898,−0.7126)

19 Sphere ∑𝑥𝑖
2

𝑛

𝑖=1

, 𝑥𝑖 ∈ [−5, 5]
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0]

20 Zakharov ∑𝑥𝑖
2

𝑑

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

4

, 𝑥𝑖 ∈ [−5, 10]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

Table 3 The results of algorithms

Function
EPO

Means

EPOLG

Means

MEPO

Means

EPO

RSD

EPOLG

RSD

MEPO

RSD

Ackley 7.235 3.711 0.277 0.255 0.228 0.233

Bent Cigar 14.572 16.693 0.367 10.314 14.028 0.907

Bohachevsky 0.497 0.528 0.024 0.649 0.555 0.142

Booth 0.003 0.023 0.000 1.554 1.178 1.131

Bukin 1.335 1.731 0.455 0.655 0.424 0.290

Cross in tray -2.063 -2.062 -2.063 0.000 0.000 0.000

Drop Wave -0.989 -0.998 -0.998 0.024 0.033 0.024

Discus 20.622 17.352 0.030 12.782 10.151 0.309

Easom -0.765 -0.449 -1.000 0.350 0.627 0.001

Eggholder -938.908 -939.129 -950.677 0.012 0.011 0.010

Griewank 26.045 10.557 1.259 0.533 0.918 0.124

Holder Table -19.197 -19.179 -19.208 0.001 0.001 0.000

Michalewicz -6.149 -4.682 -8.462 0.101 0.076 0.016

Modified

Schwefel
1311.743 1199.826 1.475 0.182 0.360 0.129

Rastrigin 20.361 9.611 0.023 0.462 0.872 0.437

Rosenbrock 7.525 11.891 4.198 1.240 1.325 0.325

Schwefel 1920.748 1909.122 16.103 0.080 0.084 0.043

Six hump -1.032 -1.031 -1.032 0.000 0.000 0.000

Sphere 0.019 0.023 0.002 1.209 0.683 0.262

Zakharov 10.105 0.632 0.506 0.609 0.664 0.074

5 Conclusion
This paper presents a new improvement to the EPO

algorithm presented by Dhiman and Kumar [4]. After

coding the algorithm using Python programming and

implementing it on a set of test optimization problems

with various shapes such as many local minima, bowl-

shaped, plate-shaped, steep ridges/drops, and valley-

shaped, it was found that the EPO algorithm stagnated in

some functions without showing any improvement. The

proposed modification provides more accurate results than

the original algorithm in most of the considered test

functions, making the proposed algorithm more reliable

than the original one. In addition, the algorithm is

compared with another modification of the algorithm,

EPOLG, that proposed by Xing [12] that proposed a

modification in the relocating procedure of the algorithm

by having levy flight and gaussian mutations. Although of

his new modifications, the algorithm still stagnates on the

multi-modal functions. The proposed MEPO in this paper

shows a high efficiency on solving the stagnation of the

multi-modal functions and shows a high robustness in

comparison with the other algorithms.

Future research may include one of the following

points:

76 Informatica 47 (2023) 71–78 A. Serag et al.

• Developing further improvements to

increase the efficiency of the algorithm and

apply it to CEC2017 problems.

• Applying the algorithm to solve real-world

problems, such as transshipment,

transportation, and job shop scheduling

problems.

• Optimizing the parameters of the algorithm

using design of experiments.

• Hybridizing the algorithm with other

metaheuristic algorithms to improve its

efficiency

Figure 2: The results of the first 10 functions

A Modified Emperor Penguin Algorithm for Solving Stagnation… Informatica 47 (2023) 71–78 77

Figure 3: The results of the second 10 functions

78 Informatica 47 (2023) 71–78 A. Serag et al.

References
[1] M. A. Kader, K. Z. Zamli, and B. S. Ahmed, “A

systematic review on emperor penguin

optimizer,” Neural Comput. Appl., vol. 33, no. 23,

pp. 15933–15953, 2021, doi: 10.1007/s00521-

021-06442-4.

[2] P. R. Murthy, Operations research (linear

programming). bohem press, 2005.

[3] L. M. Abualigah, A. T. Khader, and E. S.

Hanandeh, “Hybrid clustering analysis using

improved krill herd algorithm,” Appl. Intell., vol.

48, no. 11, pp. 4047–4071, 2018, doi:

10.1007/s10489-018-1190-6.

[4] G. Dhiman and V. Kumar, “Emperor penguin

optimizer: A bio-inspired algorithm for

engineering problems,” Knowledge-Based Syst.,

vol. 159, pp. 20–50, 2018, doi:

10.1016/j.knosys.2018.06.001.

[5] G. Dhiman et al., “BEPO: A novel binary emperor

penguin optimizer for automatic feature

selection,” Knowledge-Based Syst., vol. 211, p.

106560, 2021, doi:

10.1016/j.knosys.2020.106560.

[6] H. Kaur, A. Rai, S. S. Bhatia, and G. Dhiman,

“MOEPO: A novel Multi-objective Emperor

Penguin Optimizer for global optimization:

Special application in ranking of cloud service

providers,” Eng. Appl. Artif. Intell., vol. 96, p.

104008, 2020, doi:

10.1016/j.engappai.2020.104008.

[7] M. A. Sameh, M. I. Marei, M. A. Badr, and M. A.

Attia, “An optimized pv control system based on

the emperor penguin optimizer,” Energies, vol.

14, no. 3, p. 751, 2021, doi: 10.3390/en14030751.

[8] J. Yang and H. Gao, “Cultural Emperor Penguin

Optimizer and Its Application for Face

Recognition,” Math. Probl. Eng., vol. 2020, 2020,

doi: 10.1155/2020/9579538.

[9] H. Jia, K. Sun, W. Song, X. Peng, C. Lang, and Y.

Li, “Multi-Strategy Emperor Penguin Optimizer

for RGB Histogram-Based Color Satellite Image

Segmentation Using Masi Entropy,” IEEE Access,

vol. 7, pp. 134448–134474, 2019, doi:

10.1109/ACCESS.2019.2942064.

[10] F. Tang, J. Li, and N. Zafetti, “Optimization of

residential building envelopes using an improved

Emperor Penguin Optimizer,” Eng. Comput., vol.

38, no. 2, pp. 1395–1407, 2022, doi:

10.1007/s00366-020-01112-w.

[11] H. Kaur, A. Rai, S. S. Bhatia, and G. Dhiman,

“MOEPO: A novel Multi-objective Emperor

Penguin Optimizer for global optimization:

Special application in ranking of cloud service

providers,” Eng. Appl. Artif. Intell., vol. 96, 2020,

doi: 10.1016/j.engappai.2020.104008.

[12] Z. Xing, “An improved emperor penguin

optimization based multilevel thresholding for

color image segmentation,” Knowledge-Based

Syst., vol. 194, 2020, doi:

10.1016/j.knosys.2020.105570.

[13] X. Lu, Y. Yang, P. Wang, Y. Fan, F. Yu, and N.

Zafetti, “A new converged Emperor Penguin

Optimizer for biding strategy in a day-ahead

deregulated market clearing price: A case study in

China,” Energy, vol. 227, 2021, doi:

10.1016/j.energy.2021.120386.

