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Abstract: Metaheuristic algorithms have gained attention in recent years for their ability to solve complex 

problems that cannot be solved using classical mathematical techniques. This paper proposes an 

improvement to the Emperor Penguin Optimizer algorithm, a population-based metaheuristic. The 

original algorithm often gets stuck in local optima for multi-modal functions. To address this issue, this 

paper presents a modification in the relocating procedures that allows the algorithm to utilize information 

gained from the previous positions of each penguin. To demonstrate the effectiveness of the modified 

algorithm, 20 test optimization functions from well-known benchmarks were selected. The implemented 

comparative analysis assesses the proposed algorithm against both the traditional Emperor Penguin 

Optimizer algorithm and one of the most recent algorithm modifications in current research. The findings 

indicate that the proposed algorithm demonstrates significant efficiency, particularly in addressing multi-

modal functions, as evidenced by superior mean results and robustness. 

Povzetek: Predstavljen je izboljšani algoritma "cesarskega pingvina", ki učinkovito rešuje kompleksne 

probleme zlasti v multimodalnih funkcijah.

1 Introduction 
Problem-solving can be approached in various ways, such 

as trial and error, experimental design, or mathematical 

techniques [1]. Operations research is a field that employs 

mathematical formulation to solve complex engineering 

and management problems and gain insight into potential 

solutions [2]. Mathematical approaches used in this field 

can be classified into classical techniques like simplex 

method and dynamic programming, and heuristic and 

metaheuristic methods like the Emperor Penguin 

Optimizer algorithm (EPO) [3]. 

EPO is a population-based metaheuristic algorithm 

proposed by Dhiman & Kumar [4], inspired by the 

behavior of emperor penguins in utilizing crowds to 

survive the Antarctic winter. While the original algorithm 

is efficient in solving unimodal problems, it stagnates with 

complex problems like multi-local minima problems. 

Previous work on EPO in the literature includes the binary 

version by Dhiman et al. [5], multi-objective optimization 

by Kaur et al. [6], photovoltaic system optimization by 

Sameh et al. [7], support vector machine optimization for 

face recognition by Yang and Gao [8], RGB image 

threshold optimization by Jia et al. [9], and energy-

efficient residential building design by Tang et al. [10]. 

Kaur et al. [11] adapted the emperor penguin optimizer 

algorithm to solve multi-objective optimization problems 

using the concept of dynamic archive. Xing [12] proposed 

an EPO algorithm for solving the multilevel threshold for 

color image segmentation. Lu et al. [13] improved the 

EPO algorithm by optimizing its output using the  

 

 

sequential quadratic programming. They used the 

improved algorithm to minimize the market clearing price 

probability function. 

 However, most of these studies focused on applying 

the EPO algorithm to solve real-world problems and did 

not address its stagnation issue in multi-modal problems. 

Table 1 summarizes the previously mentioned literature in 

this paper. 

This paper proposes a modification to the EPO 

algorithm to increase its efficiency. The second section 

discusses the original algorithm's main steps, followed by 

the proposed modification in the third section. The fourth 

section presents comparative results between the original  

and modified EPO, and the fifth section concludes the 

paper. 

2 The original emperor penguin 

optimizer algorithm 
The Emperor Penguin Optimizer (EPO) is a population-

based metaheuristic inspired by the crowd behavior of 

emperor penguins. The algorithm's steps include 

calculating the ambient temperature, distances toward the  

emperor penguins, and effective movers. To calculate the 

temperature around the crowd (𝑇𝐴), the temperature of 

each penguin (𝑇) is considered, depending on the radius 

(𝑅) that surrounds the crowd. The temperature profile 

around the crowd can be calculated using Equation (1), 

where the iteration number (𝐼𝑡𝑟) and the maximum 

number of iterations (𝑀𝑎𝑥𝐼𝑡𝑟) are taken into account. 

𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 −𝑀𝑎𝑥𝐼𝑡𝑟
 , ∀𝐼𝑡𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑟 (1) 
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Table 1: Literature summary

𝑇 =  {
0,   𝑖𝑓 𝑅 > 1
1,   𝑖𝑓 𝑅 < 1

 

The distance between the penguins and their emperor (𝐷) 

is to be calculated using some sort of parameters related to 

avoiding collision between penguins (𝐴), the position of 

the best penguin (𝑃𝑏𝑒𝑠𝑡), the position of each penguin (𝑃), 

the ambient temperature, 𝑇𝐴, and the social force (𝑆) that 

forces the penguins to move towards the direction of best 

solution. The parameter 𝐴 is to be calculated for the 

position 𝑃𝑖  using the movement parameter (𝑀), which is 

set to 2, in equation (2). 

 
𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴 (2) 

 

Equation (3)  is used to calculate the social force. This 

equation is a decreasing function that has three variables, 

𝑓, 𝑙, and 𝐼𝑡𝑟. Both of 𝑓 and 𝑙 are random numbers that each 

as its lower and upper bound. Figure 1 shows an example 

of having 𝑓 belongs to the interval [2, 5] and 𝑙 belongs to 

the interval[2, 10]. 
 

𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)

2

 (3) 

 
Figure 1 Social force parameter’s graph 

 

The parameter 𝑆 is used to calculate the distance𝐷, 

where it increases in the very first iterations to guarantee 

high locality and decrease it gradually until reaching very  

 

 

 

low locality in the higher iterations. So, the distance 𝐷 is 

to be calculated using equation (4) as follows: 

 
𝐷 = |𝑆 .  𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| (4) 

Now, the position of the penguin in the next iteration 

(𝑃𝑖+1) can be calculated using equation  

(5) as follows: 

 
 

𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷    

 

(5) 

 

The best position is updated by changing the penguin's 

position in each iteration until the stopping criteria are 

met, and then the best solution is returned. The 

pseudocode for the algorithm can be summarized as 

follows: 
 

1 
𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

2 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

3 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒  

𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡) 
4 𝐼𝑡𝑟 = 1 

5 𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜: 
6  𝑖 = 1 

7  𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜: 

8   𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 −𝑀𝑎𝑥𝐼𝑡𝑟
 

9   𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴 

10   𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 

11   𝐷 = |𝑆 .  𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| 
12   𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷 

13   𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛: 
14    𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1 

15   𝑖 = 𝑖 + 1 

16  𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1 

17 𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡 

3 The proposed modified EPO 

algorithm 
In this section, a new modification to the EPO algorithm 

is proposed, which involves utilizing information gained 

from the current position of each penguin before 

relocating it. This modification constructs an information 

vector using a threshold selected from the interval [0, 1]. 
The purpose of this proposed mutation process is to 

achieve increased locality when the lower threshold is 

reached. This is done by creating a new solution with more 

components from the current solution. Conversely, when 

Author Modification Application 

Dhiman and Kumar [4] First Proposed Test Optimization Problems 

Jia et al. [9] disruptive polynomial mutation 
Levy flight 

thermal exchange operator 

Satellite image segmentation 

Xing [12] Gaussian mutation 
Levy flight 

multilevel threshold for color image segmentation 

Kaur et al. [6]  Muti-objective optimization 

Yang and Gao [8]  Face recognition 

Kaur et al. [11]  Multi-objective optimization 

Lu et al. [13] Sequential quadratic programming Market clearing price 

Dhiman et al. [5] Binary emperor penguin optimizer  

Sameh et al. [7]  Photovoltaic control system 

Tang et al. [10]  Energy consumption of the residential buildings 
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the higher threshold is reached, the process aims to 

enhance diversity by incorporating more components 

from the relocated solution. The current position, 𝑃𝑖 , and 

the position generated using equation  

(5) are used to create the information vector, 𝑃𝐼𝑉. The new 

procedure selects the components of 𝑃𝐼𝑉 using the 

threshold. The first step of the new procedure is to 

generate a uniform random number that will be compared 

to the selected threshold. If the generated uniform random 

number is greater than the threshold, then component 𝑗 is 

selected from 𝑃𝑖+1; otherwise, it is selected from 𝑃𝑖 . The 

following steps show the procedure for creating the 

𝑃𝐼𝑉  position: 

 
1 𝑗 = 1  
2 𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜: 
3  𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
4   𝑃𝐼𝑉[𝑗] = 𝑃𝑖+1[𝑗] 
5  𝑒𝑙𝑠𝑒: 
6   𝑃𝐼𝑉[𝑗] = 𝑃𝑖[𝑗] 
7  𝑗 = 𝑗 + 1 

 
After creating the information vector, 𝑃𝐼𝑉, it will be 

evaluated using the objective function, and if its 

evaluation is better than both 𝑃𝑖  and 𝑃𝑖+1, then 𝑃𝐼𝑉  will 

replace 𝑃𝑖  to be used in the next iteration of the algorithm. 

The full steps of the Modified Emperor Penguin 

Algorithm Optimizer (MEPO) can be shown as follows: 

 
1 𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

2 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

3 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑏𝑒𝑠𝑡) 

4 𝐼𝑡𝑟 = 1 

5 𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜: 

6  𝑖 = 1 

7  𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜: 

8   𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 −𝑀𝑎𝑥𝐼𝑡𝑟
 

9   𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴 

10   𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 

11   𝐷 = |𝑆 .  𝑃𝑖 − 𝑟𝑎𝑛𝑑 𝑃𝑏𝑒𝑠𝑡| 

12   𝑃𝑖+1 = 𝑃𝑖 − 𝐴 . 𝐷 

13   𝑗 = 1 

14   𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃) 𝑑𝑜: 

15    𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

16     𝑃𝐼𝑉[𝑗] = 𝑃𝑖+1[𝑗] 

17    𝑒𝑙𝑠𝑒: 

18     𝑃𝐼𝑉[𝑗] = 𝑃𝑖[𝑗] 

19    𝑗 = 𝑗 + 1 

20   𝑖𝑓 𝑓(𝑃𝑖+1) ≤ 𝑓(𝑃𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛: 

21    𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖+1 

22   𝑖 = 𝑖 + 1 

23  𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1 

24 𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝑏𝑒𝑠𝑡 

 

 

 

 

 

 

The time complexity of the algorithm is the same as the 

classical EPO presented by Dhiman and Kumar [4], which 

is 𝑜(𝑘 × 𝑛 × 𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑑 × 𝑁). The next section shows 

the comparative results which implemented to compare 

the MEPO with the classical EPO and another 

modification of the EPO algorithm presented by Xing 

[12]. All of the are coded using python programming and 

they code is available on https://github.com/ 

ahmedsssssA/EPOIV. 

4 Comparative results 
Both algorithms, EPO and MEPO, were implemented 

using Python programming language on a PC equipped 

with a Core i5 processor clocked at 3.40GHz and 4 

gigabytes of RAM. Another algorithm is selected for the 

comparative results from the previous work listed in Table 

1. The selected algorithm is the EPO that utilizes the Levy 

flight and gaussian mutation (EPOLG) presented by Xing 

[12].To evaluate the performance of the algorithms, a set 

of benchmark problems available at https://www.sfu 

.ca/~ssurjano/optimization.html are selected as shown in 

Table 2. The parameters of the algorithms are set as high 

as possible to demonstrate their effectiveness in finding 

the global minimum. Specifically, the population size (𝑁) 

is set to 100, the maximum number of iterations (𝑀𝑎𝑥𝐼𝑡𝑟) 

is set to 100, and 𝑅 is randomly selected for each solution 

in each iteration from the interval [0, 1]. 
The selected optimization test functions are chosen to 

cover functions with different shapes, including those with 

many local minima, bowl-shaped, plate-shaped, steep 

ridges/drops, and valley-shaped. Figure 2 and Figure 3 

present the comparison between EPO, EPOLG, and 

MEPO. The figures show that the proposed MEOP 

algorithm has a higher efficiency in terms of convergence 

and solving the stagnation problem of the multi-modal 

functions. The functions Ackley, Bent Ciger, Easom, 

Michalewicz, and Schwefel show stagnation with both 

EPO and EPOLG algorithms, and this stagnation is solved 

with the MEPO algorithm. Moreover, Table 3 presents the 

results of the implementation for each algorithm. The 

optimized results are shown in bold, and all of them are 

associated with the MEPO algorithm. MEPO shows 

significant improvement in terms of mean results and the 

absolute relative standard deviation (RSD), which reflects 

the robustness of the MEPO algorithm’s results. 
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Table 2 Selected test optimization problems 

No. 
Function 

Name 
𝑓(𝑥) Global Minimum 

1 Ackley 20 (𝑒
−0.2 √

1
𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − (𝑒

1
𝑑
∑ cos(2𝜋𝑥𝑖)
𝑑
𝑖=1 ) + 20 + 𝑒, 𝑥𝑖 ∈ [−33, 33] 

𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

2 Bent Cigar x1
2 + 106∑𝑥𝑖

2

𝑛

𝑖=2

, 𝑥𝑖 ∈ [−100, 100] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

3 Bohachevsky 
𝑥1

2 + 2𝑥2
2 − 0.3 cos(31𝜋𝑥1) − 0.4 cos(31𝜋𝑥2) + 0.7,

𝑥𝑖 ∈ [−100, 100] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0, 0) 

4 Booth (𝑥1 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2, 𝑥𝑖 ∈ [−10, 10] 
𝑓(𝑥∗) = 0, 𝑥∗

= (1, 3) 

5 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|, 𝑥𝑖 ∈ [−15, 3] 

𝑓(𝑥∗) = 0, 𝑥∗

= (−10, 0) 

6 Cross-in-Tray −0.0001

(

 
 

|

|
𝑠𝑖𝑛(𝑥1) 𝑠𝑖𝑛(𝑥2)𝑒

||100 − 
√𝑥1

2+𝑥2
2

𝜋 ||

|

|
+ 1

)

 
 

0.1

, 𝑥𝑖 ∈ [−15,15] 

𝑓(𝑥∗)
= −2.06261, 𝑥∗

= (1.3491,−1.3491) 

7 Drop Wave −
1 + cos (12√𝑥1

2 + 𝑥2
2)

0.5(𝑥1
2 + 𝑥2

2) + 2
, 𝑥𝑖 ∈ [−5.12, 5.12] 

𝑓(𝑥∗) = −1.5, 𝑥∗

= (0,0) 

8 Discus 106𝑥1
2 +∑𝑥𝑖

2

𝐷

𝑖=2

, 𝑥𝑖 ∈ [0, 100] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

9 Easom −cos(𝑥1) cos(𝑥2) 𝑒
(−(𝑥1−𝜋)

2−(𝑥2−𝜋)
2) , 𝑥𝑖 ∈ [−100, 100] 

𝑓(𝑥∗) = −1, 𝑥∗

= (𝜋, 𝜋) 

10 Eggholder 
−(𝑥2 + 47) sin (√|𝑥2 +

𝑥1
2
+ 47|) − 𝑥1 sin (√|𝑥1 − (𝑥2 + 47)|) , 𝑥

∈ [−500, 500] 

𝑓(𝑥∗)
= −959.6407, 𝑥∗

= (512, 404.2319) 

11 Griewank ∑
𝑥𝑖
2

4000
−∏cos(

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

, 𝑥 ∈ [−600, 600] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

12 Holder Table −
|

|
sin(𝑥1) cos(𝑥2)𝑒(

 ||1−
√𝑥1

2+𝑥2
2

𝜋 ||

)

 

|

|
, 𝑥𝑖 ∈ [−10, 10] 

𝑓(𝑥∗)
= −19.2085, 𝑥∗

= (8.05502,−9.66459) 

13 Michalewicz −∑sin(𝑥𝑖) sin
20 (

𝑖𝑥𝑖
2

𝜋
)

𝑑

𝑖=1

, 𝑥 ∈ [0, 𝜋] 
𝑓(𝑥∗) = −1.8013, 𝑥∗

= (2.20,1.57) 

14 
Modified 

Schwefel 

418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

, 𝑧𝑖 = 𝑥𝑖 + 4.209687462275036e + 002, 𝑥𝑖

∈ [−500, 500] 
𝑔(𝑧𝑖)

=

{
 
 

 
 𝑧𝑖 sin (|𝑧|

1
2) , 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)) sin (√500− |𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

1000𝐷
, 𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500) sin (√|𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500|) −
(𝑧𝑖 + 500)

1000𝐷
, 𝑖𝑓 𝑧𝑖 < −500

  

𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0] 

15 Rastrigin 10𝑑 + ∑[𝑥2 − 10 cos(2𝜋 𝑥𝑖)]

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−5, 5] 
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0] 

16 Rosenbrock ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑑−1

𝑖=1

, 𝑥𝑖 ∈ [−5, 10] 
𝑓(𝑥∗) = 0, 𝑥∗

= (1,… , 1) 
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No. 
Function 

Name 
𝑓(𝑥) Global Minimum 

17 Schwefel 418.9829𝑑 −∑𝑥𝑖 sin (√|𝑥𝑖|)

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−500, 500] 
𝑓(𝑥∗) = 0, 𝑥∗

= (420.9687,… , 420.9687) 

18 six-hump (4 − 2.1𝑥1
2 +

𝑥1
4

3
)𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2, 𝑥𝑖 ∈ [−3, 3] 
𝑓(𝑥∗) = −1.0316, 𝑥∗

= (0.0898,−0.7126) 

19 Sphere ∑𝑥𝑖
2

𝑛

𝑖=1

, 𝑥𝑖 ∈ [−5, 5] 
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0] 

20 Zakharov ∑𝑥𝑖
2

𝑑

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

4

, 𝑥𝑖 ∈ [−5, 10] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

Table 3 The results of algorithms 

Function 
EPO 

Means 

EPOLG 

Means 

MEPO 

Means 

EPO 

RSD 

EPOLG 

RSD 

MEPO 

RSD 

Ackley 7.235 3.711 0.277 0.255 0.228 0.233 

Bent Cigar 14.572 16.693 0.367 10.314 14.028 0.907 

Bohachevsky 0.497 0.528 0.024 0.649 0.555 0.142 

Booth 0.003 0.023 0.000 1.554 1.178 1.131 

Bukin 1.335 1.731 0.455 0.655 0.424 0.290 

Cross in tray -2.063 -2.062 -2.063 0.000 0.000 0.000 

Drop Wave -0.989 -0.998 -0.998 0.024 0.033 0.024 

Discus 20.622 17.352 0.030 12.782 10.151 0.309 

Easom -0.765 -0.449 -1.000 0.350 0.627 0.001 

Eggholder -938.908 -939.129 -950.677 0.012 0.011 0.010 

Griewank 26.045 10.557 1.259 0.533 0.918 0.124 

Holder Table -19.197 -19.179 -19.208 0.001 0.001 0.000 

Michalewicz -6.149 -4.682 -8.462 0.101 0.076 0.016 

Modified 

Schwefel 
1311.743 1199.826 1.475 0.182 0.360 0.129 

Rastrigin 20.361 9.611 0.023 0.462 0.872 0.437 

Rosenbrock 7.525 11.891 4.198 1.240 1.325 0.325 

Schwefel 1920.748 1909.122 16.103 0.080 0.084 0.043 

Six hump -1.032 -1.031 -1.032 0.000 0.000 0.000 

Sphere 0.019 0.023 0.002 1.209 0.683 0.262 

Zakharov 10.105 0.632 0.506 0.609 0.664 0.074 

5 Conclusion 
This paper presents a new improvement to the EPO 

algorithm presented by Dhiman and Kumar [4]. After 

coding the algorithm using Python programming and 

implementing it on a set of test optimization problems 

with various shapes such as many local minima, bowl-

shaped, plate-shaped, steep ridges/drops, and valley-

shaped, it was found that the EPO algorithm stagnated in 

some functions without showing any improvement. The 

proposed modification provides more accurate results than 

the original algorithm in most of the considered test 

functions, making the proposed algorithm more reliable 

than the original one. In addition, the algorithm is  

 

compared with another modification of the algorithm, 

EPOLG, that proposed by Xing [12] that proposed a 

modification in the relocating procedure of the algorithm 

by having levy flight and gaussian mutations. Although of 

his new modifications, the algorithm still stagnates on the 

multi-modal functions. The proposed MEPO in this paper 

shows a high efficiency on solving the stagnation of the 

multi-modal functions and shows a high robustness in 

comparison with the other algorithms. 

Future research may include one of the following 

points: 
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• Developing further improvements to 

increase the efficiency of the algorithm and 

apply it to CEC2017 problems. 

• Applying the algorithm to solve real-world 

problems, such as transshipment, 

transportation, and job shop scheduling 

problems. 

• Optimizing the parameters of the algorithm 

using design of experiments. 

• Hybridizing the algorithm with other 

metaheuristic algorithms to improve its 

efficiency

 

 

 
Figure 2: The results of the first 10 functions
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Figure 3: The results of the second 10 functions 
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