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The significance of Deep Reinforcement learning is sensibly represented in the method of optimizing the 

graphic design and space framework of buildings in context with the worldwide big data environment, wherein 

people have increasingly stringent requirements for building layout and design and conventional layout is 

increasingly inadequate. This research put out a novel approach to topology optimization using deep learning 

in geometry. Deep neural networks characterize the density distribution in the design domain. By employing 

a geometry-based deep learning approach to represent the density distribution function, we can successfully 

avoid the checkerboard phenomena and ensure a smooth border. With a deep learning reinforcement 

approach, the design variables may be drastically decreased. In adjusting the designs of neural networks, we 

may fine-tune not only the minimal length but also the structural complexity. The proposed model has provided 

an accuracy of 95% and a computation time of 61s. The effectiveness of the suggested technique is shown by 

several 2-dimensional and 3-dimensional numerical results ranging from minimal conformance to stress-

constrained issues. 

Povzetek: Predlagana je nova metoda vzpodbujevalnega učenja za topološko optimizacijo v grafičnih 

storitvah z uporabo globokih nevronskih mrež.

1   Introduction 

In both academia and business, research on machine 

learning (ML) and artificial intelligence (AI) has grown 

significantly in the past ten years. As computer technology 

improved and the need to evaluate increasing amounts of 

data evolved, these methods, which were previously 

undervalued, found updated recognition. Reinforcement 

Learning (RL) aims for maximizing a numerical reward 

signal by retraining the system to relate actions to instances. 

The student must attempt each activity to determine which 

is most rewarding rather than being instructed which to 

choose. The issue of how agents should learn a strategy that 

acts in a way to maximize the cumulative reward through 

interaction with the environment is addressed by 

reinforcement learning (Tapeh & Naser, 2022). Figure 1 

represents Deep Reinforcement Learning Implementation 

using the Interior Design Model. The article outlines the 

solution of multi-objective reinforcement learning 

(MORL) tasks with unknown weights and many conflicting 

objectives (Yamaguchi, Nagahama, Ichikawa, & 

Takadama, 2019). The research demonstration continues to 

grow because it enables robots to quickly acquire innovative 

abilities. In inverse reinforcement learning 

(IRL), demonstrations can benefit in a number of methods 

by having the robot make an effort to determine the 

objectives or reward from the human demonstrator (Das, 

Bechtle, Davchev, Jayaraman, Rai, & Meier, 2021). 

 

Figure 1: Deep reinforcement learning implementation 

using the interior design model. 

The creations of completely autonomous agents that interact 

with their surroundings for learn the best behaviours and 

perfect them over time through trial and error. Making AI 
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systems that are responsive and can successfully learn has 

long been a problem, from software-only agents that can 

interact with spoken language and multimedia to robots that 

can perceive and respond to their environment (Zhou, Lee, 

Diao, Shi, Balyen, &Peto, et al, 2019). RL is a mathematical 

framework with guiding principles for experience-driven 

autonomous learning. While earlier iterations of RL had 

some success, they were fundamentally confined to rather 

low-dimensional issues and lacked scalability (Cioffi, 

Travaglioni, Piscitelli,  Petrillo,& De Felice, et al, 2020). 

AI will have a profound influence on human existence in the 

future due to the worldwide nature of the world, and it will 

be a key factor in designers' decision-making processes. 

Artificial intelligence is fundamentally a tool, and it should 

exercise its four main responsibilities of anticipation, 

contemplation, negotiation, and reaction throughout the 

process of design innovation (Bichu,  Hansa,  Bichu,  

Premjani,  Flores-Mir,  &Vaid, et al, 2021). Each designer 

has a preference, and ResNet artificial intelligence is 

suggested as a way to increase decision accuracy while also 

increasing the effectiveness of design selections based on 

individual designer preferences. To successfully prevent the 

negative consequences of designers' decision-making 

preferences, pattern recognition, and decision-making 

difficulties are combined (Wang, Tang, Huang, Chen, 

Zhang, & Huang, (2020)). The term "spatial layout design" 

describes the process of partitioning a given space into 

several tiny spaces or of logically placing certain things in 

the area within the framework of some objective and 

arbitrary design standards and layout conventions 

(Bouhamed, Ghazzai, Besbes, &Massoud, (2020)). The 

necessity for efficient design nowadays cannot be addressed 

by conventional approaches, which is why researchers are 

looking into spatial layout design. Designers often use 

interactive modeling tools or build traditional layouts by 

hand (Deng, & Chen, (2021)). The article suggested a novel 

Deep Reinforcement Learning-based topology optimization 

technique. The density dispersion in the design region is 

characterized by deep neural networks. Using geometric 

deep learning to define the density distribution function can 

ensure the smoothness of the border and successfully 

combat the checkerboard phenomena, in contrast to 

standard density-based methods (Brown, Garland, Fadel, & 

Li, et al, (2022)).  

 

 

Table 1: Survey of related works 

Author Proposed Result Limitations 

(Zhou, Lee, 

Diao, Shi, 

Balyen, &Peto, et 

al, (2019)) 

In the field of ophthalmology, AI, 

ML, and DL has been applied to 

verify medical diagnoses, interpret 

images, map the cornea, and 

compute intraocular lenses. 

The existing DL, ML, and 

AI techniques and 

application on glaucoma 

treatment, AMD, DR, and 

other eye disorders early 

identification. 

One of the main 

issues in many 

nations is the 

shortage of retina 

specialists and 

qualified human 

graders. Analysis 

of such images can 

be expensive, time-

consuming, and 

prone to human 

error in population 

growth. 

(Cioffi, 

Travaglioni, 

Piscitelli, 

Petrillo, & De 

Felice, et al, 

(2020)) 

The research has been designed to 

conduct a thorough analysis of 

scientific research about the 

industrial applications of AI and 

ML. 

The significant outcome is 

the higher quantity of 

American-published works 

and the growing interest 

following the release of 

Industry 4.0. 

 

It is essential to 

emphasize that this 

report was 

generated simply 

from two 

databases, namely 

WoS and Scopus 

and that only 

publicly accessible 

materials were 

included. 

2   Related works 
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(Bichu, Hansa, 

Bichu, Premjani, 

Flores-Mir, 

&Vaid, et al, 

(2021)) 

The PRISMA-ScR standards were 

followed in the scoping assessment 

of the research. 

The fields of diagnosis and 

treatment planning, 

development assessment, 

and treatment outcome 

evaluation were examined. 

Some AI 

applications could 

have failed to 

appear in PubMed 

because of 

inclusion rules, 

search terms used, 

publication 

language rather 

than English. 

(Wang, Tang, 

Huang, Chen, 

Zhang, & Huang, 

(2020)) 

The study developed the DNN 

framework and RL state area, action 

space, and multiple incentives. 

The northeast power grid 

and the 36-node the China 

Electric Power Research 

establishment (CEPR) 

system are utilized to verify 

the efficacy of the technique. 

The adjustment 

effect can be 

enhanced by 

raising the range of 

adjustments step 

per sample, with 

completing that 

could extend the 

learning and 

adjustments period. 

(Bouhamed, 

Ghazzai, Besbes, 

&Massoud, 

(2020)) 

To enable the UAV to navigate over 

obstacles and the continuous area 

developed the Deep Deterministic 

Policy Gradient (DDPG). 

The UAV is provided 

utilizing the DDPG in 

constant movement space to 

navigate over obstacles to 

achieve its designated 

destination. 

The limited 

dimensions of 

mobility and action 

space for UAVs, 

which could lower 

their effectiveness 

in dealing with 

everyday 

environments. 

(Deng, & Chen, 

(2021)) 

A policy-based RL model was 

developed in the investigation to 

depict the behaviour of controlling 

the thermostat and material level. To 

simulate the individuals' behaviour, 

a MDP used. 

The behaviour of building 

occupants could be predicted 

reasonably well using the RL 

framework and transfer 

learning. 

A limitation of the 

research was the 

RL occupant 

behaviour model's 

prediction 

difference, which 

could be partially 

justified. 

(Brown, Garland, 

Fadel, & Li, et al, 

(2022)) 

An RL agent can sequentially 

determine in the specified 

environment whether to create a 

topology by eliminating components 

to most effectively accomplish 

compliance minimization 

requirements. 

These results indicate that 

deep RL agents can acquire 

generalized design 

techniques to satisfy multi-

objective design 

requirements. 

Testing was done 

on the agent using 

a number of 

standard load 

instances, certain of 

which it did not see 

during training. 
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Contribution of the study Thus, this research contributes by 

demonstrating an implementation of the topology 

optimization to increase its effectiveness by Deep 

Reinforcement Learning and the field's relevance to making 

decisions through trial. The following are some of the 

particular accomplishments of this paper: 

• The approach of interior design based on certain 

learning method is evaluated. 

• To encourage the mathematical method of 

topology which is an optimized material layout 

within a given design space and assess the 

effectiveness of the process, an efficient Deep 

Reinforcement Learning component is suggested. 

3   Application of deep learning in 

graphic design 

The article presented an approach to electrical drive 

controller design that uses Deep Reinforcement Learning 

techniques. To effectively forecast the behavior of building 

occupants with high scalability and without the requirement 

for data gathering, the RL model was integrated with 

transfer learning (Ding, &Cerpa, (2020)). The article 

investigated how Designing 2D discredited topologies is 

automated by applying the optimum sequences of actions 

for RL agents to do to accomplish a goal learned from prior 

experiences. An RL agent may build a topology in the given 

environment by sequentially deciding which parts should be 

removed to best achieve compliance reduction goals 

(Zhang, Chen, Bernstein, Chintala, Graf, Jin, &Biagioni, et 

al, (2022)). The overview objective of the article conducted 

a series of using the lessons we've learned. By using a group 

of environment-conditioned neural networks, the piece was 

able to learn the dynamics of the building. Next, a brand-

new control technique called Model Predictive Path Integral 

is used. In a five-zone office complex, we assess Energy 

Plus models. According to the report can save 8.23% more 

energy than the most advanced system while keeping a 

comparable level of thermal comfort (Zhang, Chintala, 

Bernstein, Graf, &Jin, et al, (2020).). The study desired a 

tailored scanning strategy that was learned using 

reinforcement learning (RL) to determine the angles and 

dosage for each selected angle for each patient. Modern 

deep RL techniques are used in the study to define the CT 

scanning procedure and then solve it. In addition to 

producing improved reconstruction outcomes, the learned 

tailored scanning technique also exhibits great 

generalizability when used in conjunction with other 

reconstruction algorithms (Shen, Wang, Yang, & Dong, et 

al, (2020)). The research downplayed the significance of 

sampling while determining the Q-return function, ensuring 

that the built-in techniques are more likely to acquire high-

value lessons while being more resilient (Li, Zhu, Zhou, 

Feng, & Feng, et al, (2022)). Research enhanced the 

Building Information Model system and Python 

development tools, enabling cross-platform collaboration 

deep learning on computers and further design effort, The 

architectural design methodology of the BIM system and the 

interior design research carried out using the BIM building 

data platform were assessed in the article is shown using 

real-world examples (Luong, & Pham, 2021).The study 

paper's goal analyze the demand for interior space design 

has risen quickly along with the rate at which people are 

purchasing homes. In the domain of autonomous interior 

space design, computer science, and technology have 

infinite potential. The corresponding study suggested an 

automated way of designing spatial areas using 

convolutional neural networks (CNN) (Wu& Feng, 2022). 

The article investigated the CNN technique as a quick and 

effective approach. Iteratively finishing the automated 

arrangement of the internal spaces begins with the predicted 

living room. The paper examined several empirical interior 

design case studies, showing that this approach had similar 

results to professional designers' interior design floor plans 

(Predić, Manić, Saračević, Karabašević, &Stanujkić, 2022). 

Research classified the four different Machine Learning 

(ML) models created for the semi-arid region of Iraq's river 

flow forecasting. Investigated was the efficacy of data 

division's impact on the development of ML models. Three 

data division modeling scenarios—70%–30%, 80%–20%, 

and 90%–10%—were examined. To evaluate how well the 

models are performing, several statistical indicators are 

computed (Tao, Al-Sulttani, Salih Ameen, Ali, Al-Ansari, 

Salih, & Mostafa, 2020). Using 90%–10% data division, the 

article demonstrated the benefits of the hybrid support 

vector correlation model with a genetic algorithm over 

current machine learning forecasting models for monthly 

river flow predictions. Also, it was discovered to increase 

the accuracy of high-flow event predictions (Zhong, Zhang, 

Zhang, & Zhang, 2022). The study case developed the 

Support vector regression (SVR) model's internal 

parameters may be tuned by the optimizer, which results in 

a robust learning process. Compared to earlier developed 

hybrid models, the article has improved its ability to predict 

stochastic river flow behavior (Xu, Zhang, Liu, Nie, Su, Nie, 

& Zhang, 2019.) The Research compared the design of 

Adaptive Cruise Control (ACC) using Model Predictive 

Control (MPC) and Deep Reinforcement Learning (DRL) in 

car-following instances (Lin, McPhee, & Azad, 2019). The 

research explored the DRL approach as comparable to MPC 

with a large enough prediction horizon when modeling 

errors disappear and the training information range is 

occupied by the testing inputs (Zhu, Wang, Pu, Hu, Wang, 

&Ke, 2019). The study evaluated that DRL control 

performance declines when testing inputs are outside of the 

training data range, which is a sign that machine learning 

generalization is insufficient (Chen, Tong, Zheng, 
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Samuelson, &Norford, 2020). The study focused on 

constraint optimization and multi-objective optimization; 

the investigation provides an innovative perspective on the 

data age's design progress. After verifying the quality of the 

non-adaptive solution set, optimizing the converge, 

uniformity, and extensiveness, analyzing the experimental 

process, and drawing a multi-objective conclusion, it is 

determined that additional optimization related to the 

interior and spatial structure is necessary for artificial 

intelligence making decisions in the instance of the Library 

of Highly Cold Lands (Ran, & Dong,2022). Research 

provided layout boundary or layout space to automatically 

generate a layout plan. The scene redirection solution has 

successfully been tested, according to the findings. The 

study used a redirection algorithm's efficacy which is shown 

by comparison with the outcomes of uniform scaling (Wu, 

2022). The study case simulated two reinforcement learning 

agents in a cooperative learning setting to discover the ideal 

3D layout for the Markov decision process (MDP) 

formulation. The article examines the tests on a big dataset 

of actual interior layouts, which includes industrial designs 

created by qualified designers. The numerical findings 

suggested model produces layouts of superior quality when 

compared to the most recent model (Di, & Yu, 2021). 

 

4   Materials and method 

Graphic design has been around since the beginning of time. 

Books, periodicals, packaging, newspapers, banners, 

emblems, and many more things all benefit from graphic 

design in some way. Graphic design, topology optimization, 

our suggested deep reinforcement learning approach, and 

performance assessment of this graphic design are the 

primary topics covered in this chapter. 

4.1 Graphic design  

According to a widely held belief, visual design is the art 

and skill of giving various words and graphics an orderly, 

practical, and appealing framework. Both the act (verb) and 

the product (noun) of visual art are related concepts. A kind 

of "all design" employed in the creation of different 

platforms is traditional graphic design. The logical and 

practical aesthetics that developed in conventional graphic 

design over the years for media are the foundation for 

contemporary visual graphic design, which is today 

employed across multiple fields such as industrial layout, 

information architecture, message styling, and more. Table 

2 displays the types of graphic designs. 

 

 

Table 2: Types of graphic designs 

S.no Graphic designs types 

(i) Visual identification 

(ii) Promotion and marketing 

(iii) Interface for Users 

(iv) Newspaper 

(v) Packaging 

(vi) Movements 

(vii) Environmental 

(viii) Visual Compositions 

 

Graphics has been known by many different names over the 

last two centuries, including artistic works, advertising 

material, digital marketing, graphics, and visuals. This 

demonstrates how the range of methods used to convey 

information has broadened beyond traditional visual arts.  

The 2D graphic arts include book arts, calligraphy, 

lithography, cinematography, printing, and typography. 

Applications, experience-based design, interaction 

methods, user-centered design, and websites are just some 

of the newer areas that graphic arts have expanded to 

include. The number of design-related discussions is 

growing at an astounding rate. There is training and 

schooling in graphic design all around the globe, at all 

levels. The figure depicts the graphic model of the building 

structure in DRL. 

 

Figure 2: Graphic design of building in DRL 
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4.2 Topology optimization 

Topology Optimisation as a construction tool is rarely 

implemented in the design of buildings. It is usually the 

result of a laborious procedure necessary to produce results 

that meet the standards of a designer. Yet, that difficulty 

shouldn't prevent some builders from trying out these 

instruments in building design. The density-based approach 

converts the substance distribution into a finite-element 

spatial configuration. By constructing discrete elements of 

varying densities, the finite element method is developed. 

Mesh is used to represent density spatially in the well-

established SIMP method, yielding an optimized layout 

with spaced boundary conditions. So, it takes a lot of work 

in post-processing to make a smooth CAD model, and that 

might reduce the accuracy of the geometry near the border. 

As the mesh is employed to describe the organizational 

topology, the variety of design parameters is usually quite 

huge for 3D design, and many mature optimization 

strategies are not appropriate for large-scale problems. In 

this section, we describe a novel approach to density 

portrayal that resolves those particular issues by using a 

feed-forward neural network. A high-fidelity feed-forward 

neural network can be used to illustrate a complex shape, 

ensuring a smooth surface throughout. Thus, a deep 

feedforward network is a natural choice for representing the 

density field in the design domain. In Figure 3, we see a 

contrast of three feedforward neural networks, each having 

three hidden units and a unique set of neurons in each of 

those levels and Figure 4 displays the outcomes of the 

training. 

 

Figure 3: Feed-forward neural network design structure 

 

Figure 4: Outcome of the building training function 

A properly justified density field is one in which the limits 

of the component densities fall within the interval [0, 1]. A 

sampling distribution in the design domain is defined by a 

deep feedforward network in which the input for the system 

is all the point dimensions. The density value at that location 

is what you get as an answer. The following mapping 

function 𝒩is used to control the output density to stay 

within the range [0, 1]: 

𝒩 =
(tanh(𝛽𝑦)+1)

2
(𝛽 = 0.5)           (1) 

The density field may be expressed mathematically as: 

∅(𝑦, 𝑥) = ℳ(ℕ(𝑦, 𝑥, 𝜃))(2𝐷𝑝𝑟𝑜𝑏𝑙𝑒𝑚)         (2) 

∅(𝑦, 𝑥, ℎ) = ℳ(ℕ(𝑦, 𝑥, ℎ, 𝜃))(3𝐷𝑝𝑟𝑜𝑏𝑙𝑒𝑚)        (3) 

Where ℕ represents feedforward networks and stands for a 

free-form parameter. Several discrete layers make up a 

deep-layered network's topology. Networks with 𝐹hidden 

layers may be represented as, where 𝑧(1) represents the 

output of the corresponding hidden layer. 

ℕ(𝑦, 𝑥, ℎ, 𝜃) =

ℕ(𝑒(𝐹+𝑞)( (𝑍𝐹)(𝑒(𝐹) (… . 𝑧(1) (𝑒(1)(𝑦, 𝑥, ℎ)))       (4) 

Where the linear process ( ) is written as, 

𝑒(𝑓)(𝑦) = 𝑈(𝑓)𝑦 + 𝑝(𝑓)                         (5) 

4.3 Minimum compliance 

Topology optimization using a compliance-minimizing 

formulation is developed with deep reinforcement learning 

(DRL). In the space of design, a DNN represents the density 

field. Hence, the TO will repeatedly update the network 

configuration in the design domain to improve the 

concentration field until the component arrangement 

provides optimal stiffness performance. During 
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optimization, the density field in the design domain is 

changed by adjusting the connection weights in a 

feedforward fashion. This allows us to formulate the 

optimization issue as: 

{

𝐹𝑖𝑛𝑑: 𝜃

𝑀𝑖𝑛: 𝑉(𝑤,Φ) =
1

2
∫ 𝜀(𝑤)𝐷𝑇(Φ(𝜃))𝜀(𝑤)𝑡Ω
Ω

𝑠. 𝑡: {
1

(Ω)
∫ Φ(θ)tΩ − C𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒≤0Ω

 

                                       (6) 

Whereθthe feedforward is network parameters and 𝑉 is the 

architectural compliance goal function. The relative 

densityΦ in the world of design is denoted by, where 

C𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒  is the proportion of the volume that must conform 

to the design. The finite element framework uses the 

unknown velocity field( ), the pressure (𝜀), and the elastic 

matrix (𝑇) to represent these quantities. 

4.4 The lower limit of stress compliance 

While optimizing for the least conformance with pressure 

limitation issue, mises pressure is always employed to gauge 

local stress and serve as a restriction on the search space.  

Yet, it is numerically costly to restrict local stress. To 

estimate the local stress limitation, a p-norm method is used 

here. Many updated strategies for precise local stress 

regulation have been put forward in recent years. To keep 

things simple, we use a tried-and-true technique to put a cap 

on the local stress created by von Mises. In this approach, 

the constraint is formulated using the p-norm measure PN. 

Thus, the issue presented in Section 3.2 may be restated as: 

{
 
 
 
 

 
 
 
 

𝐹𝑖𝑛𝑑: 𝜃

𝑀𝑖𝑛: 𝑉(𝑤,𝛷) =
1

2
∫𝜀(𝑤)𝐷𝑇(𝛷(𝜃))𝜀(𝑤)𝑡𝛺

𝛺

𝑆. 𝑡:

{
  
 

  
 {

1

(𝛺)
∫𝛷(𝜃)𝑡𝛺 − 𝐶𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒≤0
𝛺

𝜎𝑃𝑁 = (∑(𝑐𝑎𝜎𝑎
𝑐𝑁)𝑏

𝑁

𝑎=1

)

𝑞

𝐵

≤ 𝜎𝑃𝑁̅̅ ̅̅ ̅ ((∑(𝑐𝑎𝜎𝑎
𝑐𝑁)𝑏

𝑁

𝑎=1

)

𝑞

𝐵

− 𝜎𝑃𝑁̅̅ ̅̅ ̅ < 0)

                                                                                                                                                                                      (7)

Where, 𝜎𝑎
𝑐is the mises pressure on a component, 𝑏 is the 𝑏-

norm parameter, 𝜎𝑃𝑁̅̅ ̅̅ ̅ is the 𝑏-norm measure, and 𝜎𝑃𝑁̅̅ ̅̅ ̅ is the 

global stress bound. A solid volume of the element is s. 

The algorithm's performance and accuracy as an estimate 

of the maximum stress values are both affected by the 

number you choose for 𝑏. All pressure numerical 

experiments in this work use 𝑏 = 10. 

4.5 Sensitivity testing for layouts 

The objective's responsiveness to the model parameters, i.e., 

the strengths of the feed-forward network, is required for 

gradient-based optimization. The chain rule will be used to 

calculate the objective stored procedure sensitivity. You 

may calculate the density field sensitivity using the adjoint 

approach. 

𝜕𝑉

𝜕∅
= 𝜆𝐷

𝜕𝑅

𝜕∅
𝑤           (8) 

Where𝜆𝐷  is the constructed stiffness matrix and is the 

conjugate gradient vector obtained from the conjugate 

gradient equation 𝑅 =  − 𝑓. Using the chain rule, we can 

write down how sensitive objective 𝑉is is to changes in 

design variable w. 

𝜕𝑉

𝜕𝑢
=

𝜕𝑉

𝜕∅
.
𝜕∅

𝜕𝑢
           (9) 

for ∅, where 𝑁(𝑀)is an expression of the density field. The 

algorithmic differentiation method used in the free program 

CasADi makes it simple to get the sensitivity of 𝑁(𝑀) about 

the network weights w. In a similar vein, the following 

derivation using the chain rule may be used to do a risk 

assessment of the p-norm stress: 

𝜕𝜎𝑃𝑁

𝜕𝑢
=

𝜕𝜎𝑃𝑁

𝜕∅
.
𝜕∅

𝜕𝑢
                                                  (10) 

Where, one may find the adjoint technique of 

𝜕𝜎𝑃𝑁

𝜕∅
quantitative susceptibility deduction. 
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4.6 Deep reinforcement learning 

The MDP, the central formalism in RL, has been presented, 

and some of the difficulties in the field have been touched 

on. The following discussion will categorize RL 

technologies into their respective groups. Both value-

function-based and policy-search-based techniques may be 

used to address RL issues. The actor-critic method combines 

critical values and strategy search into a single strategy. We 

would then describe these methods, along with some other 

tools, for addressing RL issues. 

4.7 Function of value 

Value-function-based approaches, attempt to calculate the 

monetary benefit (or another measure of value) of being in a 

certain condition. The predicted return from beginning in 

state s and continuing to follow is denoted by the state-value 

function 𝑋𝜋(𝑡). 

𝑋𝜋(𝑡) = 𝔼[𝑄]𝑡, 𝜋]          (11) 

Both the optimum policy𝜋∗and the ideal state-value function 

𝑋∗(𝑠)may be expressed in terms of one another. 

𝑋𝜋(𝑡) = max
𝜋
𝑋𝜋(𝑡) ∀𝑡 𝜖𝑇.         (12) 

Knowledge of 𝑋𝑡(𝑄)the best policy might be retrieved by 

determining the course of action that maximizes the 

function's value at state 𝑡𝑠 among the potential outcomes  

𝔼𝑡𝑠+1~𝜏(𝑡𝑠+1|𝑡𝑠,𝑏)[𝑋
∗(𝑡𝑠+1)].       (13) 

The transitional dynamics T are not accessible in the RL 

setup. As a result, we create a different function referred to 

as the state-action value or quality value 𝑋𝜋(𝑡, ) which is 

similar to 𝑋𝜋, with the exception that 𝑎 is given as the first 

action and is only applied after the subsequent state: 

𝑃𝜋(𝑡, 𝑏) =  𝔼[𝑄]𝑡, 𝑏, 𝜋]          (14) 

By selecting an aggressive at each stage (, 𝑏), one may 

determine the optimum policy given 

𝑃𝜋(𝑡, 𝑏)arg𝑎𝑖𝑛 𝑃𝜋(𝑡, 𝑏). According to this rule, we can also 

determine 𝑋𝜋(𝑡)by maximizing 𝑃𝜋(𝑡, 𝑏):  𝑃𝜋(𝑡, 𝑏) =

𝑚𝑎𝑥𝑏𝑃
𝜋(𝑡, 𝑏). 

 

 

 

4.8 Dynamic programming 

To learn 𝑃𝜋, we make use of the Markov property and 

formulate the variable as a Bellman equation, that has the 

recursive form: 

𝑃𝜋(𝑡𝑠, 𝑏𝑠) = 𝔼𝑡𝑠+1[𝑞𝑠+1 + 𝛾𝑅
𝜋((𝑡𝑠+1, 𝜋)𝑡𝑠+1)]     (15) 

In other words, we may utilize the present values of our 

approximation of 𝑃𝜋 to improve it. This suggests that 𝑃𝜋can 

be improved through bootstrapping. This is the cornerstone 

of the SARSA algorithm and Q-learning. 

𝑃𝜋(𝑡𝑠, 𝑏𝑠) ← 𝑃𝜋(𝑡𝑠, 𝑏𝑠) + 𝛼𝛿,        (16) 

Where𝛼 is the learning rate and 𝛿 = 𝑍 − 𝑃𝜋(𝑡𝑠,  𝑡ℎ𝑒 𝑏𝑎𝑠)is 

of the temporal difference error; Y is the goal in this case, 

much as in a typical regression issue. By employing 

transitions produced by the behavioral policy (the policy 

derived from ), SARSA, an on-policy training algorithm, 

is utilized to enhance the approximation of𝑃𝜋, which has the 

effect of establishing𝑍 = 𝑞𝑠 + 𝛾𝑅
𝜋(𝑡𝑠+1, 𝑏𝑠+1). Q-learning 

is against policy since 𝑅𝜋 is modified by transitioning that is 

not always produced by the derived policy. As an 

alternative, Q-learning employs 𝑍 = 𝑞𝑠 + 𝛾 =

𝑚𝑎𝑥𝑏𝑃
𝜋(𝑡𝑠+1, 𝑏𝑠+1), which closely resembles ∗. 

We employ generalized policy repetition, which comprises 

policy evaluation and enhancement, to determine 𝑃∗ from an 

arbitrary𝑃𝜋. Minimizing TD inaccuracies from the 

trajectory encountered while following the policy is one way 

in which policy assessment helps to enhance the estimation 

of the functional form. By making greedy decisions based 

on the revised functional form, the policy can be made more 

effective as estimation accuracy rises. Generalized policy 

iteration allows these steps to be interleaved, rather than 

performed sequentially to obtain an optimal (as in policy 

iteration), speeding up the process. 

4.9 Sampling 

Instead of utilizing optimization techniques to bootstrapping 

value functions, Monte Carlo approaches use the average 

return from numerous policy rollouts to predict the 

anticipated return from a state. This means that contrary to 

popular belief, pure Carlo techniques are applicable in non-

Markovian settings. Nevertheless, they are limited to serial 

MDPs, since the rollout must end before the return can be 

determined. To get the most out of both approaches, the 
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𝑆𝐶(⋋)algorithm combines TD learning with Monte Carlo 

policy assessment. The 𝑆𝐶(⋋) functions as an interpolation 

between Carlo computation and ramping in same way that 

the present value does.  

Learning the benefit function 𝐵𝜋(𝑡, 𝑏) is a key component 

of another effective value approach. Provides relative values 

and experimental as opposed to creating utter impossibility 

values as𝑃𝜋 , does. Understanding relative values is similar 

to lowering the threshold or median level of a signal; 

intuitively, it is simpler to understand that one course of 

action will have better results than another than to 

understand the exact return from that course of action. Via 

the straightforward equation, 𝐴𝜋 =  𝑄𝜋 −  𝑉 𝜋 reflects a 

relative benefit of actions. It is also closely connected to the 

baseline variability reduction approach used in diffusion 

policy search methods. Several modern DRL algorithms 

have used the concept of advantage updates. 

4.10 Policy search 

The search for the best policy can be done independently of 

any model of the value function. To maximize the 

anticipated return 𝐸[𝑅|𝜃]most people choose a 

parameterized strategy whose parameters may be optimized 

in either a horizontal stripe or horizontal stripe fashion.  Both 

gradient-free and gradient-based techniques have been used 

effectively to train neural network models that encode 

policies. While diffusion optimization has shown promise 

for covering cheap parameter spaces, most DRL techniques 

still favor diffusion training since it is more specimens when 

dealing with policies that have many characteristics. 

4.11 Policy gradients 

An efficient learning indication of how to fine-tune a 

parameterized policy may be obtained from gradients. But 

to calculate the anticipated return, we need to take an 

average across conceivable paths that the present policy 

parameterization may provide. This takes average calls for 

either predetermined (via linearization, for example) or 

simulated annealing (via sampling) approximations. Only in 

a prototype system, where the fundamental changeover 

mechanisms can be modeled, can predictable approaches be 

used. For the most part, model-free RL settings use a Carlo 

calculation to determine the anticipated return. This Carlo 

estimation presents a problem for diffusion learning because 

gradients do not propagate through random specimens of a 

probability function. As a result, we use a scoring function 

or posterior probability estimator (known as the 

REINFORCE rule in RL) as an estimate of the gradient. The 

latter name is evocative, as maximizing the log-likelihood is 

a common method for supervised learning that is used in 

conjunction with the estimator. The log-likelihood of the 

sampled action is increased by the estimator's gradient 

ascent, which is graded by the return. Calculating the 

gradient of an expectancy over a linear function of a random 

vector about parameters may be formalized using the 

REINFORCE rule𝜃. 

∇𝜃𝔼𝑉[𝑒(𝑉; 𝜃)] = 𝔼𝑉[𝑒(𝑉; 𝜃)∇𝜃 log 𝑜 (𝑌)].        (17) 

Because this calculation is based on the actual results of 

trajectories, the resultant gradients are very inconsistent. A 

more manageable variance may be achieved by including 

unbiased estimates with lower levels of background noise. 

The standard approach involves deducting a baseline, which 

implies putting more emphasis on positive updates than 

purely financial ones. The most elementary foundation is the 

average annual return across several events, although there 

are numerous more possibilities. 

4.12 Actor-critic methods 

When value features are combined with explicit 

consideration of the policy, we get actor-critic approaches. 

The "critic" (value function) provides the "actor" (policy) 

with constructive criticism that helps it improve. They 

achieve this by balancing the benefits of reducing the 

variation of policy grades with the drawbacks of introducing 

bias when using value function approaches. 

Policy gradients in actor-critic approaches are derived from 

the value function, just as they are in others' development; 

the key distinction is that actor-critic approaches employ a 

learned value function. As a result, we will go over actor-

critic techniques as a special case of gradient descent 

methods later on. 

5.  Results and discussion 

This section examines the existing methods like MDP (Ran 

& Dong, 2022), VR (Wu, 2022), and AI (Di & Yu, 2021) 

with time consumption, accuracy prediction, precision 

value, and the recall factor by comparing with our 

recommended strategy. Python 3.7 is used to implement the 

models for accurate selections. TensorFlow 2.0.0 is used to 

implement the value neural network. For simulations, we 

employed a GNU/Linux server equipped with a 64-bit Intel 

Xeon Gold CPU executing at 2.10GHz. 

5.1 Computation time 

A computer operation's "computation time," often known as 

its "running time," is the amount of time needed to finish it. 

The quantity of rule implementations will have an impact on 

how long it takes to finish a computation, which may be seen 

as a collection of rule applications. With a logic-gate-based 

quantum computer, the number of unitary transformations is 
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directly proportional to the time required to complete a 

single "quantum parallel" calculation. 

 

Figure 5: The computation time of the proposed and 

existing system 

Figure 5 and Table 3 shows the computation time for 

proposed method. The computation time requires the DRL 

framework to analyze and produce optimal design 

configurations in an optimization technique for graphic 

design. For actual time applicability and easy incorporation 

into a graphic design process, efficient calculation time is 

essential for timely and flexible design optimization. 

Standard methods that include VR and MDP take 91% and 

73% of the time. AI has an 81%-time utilization rate. The 

method that has been proposed requires only 61% of the 

computing time, which is a significant reduction. 

Table 3: Comparison of computation time 

Methods Computation time (%) 

MDP 91 

VR 73 

AI 81 

DRL [Proposed] 61 

 

 

 

 

 

 

 

5.2 Accuracy 

 

Figure 6: Accuracy of proposed and existing method 

The accuracy of the suggested technique is seen in Figure 6. 

It is possible to think of a device's accuracy as how closely 

its estimations of a quantity match the value that matches 

that number. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)/

(𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

                                   (18) 

Accuracy measures how well the model produces designs 

that meet predetermined standards, guaranteeing the 

efficiency of the optimization procedure. The capability of 

model to apply DRL methods to produce attractive and 

functionally successful graphic designs is demonstrated by 

the high metric accuracy obtained. Conventional methods, 

such as VR and MDP, yield 65% and 75% accuracy. 

Accuracy is increased to 85% when AI is used. The proposal 

provides the most effective 95% accuracy rate, 

demonstrating its effectiveness in improved graphic design 

processes. Table 4 displays the accuracy of the suggested 

strategy. 
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Table 4. Comparison of accuracy 

Methods Accuracy (%) 

MDP 75 

VR 65 

AI 85 

DRL [Proposed] 95 

 

5.3 Precision 

Precision or positive predictive value is the percentage of 

pertinent concepts among recovered occurrences. It can 

imply that the standard for quality is accuracy. Precision is 

the extent to which the same results are achieved from the 

same measurements carried out under the same conditions. 

Reproducibility is the variance that happens when the same 

technique is applied over extended times by different 

instruments and operators. 

When every attempt is made to maintain a process, 

repeatability is the variance that occurs when the same 

equipment and operator are used and the same short amount 

of time is given to each repetition. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +

𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                    (19) 

 

 

Figure 7: The precision of the proposed and existing 

method 

The precision for the suggested system is shown in Figure 7. 

The precision is essential for assuring that the algorithm 

navigates the design space efficiently and generates visually 

appealing graphics. It displays the model's ability to 

optimize parameters for design to satisfy predetermined 

standards and make delicate adjustments, which increases 

efficiency in graphic design activities. Using a 98% 

precision rate, the proposed method showed outcomes. 

Compared with various methods, it performed better at 88%, 

75%, and 66% in VR. The research objectives outcomes 

illustrate determining whether the DRL method succeeds in 

relation to obtaining higher precision. In Table 5, the 

suggested approach is shown. 

Table 5: Comparison of precision 

Methods Precision (%) 

MDP 88 

VR 66 

AI 75 

DRL [Proposed] 98 

 

5.4 Recall 

The ability of the model to identify every significant sample 

in a set of data is referred to as recall. According to statistics, 

it is defined as the percentage of the TPs multiplied by the 

sum of TPs and FNs. Utilizing the formula, the recall is 

calculated.  

Recall =
FN

FN+TP
           (20) 

 

Figure 8: Recall of proposed and existing method 

Comparative data for the recall metrics are shown in Figure 

8. The Recall is an important component that ensures the 

models maintain important data and apply it to the design 

process, improving the efficacy and efficiency of the 

optimization process to produce elegant designs. With a 

recall of 77% VR, MDP obtains a recall rate of 66%. AI 

produces an 87% recall rate. The proposed exceeds other 
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methods with a 98% recall rate, demonstrating its 

effectiveness in the specific research environment. Table 6 

depicts the comparison of recall 

Table 6: Comparison of recall 

Methods Recall (%) 

MDP 66 

VR 77 

AI 87 

DRL [Proposed] 98 

 

6   Discussion 

Interpretability and clarification issues with DL (Zhou, Lee, 

Diao, Shi, Balyen, &Peto, et al, (2019)) models can prevent 

them from being used in domains where it is essential for 

explaining the decision-making process. Its application in 

areas with dense datasets is limited as it frequently requires 

substantial volumes of data with labels for efficient training, 

Specific knowledge can fail to identify complex patterns in 

data, which is the foundation of ML (Cioffi, Travaglioni, 

Piscitelli,  Petrillo,& De Felice, et al, (2020)) methods. 

Complex and non-linear interactions can be difficult for the 

models to manage, which could result in inadequate 

performance on assignments where techniques for deep 

learning work efficiently. RL (Wang, Tang, Huang, Chen, 

Zhang, & Huang, (2020)) has the potential to be technically 

expensive and lengthy to train. Limitations include 

exploration-exploitation compromises, scarce reward 

scenarios that can cause RL models to fail and the 

Performance of DDPG (Bouhamed,  Ghazzai,  Besbes, 

&Massoud, (2020)) can be hindered by sensitivity to 

variables and training issues with stability. It could struggle 

with the issue of highly dimensional action spaces. When 

applying DDPG to intricate optimization jobs, it must be 

carefully adjusted and its limits need to be considered 

perspective in various instances. Deep Reinforcement 

Learning (DRL) enables the model to learn specific 

correlations between design elements. It provides numerous 

benefits in graphic design optimization. Its capacity for 

iterative adaptation and optimization improves the 

effectiveness of the method of graphic design by providing 

relevant information and automating complex design 

selections for increased innovation and efficiency. 

7. Conclusion 

To aid in the process of navigating graphic design files, we 

proposed DRL framework. The most advanced DRL 

techniques are often used in artificial settings where the 

distribution of pictures does not correspond to that of natural 

scenes. This is an important step in achieving more lifelike 

environments. Because of the rapid proliferation of 

generative design tools, it is now possible to augment 

traditional shape-finding procedures with technological 

answers. Our findings highlight the potential for using 

topological optimization techniques in the built 

environment. Some key takeaways are as follows:  

(a) As contrasted with the conventional voxel-based 

optimization technique, when a neural network is used to 

model the density fields, the amount of architectural 

parameters is significantly decreased.  

(b) As the topology is represented implicitly, the resulting 

layout does not have a staggered border.  

In the long run, this paper's approach offers a fresh chance 

to combine deep learning with topology optimization. More 

advanced and robust deep-learning models have been 

presented in recent years. This paper's proposed approach is 

a hybrid of deep learning and topology optimization. More 

deep learning models, like CNN and GAN, will be used to 

represent the density field in upcoming research. 
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