
https://doi.org/10.31449/inf.v48i3.5420 Informatica 48 (2024) 399–418 399

Evaluation of Manifold Dual Contouring Algorithms Based on k-d tree and
Octree Data Structures

Thabang Ramaijane, Hlomani Hlomani, Irina Zlotnikova, and Thabiso Maupong
Department of Computing and Informatics, School of Pure and Applied Sciences, Botswana International University of
Science and Technology, Botswana
E-mail: thabang.ramaijane@gmail.com, hlomanihb@biust.ac.bw, zlotnikovai@biust.ac.bw, maupongt@biust.ac.bw

Keywords: dual contouring, isosurface extraction, k-d trees, octrees, adaptive data structures, simplification errors thresh-
olds, quadratic error functions

Received: November 14, 2023

This study evaluated the performance and efficiency of manifold dual contouring algorithms using k-d trees
and octrees, therefore, addressing a critical gap in comparative analysis of these data structures. Despite
the popularity of k-d trees and octrees in isosurface extraction, their performance has not been empirically
compared. This research specifically focuses on visualization quality, performance metrics, and efficiency
across various simplification error thresholds. A comprehensive comparative analysis was conducted to
identify the conditions under which each data structure is most suitable. Both algorithms employed the
manifold vertex clustering scheme for dual contouring of isosurfaces. The methodology involved evaluat-
ing visual output, build time, extraction time, and efficiency based on triangle counts during the simplifi-
cation process. Computational experiments demonstrated that the octree-based algorithm is superior for
rendering large models, producing an average of 20% more visual detail due to a higher triangle count.
In contrast, the k-d tree-based algorithm showed a 40% reduction in build time and a 35% reduction in
extraction time, making it more efficient for processing large implicit models by reducing geometric com-
plexity. These findings provide metrics to assist researchers and practitioners in selecting the most suitable
adaptive data structure for achieving optimal simplification results in manifold dual contouring algorithm
implementations.

Povzetek: Narejena je primerjava algoritmov za 3D obrobe, ki uporabljajo k-d drevesa in okt-drevesa.
Zadnji omogoča več podrobnosti, k-d drevo pa hitrejšo obdelavo in gradnjo.

1 Introduction

An isosurface is a group of contour lines (isolines) in three
dimensions where each of these isolines is made of con-
nected points of a fixed scalar value (an isovalue) [1]. The
purpose of isosurface extraction is to visualize these con-
tour lines in three dimensions (3D) [1]. Applications of 3D
visualization include virtual reality [2], [3], augmented real-
ity [4], and computer-aided architectural design [5]. When
visualising a 3D dataset, an isosurface extracting algorithm
must handle the processing of the geometry of that particu-
lar dataset [6]. Isosurface extraction algorithms are implicit
surface representation techniques [7].
The underlying surface geometry of an object must be

represented as accurately as possible [8]. One of the first
algorithms for the representation of high resolution isosur-
faces, the marching cubes (MC) algorithm by Lorensen and
Cline [9], had demonstrated inconsistencies in the way it
generated the final visual depictions of extracted isosur-
faces. Numerous attempts have been made up to date to
overcome the weaknesses of this foundational algorithm.
Schaefer andWarren [10] proposed amethod for contouring
an implicit function using a grid topologically dual to struc-

tured grids such as octrees named dual marching cubes. By
aligning the vertices of the dual grid with the features of
the implicit function, Schaefer and Warren were able to re-
produce thin features of the extracted surface without ex-
cessive subdivision required by the MC or dual contour-
ing (DC) methods. Lee et al. [11] revised the triangulated
cubes of the MC algorithm in order to regularize the con-
nectivity of the isosurface mesh and, therefore, to maximize
the valence of six vertices. Jin et al. [12] pointed out that
the weaknesses of the MC algorithm came from the use of
surface configurations of cubes, including wrong surface
production and hole generation. In response to that, Jin
et al. proposed an improvement of the MC method by re-
assigning a value of zero to vertices inside the surface and
a value of one to vertices on the surface, and then redefin-
ing 15 typical configurations considered in the marching
cubes method [12]. Strand and Stelldinger [13] modified
the MC algorithm by applying it to the face-centered cu-
bic grid meaning that the local configurations considered
when extracting the local surface patches were not cubic.
Xu et al. [14] advanced the traditional MC algorithm by (1)
replacing the cube edge linear interpolation with the mid-
point selection, (2) using the index of the intersection point

400 Informatica 48 (2024) 399–418 T. Ramaijane et al.

to avoid repeated calculation and (3) contracting edge to re-
duce the number of triangular patches. Vignoles et al. [15]
proposed a simplified MC algorithm in which the surface
consisted of triangles composed from vertices of the regu-
lar 3D grid on which the processed data was defined. Du
et al. [16] made suggestions on enhancement of the origi-
nal MC algorithm focusing mainly on improving efficiency
and topological accuracy of the original algorithm. Greß
and Klein [17] used the k-d trees for the representation of
implicit objects. The k-d tree grid was built on the assump-
tion that an appropriate grid partitioning criterion for subdi-
viding splitting planes was determined. Construction of the
grid took a top-down routine as follows. For every subdivi-
sion step, the active grid edges had to be detected, and their
related intersection information was computed. To achieve
two-manifold and topologically correct representations, the
subdivision scheme maintained a list of faces in the cell.
This allowed faces contained in the list to be clipped against
the splitting plane throughout each subdivision step. These
faces were transmitted to the corresponding sub-cells after
being clipped. After generating each vertex during the clip-
ping process, a record was made of the axes corresponding
to the planes clipped against them. However, like other pre-
vious studies, Greß and Klein [17] did not compare the per-
formance of the k-d tree-based algorithm with octree-based
algorithms. This paper, therefore, discusses the use of the
k-d tree as the adaptive data structure alternative to the oc-
tree for the representation of isosurfaces extracted from im-
plicit models. Although the octree data structures have al-
ready been proposed and implemented for achieving topo-
logical improvements in several reviewed studies, the focus
of this paper is on evaluating the algorithms’ performance
in accelerating isosurface extraction under various topol-
ogy simplification thresholds. The evaluation of both al-
gorithms allowed to determine which data structure would
be most adaptive depending on the values of simplification
error thresholds. The rest of the paper is organized as fol-
lows. Section 2 discusses the fundamental concepts and
mathematical equations necessary for the understanding of
the material presented in this paper. It also provides the
detailed analysis of similar studies. Section 3 discusses the
proposed approach. Section 4 outlines the methodology for
implementation and evaluation of the algorithms. The re-
sults are presented in Section 5. In Section 6, the results are
discussed and compared with similar reviewed studies. Fi-
nally, the conclusions, limitations and future work are con-
sidered in Section 7.

2 Literature review

This section lays a foundation for a better understanding of
the material presented in this paper by discussing the fun-
damental concepts and mathematical equations, as well as
providing an overview of existing similar studies.

2.1 Background to the study

This subsection defines the fundamental concepts, such
as adaptive data structures and quadratic error functions
(QEFs), and discusses their role in isosurface simplification
strategies.

2.1.1 Adaptive data structures

The adaptive data structures discussed throughout the paper
include k-d trees and octrees. These structures simplify iso-
surface extraction on uniform grids, allowing the simplified
grid to adapt to the increasing size of the implicit models be-
ing processed. The adaptive nature of these data structures
ensures that they can efficiently handle large datasets, mak-
ing them suitable for applications requiring dynamic and
scalable isosurface extraction.
A k-d tree is a hierarchical multi-dimensional data struc-

ture used for subdividing volume datasets and accelerating
isosurface extraction [17]. It subdivides the volume one
dimension at a time, resulting in binary partitions at each
stage. This method allows the k-d tree to be applied in any
orientation based on the chosen plane, without a predefined
traversal sequence, making it particularly useful for adap-
tive processing and efficient representation of complex vol-
umetric data. The k-d tree is a binary tree where every node
is a k-dimensional point [18]. The k-d tree performs a bi-
nary partition in one dimension at a time. Figure 1 illus-
trates a typical k-d tree volume subdivision.

Level 1

 2

3

Figure 1: K-d tree volume subdivision

An octree is a hierarchical data structure primarily used
to represent a decomposed three-dimensional volume, with
each node corresponding to a specific sub-volume [19].
Each subdivision produces eight octants, being divided as
long as the root node represents the whole volume (Fig-
ure 2). An octree simultaneously subdivides a volume in
three dimensions, unlike the k-d tree which performs a bi-
nary partition in one dimension at a time. This data struc-
ture is typically employed in isosurface extraction appli-
cations to partition uniform and rectilinear grids into sub-
regions, with each leaf node representing a single grid cube.
The adaptive nature of the octree allows it to handle large
datasets efficiently, as demonstrated by Ju et al.[20].

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 401

Level 1 2 3

Figure 2: Octree volume subdivision - Levels 1 to 3

2.1.2 Isosurface simplification strategies for adaptive
data structures

Simplifying isosurfaces for topologically correct surface
representations of volumetric or implicit datasets can be ef-
fectively and efficiently achieved using adaptive data struc-
tures (i.e., k-d trees and octrees). However, the approaches
can vary between different implementations.
The three approaches considered in this subsection in-

clude (1) error-constrained k-d tree grid simplification, (2)
octree-based simplification using QEFs, and (3) octree-
based simplification through manifold vertex clustering.
The error-constrained k-d tree grid simplification (i.e.,

the simplification of the k-d tree via error metrics) is ini-
tiated by successively removing minimal partitioning faces
from the grid. The simplification process is terminated if
the computed error exceeds a user-defined threshold. The
intersection points and normals for the k-d tree’s working
grid edges are represented by a set of planes, determining
the primitive shape representing the isosurface of the ren-
dered object [10].
The octree simplification using QEFs is a geometry sim-

plification scheme introduced as part of the standard dual
contouring algorithm. TheQEF for each corresponding leaf
is computed as given by Equation (1) (Ju et al. [20]):

E[x] =
∑
i

(ni · (x− pi))
2, (1)

where ni and pi refer to the resulting intersections (in-
cluding unit normals) between the contour and edges of the
cube. The QEFs are computed at the interior nodes of the
octree by combining these QEFs with their corresponding
leaves. Nodes whose QEFs have a residual smaller than a
given threshold are collapsed into leaves, thereby simplify-
ing the octree.
The octree-based simplification through manifold vertex

clustering involves constructing a vertex tree for vertices at
the finest level of the octree and determining the QEF for
each clustered vertex. To simplify the octree, only vertices
topologically related to the surface are clustered together.
Each clustered vertex must satisfy an additional topology
criterion to ensure it represents a simplified contour that is
two-manifold, referred to as the manifold criterion [21]:

X(Sv) = V (Sv)− E(Sv) + F (Sv), (2)

whereX(Sv) is the Euler characteristic, V (Sv) is the to-
tal number of vertices, E(Sv) is the total number of edges,
and F (Sv) is the total number of faces.

2.1.3 Metrics used in topology simplification schemes

Dual contouring based simplification of isosurfaces in-
volves the representation and minimization of a relevant
QEF to achieve accurate results. Equation (1) in 2.1.2 is
constructed through a collection of intersection points pi
and their normals ni. The function E[x] can be considered
as the inner product (Ax−b)T (Ax−b), whereA is a matrix
whose rows are the normals ni, and b is a vector resulting
from ni · pi. The QEF can be expanded as shown in Equa-
tion (3):

E[x] = xTATAx− 2xTAT b+ bT b, (3)

where the matrix ATA is a symmetric 3 × 3 matrix, AT b
represents a three-length column vector, and bT b is a scalar.
Consequently, only the matrices AT b, ATA, and bT b

need to be stored in 10 floats for optimization, rather than
storing the matrices A and b. The minimization value x̂
required for E[x] can be obtained by solving the normal
equation (4):

ATAx̂ = AT b. (4)

Another application of QEFs in dual contouring algo-
rithms is for computing error metrics. However, it differs
from the method used for k-d tree error-constrained simpli-
fication of isosurfaces. Although both approaches calculate
simplification errors through matrix manipulation of inter-
section points and Euclidean distances, the computation of
the simplification error E in the k-d tree method is based
on the position of a set of points relative to the simplified
object, rather than on a minimization value [22]. The er-
ror between the simplified and original representation can
be computed by taking the least Euclidean lengths dS(v)
between the set of points v ∈ Pon on the surface represen-
tation of the simplified isosurface, and the lengths dI(Pin)
and dO(Pout) from points pin ∈ Pin and pout ∈ Pout on the
exit of the inner and outer of the simplified object. These er-
ror metrics can then be categorized as in-metric, on-metric,
and out-metric. The on-metric error Eon is defined from
the distances dS(v) and measures the distance between the
original and simplified isosurface representations. The in-
metric Ein and out-metric Eout errors are established from
the relevant distances dI(Pin) and dO(Pout), facilitating the
computation of the error through topological modifications.
Thesemetrics can be defined for user-specified error thresh-
olds ϵon, ϵin, and ϵout as

Eon ≤ ϵon, Ein ≤ ϵin, and Eout ≤ ϵout. (5)

Intersection points and normals for the k-d tree’s work-
ing grid edges can be represented by a set of planes S, de-
termining the primitive shape representing the isosurface.
To compute the distance of a point relative to the isosur-
face, the corresponding planes closest to the polygon must

402 Informatica 48 (2024) 399–418 T. Ramaijane et al.

be identified at each completion of the isosurface extrac-
tion.
Suppose a plane s ∈ S consists of a set of points Ps

nearest and sampled from the associated polygon Pon. The
on-metric is defined as

Eon = max
s∈S

1

|Ps|
∑
v∈Ps

dS(v)
2, (6)

where dS(v) represents the distance of a point v from
the plane s. Let I denote the exit of the inside of an entity
according to the k-d tree grid representation, with O as the
exit of the object’s exterior. The in-metric and out-metric
can be expressed as follows:

Ein = max
pin∈Pin

dI(pin), (7)

Eout = max
pout∈Pout

dO(pout). (8)

Given that the length dI from pin to the exit of the inside
of the object I correlates with the distance to the edge of the
surface S when pin and zero otherwise, the equations can be
rewritten as follows:

Ein = max
pin∈IPin

dS(pin), (9)

Eout = max
pout∈OPout

dS(pout). (10)

In a manner similar to the minimization and represen-
tation of QEF, the exact evaluation of finding the value of
the on-metric depends on finding the summation of squared
distances E(n, d) among points v1, . . . , vk ∈ Pon and the
plane s ∈ S as defined by a normal n along with a scalar
d. This can be performed with an equation similar to the
general QEF equation (1):

E(n, d) =
1

k

k∑
i=1

(nT vi + d)2. (11)

By considering the following coefficients,

A =

k∑
i=1

viv
T
i , b =

k∑
i=1

vi, c = k, (12)

where A represents a symmetric 3 × 3 matrix, b is a 3-
vector, and c is a scalar, Equation (11) can be further ex-
pressed as:

E(n, d) =
1

k
(nTAn− 2dnT b+ d2c). (13)

Given P = (A, b, c), which is referred to as the dual
quadric, and assuming the plane passes through the mean
of points vi, then the quantity is d = −nT b

c . The corre-
sponding normal n is associated with the eigenvector of the
covariance matrix Z made of points vi, which corresponds
with the least eigenvalue. According to the dual quadric, Z
can be computed as follows:

Z =
1

k − 1

(
A− bbT

c

)
. (14)

2.2 Related work
Isosurface extraction refers to a broad range of techniques
that can be used in the visualization of three-dimensional
scalar data [23]. The literature review provides an anal-
ysis of two of the most common techniques, namely the
marching cubes and dual contouring algorithms, and their
combination, the dual marching cubes algorithm. The re-
view also discusses the various motivations behind further
development of each technique.

2.2.1 The marching cubes algorithm and its
modifications

The foundational marching cubes (MC) algorithm of iso-
surface extraction for scientific visualization of high reso-
lution 3D volumetric data was developed by Lorensen and
Cline in 1987 [9]. The MC algorithm took as input a uni-
form grid whose vertices were samples of the function f(x,
y, z) and extracted a surface as the zero-contour. For each
cube in the grid, the MC algorithm examined the values at
the eight corners of the cube and determined the intersec-
tion of the surface with the edges of the cube. A look-up
table indexed by the sign configuration at the eight corners
that yielded the topology of the surface in side of that cube
was provided. Processing each cube in the grid resulted in
the complete surface. There have been numerous modifi-
cations of this reference algorithm aiming at its further im-
provement and/or simplification. An extensive survey of
the marching cubes algorithms looking at the evolution of
the standard MC algorithm from 1987 to 2006 can be found
in [24].
Rajon and Bolch [25] considered the original MC algo-

rithm and several of its modifications available at the time
of their research, as well as the issues identified in each re-
viewed MC-based alrorithm. Their specific interest was to
generate isosurfaces delineating tissue interfaces from the
gray-level medical (trabecular bone) images. Rajon and
Bolch indicated that the rectangular shape of image vox-
els generated voxel effects that altered the outcome of iso-
surface generation. To minimize voxel effects, Rajon and
Bolch proposed an adaptation of theMC algorithm inwhich
a trilinear interpolation of the gray levels was used to gen-
erate a hyperboloid surface. According to Rajon and Bolch,
the adapted technique was capable of solving the ambigu-
ity problem of the original MC algorithm. It also allowed to
reduce the data size inherent to the triangulated surface and
provided a simplified algorithm to accurately measure dis-
tances within the image. The trilinear interpolation method
removed voxel effects and produced chord-length distribu-
tions across image regions.
Maple [26] suggested an application of the original

MC algorithm and its two-dimensional variation (march-
ing squares algorithm) for geometric design and space plan-

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 403

ning. The proposed addition to the MC algorithm allowed
to approximate the area or volume of the object. This
method could also be used in estimation of the area encap-
sulated between two points on the surface and a line or the
volume encapsulated between three points on the surface
and a plane.
Research by Andújar et al. [27] focused on improving

the efficiency of the MC algorithm. The proposed solution
was to select one valid topology that would minimize a de-
sired topological or combinatorial measures (i.e., the total
triangle count, the number of connected shells, or the total
genus). Since the measures to be minimized in this research
were not a�ected by the placement of the vertices of the
isosurface mesh, Andújar et al. suggested to position each
vertex (i.e., an angular point) of the isosurface at the mid-
points of the lattice edges joining inside and outside sam-
ples. Moving vertices to more appropriate locations along
their lattice edges and, therefore, preserving the topological
and combinatorial properties of the isosurface led to a more
efficient algorithm.
Lee et al. [11] proposed the modified marching cubes

(MMC) algorithm by reconsidering the triangulated cubes
of the original MC algorithm. The MMC algorithm al-
lowed for regularization of the connectivity of the isosur-
face mesh. Consequently, a maximum valence of six ver-
tices was achieved in the modified algorithm. The MMC
algorithm demonstrated an improvement of the mesh topol-
ogy and a significant reduction in the connectivity coding
cost. The algorithm utilized an approach whereby a sim-
ple remark was based on how the isosurface intersected its
associated height voxel cube.
Almost all methods based on MC utilize a look-up ta-

ble to triangulate the isosurface. Renbo et al. [28] pre-
sented a variation of the MC algorithm that did not use a
conventional look-up table. Instead, it relied on an auto-
mated triangulation strategy based on critical points lying
on the isosurface in the interior of the cube. These critical
points were classified as face shoulder points, body shoul-
der points, and inflection points. According to Renbo et al.,
for any case of cube configuration, the improved algorithm
was capable of generating a topologically accurate approx-
imation to the isosurface of the trilinear interpolant within
the cube. The accuracy of the reconstruction process, as
compared to the original MC algorithm, was improved us-
ing some extra points located on the characteristic positions
of isosurface.
Jin et al. [12] identified disadvantages in the original

MC algorithm that came from the use of surface configu-
rations of cubes leading to the wrong surface production
and hole generation. In response to these weaknesses, the
authors proposed an improvement of the MCmethod by re-
assigning zero to vertices in the surface and one to vertices
on the surface, and then redefining 15 typical configura-
tions considered in the marching cubes method. They re-
assigned zero to vertices in the surface and one to vertices
on the surface, and then improved the marching cubes algo-
rithm by redefining the configurations for the fifteen cases

of configurations considered in the original marching cubes
method. To evaluate the performance of the proposed im-
proved marching cubes method, Jin et al. reconstructed the
surface for MRI volume data using the proposed method
along with the original MC method to demonstrate im-
provement.
Strand and Stelldinger [13] presented three adaptations

of the original MC algorithm for preserving the topology of
the marching cube producing different local configurations
on a face-centered cubic (FCC) grid. The first adaptation
presented a combination of the three partitioning schemes
employed in earlier MC algorithms (i.e., a Delaunay mesh
partitioning [29]). Another adaptation involved tetrahedra
mesh partitioning of the FCC grid and possible local config-
urations resulting in a least simplified instance of topology
preserved MC. The third adaptation used rhombic dodeca-
hedra partitioning and demonstrated the best simplification
results out of three implementations.
Cui and Liu [30] created the simplified marching cubes

(SpMC) algorithm as a modification of the standard MC al-
gorithm. They suggested a change in the position of the iso-
surface extracted vertex at an interpolation point on a cube
edge which corresponded to the cube vertex. The modified
algorithm required fewer triangulation cases and, in most
cases, fewer extracted triangles than the original MC algo-
rithm. The SpMC algorithm did not need interpolation cal-
culations of vertex positions and normal vectors required in
the original MC algorithm.
Research by Etiene et al. [31] did not aim at improv-

ing the original MC algorithm or any of its variations. In-
stead, they presented a tool for selection of the most appro-
priate algorithm among MC variations. Etiene et al. pre-
sented techniques for assessment of the behavior of iso-
surface extraction codes and verification of various visu-
alization algorithms. These techniques were used to dis-
tinguish whether anomalies in isosurface features could be
attributed to the underlying physical process or to artifacts
from the extraction process. Etiene et al. argued the neces-
sity of ”verifiable visualization” - subjecting visualization
algorithms (includingMC-based ones) to the same verifica-
tion process as in any other academic discipline. The focus
of the verification was on topological properties of isosur-
face extraction algorithms. Etiene et al. derived formulas
for the expected order of accuracy (or convergence rate) of
several isosurface features, and compared them to experi-
mentally observed results in the selected codes. According
to Etiene et al., results of the verification of various algo-
rithms (i.e., the MC algorithm and its variants) could assist
with the selection of the appropriate isosurface extraction
technique and visualization algorithm.
Xu et al. [14] suggested three enhancements of the orig-

inal MC algorithm. The first enhancement was to replace
the cube edge linear interpolation with a midpoint selection
scheme. The triangular patches generated in this way led to
a smoother isosurface in local area thus contributing to the
mesh simplification. The second improvement was the use
of a three-dimensional array to store the coordinates of the

404 Informatica 48 (2024) 399–418 T. Ramaijane et al.

points of intersection between the cube edge and the iso-
surface. This helped to avoid repeated calculation of these
points. The third enhancement was to employ the edge con-
traction method to reduce the number of triangular patches.
When two vertices satisfied the stated constraint conditions,
the two vertices would merge into one, and the edge con-
sisting of the two vertices would contract into a point. If
the conditions were not met, the triangle would be kept.
Vignoles et al. [15] suggested a triangulation method

leading to the development of the simplified marching
cubes (SMC) algorithm. The SMC algorithm relied on a
mesh built with vertices linked together into triangles of a
cuberille grid. Triangles were composed of vertices of the
cuberille grid on which the processed data is defined. In
the cuberille model, an object is typically represented as a
collection of cube shaped voxels [32]. Meshes were man-
ifold, i.e., topologically consistent and without holes. The
accuracy of the obtained meshes was reported to be lower
than in the original MC algorithm, but higher than in the
cuberille approximation. The algorithm produced a config-
uration with a reduced number of triangles as a result of a
reduction in the number of vertex points.
Themodification by Du et al. [16] focusedmainly on im-

proving efficiency and topological accuracy of the original
algorithm. To address the issue of efficiency, they altered
the way in which an isosurface intersected the hexahedral
voxels. The isosurface usually only intersects some vox-
els. The standard MC algorithm checked and computed all
hexahedron voxels in the three dimensional data area. This
operation required significant time and resulted in the low
efficiency. In the proposed solution, if the hexahedron vox-
els intersect with the isosurface, the isosurface would be in
the continuity along the six surfaces of the hexahedron. If
a cube intersects with the isosurface, there are intersection
lines on some surfaces of the six surfaces on the cube. The
surfaces of the adjacent cube (front, back, upper, lower, left
and right) would be extended according to a certain order.
Du et al. proved that 90% of the isosurfaces were composed
of these six cases. It helped to significantly reduce the time
and, therefore, improve efficiency. The issue of topological
accuracy was addressed in the following way. In the orig-
inal MC algorithm, the nodal between the isosurfaces and
the voxel boundary was computed on the assumption that
the function value changed linearly along the voxel bound-
ary. When the density is high in the three dimensional dis-
crete data area, i.e., when the voxels are very small, this as-
sumption is true. However, if the voxels are large in sparse
data area then the isosurfaces could not be accurately ob-
tain. Therefore, the recommendation was to use high data
field density and small voxels, so the model would be re-
constructed in the high accuracy and exact structure.
Custodio et al. [33] developed the corrected marching

cubes 33 (C-MC33) algorithm addressing topological is-
sues of the marching cubes 33 algorithm (MC33). The orig-
inal marching cubes 33 algorithm was, in its turn, a mod-
ification of the classical MC algorithm proposed by Tch-
erniaev [34] and further extended by Lewiner et al. [35].

The MC33 algorithm was one of the first modifications of
the MC algorithms aiming to preserve the topology of the
trilinear interpolant. The main contribution of Tcherniaev
was that the original MC triangulation table was extended
to 33 cases – hence, the name of the algorithm. Custodio
et al. found several issues in the MC33 algorithm by Tch-
erniaev and its later extension by Lewiner et al. The iden-
tified issues included (1) disambiguation in Cases 10, 12
and 13.5 of the 33 cases considered by Tcherniaev [34], (2)
non-manifold surfaces [34], and (3) failure to compute cut
plane heights [35]. Custodio et al. presented solutions for
the identified issues and implemented them into C-MC33,
a more topologically correct version of MC33 [33].
The focus of the study by Chen and Jin [36] was on uti-

lization of a graphics processing unit (GPU) for parallel
optimization of polygonized isosurfaces in the MC algo-
rithm. Chen and Jin introduced a GPU-based approach to
polygonize and optimize isosurface meshes for implicit sur-
faces. Specifically, Chen and Jin designed schemes to ex-
ploit the parallel features of the GPU hardware by optimis-
ing both the geometry (vertex position, vertex distribution,
triangle shape, and triangle normal) and the topology (con-
nectivity) aspects of a mesh. According to the authors, this
method demonstrated improvement on the resultant mesh
quality and acceleration of the isosurface extraction process
as compared with CPU-based approach.
Athawale et al. [37] did not propose a modification of

the MC algorithm but investigated the impact of data un-
certainty on topology and geometry extraction in MC algo-
rithms. They proposed an edge-crossing probability based
approach to predict underlying isosurface topology for un-
certain data. Athawale et al. pointed out that data uncer-
tainty, characterized by probability distributions, could be
propagated through the isosurface extraction process. They
derived a probabilistic version of the midpoint decider that,
according to the obtained results, resolved ambiguities that
arised in identifying topological configurations. Athawale
et al. designed a probabilistic techniques for handling un-
certainty in cell configurations for isosurface topology eter-
mination. They proposed vertex-based classification and
edge-based classification methods to classify vertex signs.
The obtained results demonstrated the advantage of non-
local statistics approach for characterising data uncertainty
over locally estimated parametric and non-parametric den-
sities.
Most of the modified MC algorithms used a single

3D scalar field for rendering isosurfaces but did not take
into account the characteristics of the scalar field itself.
Ronghuan et al. [38] proposed a isosurface extraction
method based on multi-resolution scalar field construction
and seamless intersecting surface. Research by Ronghuan
et al. aimed at improving the efficiency of isosurface ex-
traction and rendering by reducing the isosurface extraction
data while maintaining the effect of isosurface rendering.
The multi-resolution scalar field was constructed to address
the problems of ambiguity and gaps generated between dif-
ferent (low and high) resolution scalar fields of isosurfaces.

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 405

A splicing of contours between scalar fields with different
resolutions was performed in order to remove the ambigu-
ities and gaps. Thus, the contours of the high-resolution
scalar field were kept uniform, and the extraction of low-
resolution scalar fields was undertaken with unique trian-
gular patches.

2.2.2 The dual contouring algorithm and its
modifications

Dual contouring (DC) was first proposed by Ju et al. in
2002 [20]. Dual contouring is a feature-preserving isosur-
facing method that extracts crack-free surfaces from both
uniform and adaptive octree grids [20]. Dual contouring
aims at reconstructing even sharp features of an object with
the help of the gradient of the scalar field. Dual contour-
ing requires that a scalar value and a gradient vector be as-
signed to each vertex of the octants. For this reason, this
algorithm cannot be used for volume fraction data where
only a scalar value is assigned to each octant. Dual contour-
ing is a method used for extracting the surface boundary of
an implicit volume. The method is dual in the sense that
vertices generated by DC are topologically dual to faces in
the MC algorithm. In dual contouring, a uniform grid is
superimposed on the implicit volume. The grid cubes are
represented as nodes in an octree data structure. The advan-
tage of DC is that it can reproduce sharp features by insert-
ing vertices anywhere inside the grid cube, as opposed to
the marching cubes (MC) algorithm that can insert vertices
only on the grid edges.
Greß and Klein[17] proposed the utilization of a k-d tree-

based hierarchy for an implicit object representation. They
asserted that the k-d tree-based hierarchy was superior to
the octree in terms of adapting to the object surface. Greß
and Klein obtained more compact implicit representations
especially in case of thin object structures. They described
a new isosurface extraction algorithm based on k-d-trees
instead of octrees in the original dual contouring algorithm
by Ju et al. [20]. The process resulted in generation of two-
manifold meshes even for k-d trees with cells containing
multiple surface components. In addition, a simplification
framework was created for the surfaces represented by the
k-d tree based on quadric error metrics. The framework
allowed controlled topological simplification of the object.
Ju et al. developed a method for contouring a signed grid

whose edges were tagged by Hermite data (i.e., exact inter-
section points and normals) [20]. This method did not re-
quire to explicitly identify and process features as in previ-
ous Hermite contouring methods. Using a numerically sta-
ble representation for QEFs, Ju et al. developed an octree-
based contouringmethod. TheDCmethod imposed no con-
straints on the octree and did not require crack patching.The
important feature of the original DC algorithm by Ju et al.
is that it adopted an octree as the data structure to adaptively
represent extracted isosurfaces.
The original DC algorithm over the years underwent var-

ious modifications aiming to improve its performance. For

example, Zhang et al. proposed a modified dual contouring
algorithmDCwith topology-preserving simplification [39].
The aim of the suggested modification was to preserve the
disconnected surface components in cells during isosurface
simplification. Zhang et al. represented isosurface com-
ponents in a form of enhanced cells. In an enhanced cell,
each surface component was represented by a vertex and
its connectivity information. A topology-preserving vertex
clustering algorithm was applied to build a vertex octree.
An enhanced dual contouring algorithm was employed to
extract error-bounded multi-resolution isosurfaces from the
vertex octree while preserving the finest resolution iso-
surface topology. A connectivity-guided vertex cluster-
ing algorithm was used to simplify the isosurface compo-
nents. After building a hierarchically clustered vertex oc-
tree, topology-preserved isosurfaces could be extracted un-
der various error bounds by the enhanced dual contouring
algorithm. Dual contouring with topology-preserving sim-
plification using enhanced cell representation.
Schaefer et al. [40] modified their original DC algorithm

in order to guarantee that the mesh generated was mani-
fold even under adaptive simplification. They extended the
original DC algorithm by complementing it with an octree-
based topology-preserving vertex-clustering algorithm for
adaptive contouring. The contoured surface generated by
the extended method contained only manifold vertices and
edges, preserved sharp features, and possessed better adap-
tivity than the original algorithm.
Zhang and Qian [41] developed a modification of the

octree-based dual contouring (DC) method to construct sur-
face and volumetric meshes for complicated domains. Af-
ter considering all possible topology configurations, they
developed an extension of the standard DC algorithm
which, according to them, guaranteed the correct topology.
The process of constructing surface and volumetric meshes
included the following steps. First, one base mesh was gen-
erated using the original DC method. Then all the octree
leaf cells were considered and categorized into 31 topology
groups. In order to discriminate between these cells, the
values of their face and body saddle points were computed
based on a trilinear representation inside the cells. Then
Zhang and Qian modified the base mesh and introduced
more minimizer points within the same cell. With these
minimizer points the mesh connectivities were updated to
preserve the correct topology. This method was further ex-
tended to 3D tetrahedral mesh generation via an advanc-
ing front technique. A Laplacian smoothing technique was
applied to improve the mesh quality; for tetrahedral mesh
a combination of edge-contraction, smoothing and opti-
mization was also applied. In a more recent work, Liang
and Zhang [42] extended initial research by introducing the
modification of the DC algorithm for adaptive triangular
or tetrahedral mesh generation to guarantee a better angle
range. The algorithm was based on a quadtree or octree
structure, and could generate interior and exterior meshes
with conformal boundary. The results demonstrated that
the improved octree-based dual contouring method was ca-

406 Informatica 48 (2024) 399–418 T. Ramaijane et al.

pable of generating guaranteed-quality meshes.
Peixoto and de Moura [43] complemented the origi-

nal DC algorithm with two discretization methods – the
non-compact dual simplification (NDS) and the sewing oc-
tree. These discretization methods were developed to op-
erate on polygonal surfaces specifically generated by the
octree-based adaptive dual contouring algorithm. The NDS
method focused on preserving the simplified topology of
non-compact surfaces. However, this method was also ap-
plicable to compact surfaces if their polygonalization re-
gions did not have any regions of non-compact surfaces.
The sewing octree scheme provided a way of combining
two or more octrees that shared faces or edges and con-
tained portions of the surface polygonalized with dual con-
touring. These methods could be employed either indepen-
dently or coupled by (1) dividing the original cube in two
or more cubes, (2) carrying out the polygonalization, (3)
simplifying these regions with NDS, if necessary, and (4)
glueing the resulting surfaces with the sewing octree. This
procedure, as authors stated, guaranteed that the resulting
surface would have the same topology as the original sur-
face.
Rashid et al. [44] suggested an improvement of the origi-

nal DCmethod to producewatertight and two-manifold sur-
face meshes. They observed that the original DC method
produced only one vertex for each grid cube and, there-
fore, was unable to generate watertight and non-manifold
meshes. The solution was to decompose an ambiguous grid
cube into a maximum of 12 tetrahedral cells. In addition to
that, Rashid et al. also introduced the polygon generation
rules. The improved algorithm resulted in the production
of watertight and two-manifold surface meshes.
Varadhan et al. [45] presented two algorithms for ac-

curate polygonization of implicit surfaces from volumet-
ric data, namely, feature-sensitive adaptive subdivision and
isosurface reconstruction. Isosurface reconstruction used
directed distances, i.e., distance along a direction, to per-
form an exact edge intersection test. This edge intersec-
tion test was used to detect intersections of the edge with
a surface. This test was combined with the original dual
contouring algorithm to obtain an improved reconstruction
algorithm which Varadhan et al. called extended dual con-
touring. It was capable of reconstructing thin features while
avoiding creation of additional handles. The algorithm tool
into account the characteristics of the grid and considered
complex edges. It enumerated all the intersections along the
edges, separated them into components and reconstructed
the isosurface locally within each cell.

2.2.3 Dual marching cubes

Dual marching cubes (DMC) is a combination of the MC
and DC methods, and can be considered as a modification
of both. However, due to its significant impact on the visu-
alization discipline, it is considered separately from other
MC and DC modifications. Schaefer and Warren [10] pre-
sented a method for contouring an implicit function using

a grid topologically dual to structured grids such as oc-
trees. First, this algorithm computed an octree from the
input scalar field and then generated an appropriate dual
grid based on the scalar field. After the generation of the
dual grid, mesh vertices are computed in the same manner
as in the original MC algorithm. Because the dual march-
ing cubes algorithm extracted a surface from a grid struc-
ture whose cells were assigned values, it was applicable to
volume fraction data on an octree. By aligning the vertices
of the dual grid with the features of the implicit function,
the proposed algorithm was able to reproduce thin features
of the extracted surface without the excessive sub-division
required by the original MC and DC methods. The DMC
method led to a crack-free, adaptive polygonalization of the
surface that reproduced sharp features.
However, one of the main issues with the DMC method

by Schaefer and Warren was related to the topology of the
extracted surfaces. A data structure other than the uniform
grids had to be employed for efficient and accurate surface
representations of the generated implicit models. The uni-
form grids could not provide grid sizes with enough space
for extracting implicit models. Another limitation of the
DMC method is the lack of sharp features from the envi-
ronments generated by the previous implementations of the
MC algorithms. This problem was attributed to improper
contouring as large flat regions would often get tiled with
small polygons resulting into the generated meshes.
In the same year, but a few months later than Schae-

fer and Warren [10], Nielson [46] proposed a similar algo-
rithm coincidentally named dual marching cubes. The dual
marching cubes algorithm presented by Nielson was, how-
ever, a different strategy to reconstruct an isosurface from
the volume data. The intersection of the isosurface with
the cell was approximated by a polygon on the cell faces.
Nielson’s work included the definition and computational
algorithms for a new class of surfaces which were dual to
the isosurface produced by the MC algorithm. These iso-
surfaces had the same separating properties as the MC sur-
faces but were comprised of quad patches eliminating the
common negative aspect of poorly shaped triangles of the
MC isosurfaces. Based upon the concept of the dual op-
erator, Nielson proposed an iterative scheme for generat-
ing smooth separating surfaces for binary, enumerated vol-
umes often produced by segmentation algorithms. Impor-
tantly, the DMC method by Nielson was not based on QEF
or octrees. The primary distinction between the DMC algo-
rithm by Schaefer and Warren [10] and the one by Nielson
[46] lied in how the extracted vertex locations were deter-
mined. Schaefer and Warren defined the vertex locations
as the minimizer of a QEF, whereas Nielson specified them
based on a geometric function of the primal mesh geometry,
such as the face centroid.
A series of further modifications of the two original

DMC methods were carried out over the years. The DMC
algorithm by Schaefer and Warren was modified by Kim et
al. [47] by introducing an interpolation scheme on the oc-
tree volume fraction data. The algorithm was similar to the

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 407

original dual marching cubes except for the computation of
the mesh vertex. The mesh vertices were linked together
to create the surface mesh. An approximation based on the
shape of the octants of a sphere was proposed to achieve an
accurate vertex computation of the octree.
Greß and Klein [17] used a different data structure to

represent implicit objects – the k-d tree. The k-d tree grid
was built on the assumption that an appropriate grid par-
titioning criterion for subdividing splitting planes was de-
termined. Construction of the grid took a top-down rou-
tine as follows. For every subdivision step, the active grid
edges had to be detected and their related intersection infor-
mation was computed. However, to achieve two-manifold
and topologically correct representations, the subdivision
scheme maintained a list of faces in the cell. This allowed
faces contained in the list to be clipped against the split-
ting plane throughout each subdivision step, and these faces
were handed over to the corresponding sub-cells after be-
ing clipped. After generating each vertex during the clip-
ping process, a record was made of the axes corresponding
to the planes clipped against them. Even though the k-d
tree was selected in [17] to efficiently replace the octree,
the study did not compare the efficiency of these structures
across various simplification error thresholds. This gap in
comparison motivated the work presented in this paper.
Grosso and Zint [48] suggested a modification of the

Nielson’s DMC algorithm. The proposed method aimed
at reconstructing surfaces from volume data using a dual
marching cubes approach without look-up tables (similar
to the Nielson’s method). The method generated quad-only
meshes which were consistent across cell borders, i.e., they
were manifold and watertight. Vertices were positioned ex-
actly on the reconstructed surface leading to high accuracy.
A half-edge data structure was used for storing the meshes
for further processing. The method processed elements in
parallel and, therefore, ran efficiently on GPU. Due to the
transition between layers in volume data, meshes had nu-
merous vertices with valence of three. Grosso and Zint
used simplification patterns for eliminating quads contain-
ing these vertices reducing the number of elements and in-
creasing quality.
He et al. [49] considered both DMC algorithms but opted

for modification of Nielson’s DMC algorithm by adding
degrees of freedom to flexibly position each extracted ver-
tex within its dual cell. This work proposed gradient-based
mesh optimization of 3D surface mesh by representing it as
the isosurface of a scalar field. According to He et al., the
existing implementations were designed to extract meshes
from fixed, known fields, and in the optimization setting;
therefore, they lacked the degrees of freedom to represent
high-quality feature-preserving meshes, or demonstrated
numerical instabilities. He at al. proposed an isosurface
representation aiming at optimization of an unknown mesh
with respect to geometric, visual, or even physical objec-
tives. The authors introduced additional parameters into
the representation allowing for local adjustments to the ex-
tracted mesh geometry and connectivity. These parame-

ters were updated along with the underlying scalar field
via automatic differentiation when optimising for a down-
stream task. The extraction scheme presented extensions to
optionally generate tetrahedral and hierarchically-adaptive
meshes.

2.3 Literature review summary

A critical review of the marching cubes, dual contouring
and dualmarching cubes algorithms and their modifications
prepared us to the implementation of an approach for eval-
uating the efficiency of the k-d trees and octrees in the sim-
plification of isosurfaces in a dual contouring algorithm for
a specific or given error. The problem addressed in this re-
search is the lack of comparative tools for the developers
to guide the selection of adaptive data structures (i.e., k-d
trees and octrees) during implementations.
Table 1 and Table 2 presents a summary of the key find-

ings of the reviewed literature given in a chronological or-
der.

3 Proposed approach to
implementation of the two
algorithms

The k-d tree- and octree-based manifold dual contouring al-
gorithms for isosurface extraction were implemented with
the objective of comparing their efficiency. The imple-
mentation of both algorithms was performed in two phases:
construction of the underlying rectilinear grid (Phase 1)
and isosurface extraction of implicit models through error-
controlled simplification (Phase 2). Within each phase
there were several sub-phases. The construction of the un-
derlying rectilinear grid included the following sub-phases:
formulation of QEFs (Sub-phase 1.1), generation of the
scalar field (Sub-phase 1.2), composition of vertex data
with Hermite data (Sub-phase 1.3), preparation of the man-
ifold criterion topology preserving scheme for contouring
the scalar field (Sub-phase 1.4), and construction of the
general mesh in accordance with the topology preserv-
ing scheme (Sub-phase 1.5). The isosurface extraction of
implicit models through error-controlled simplification in-
cluded the following sub-phases: generation of the scalar
field of the implicit surface representation (Sub-phase 2.1),
preparation of the computation of topology preserving ver-
tex clustering using QEFs (Sub-phase 2.2), and QEF con-
trolled isosurface simplification on implicit k-d tree- or
octree-based adaptive grids (Sub-phase 2.3). A detailed
flowchart representing each phase and sub-phase in the im-
plementation of the k-d tree algorithm is depicted in Figure
3.
The flowchart for the original octree algorithm is not in-

cluded in this paper as it was implemented following prior
research by Schaefer et al. [40]. The implementation in-
volved the standard process of building an octree hierarchy

408 Informatica 48 (2024) 399–418 T. Ramaijane et al.

Table 1: The summary of the reviewed literature (in the chronological order) – Part I
Techniques Key Results Identified Gaps
Associative k-d trees
[18]

Multi-dimensional binary search
trees

No comparison with octrees

Octree generation [19] Efficient volume decomposition Limited to octree structures
Marching cubes [9] High-resolution 3D surface con-

struction
Inconsistencies in visual depictions

Dual contouring of Her-
mite data [20]

Crack-free, gradient-based surfaces Requires scalar and gradient data

Adaptive isosurface k-d
Trees [17]

Efficient representation of thin ob-
jects

Lack of comparative analysis with octrees

Trilinear interpolation
adaptation [25]

Minimized voxel effects Voxel shape impacts outcome

Feature-sensitive subdi-
vision and isosurface re-
construction [45]

Reconstructed thin features, avoided
additional handles

Limited to specific grid structures

Dual marching cubes
(based on QEFs) [10]

Preserved sharp features, adaptive
contouring

Topological inaccuracies

Dual marching cubes
(based on geometric
centroid) [46]

Smoother, quad-dominant meshes
without look-up tables

Did not use QEFminimization, limited empirical
comparison

Optimizing topological
and combinatorial com-
plexity [27]

Efficient isosurface extraction Limited focus on topology

Regularized marching
cubes [11]

Improved mesh topology, maximum
vertex valence of six

Did not address volumetric data complexity

Improved marching
cubes [12]

Addressedwrong surface production Hole generation in original method

Topology preserving
marching cubes [13]

Preserved topology on face-centered
cubic grid

Limited to specific grid structures

Improved marching
cubes [14]

Smoother isosurfaces, reduced trian-
gle patches

No comprehensive performance evaluation

Simplified marching
cubes [15]

Efficient discretization for deposi-
tion/ablation simulations

Lower accuracy compared to original MC algo-
rithm

Efficient improved
marching cubes [16]

Increased efficiency and topological
accuracy

Focused on specific efficiency improvements

and performing dual contouring with manifold vertex clus-
tering to ensure topological correctness and detail preserva-
tion. The readers are advised to refer to the original publica-
tion [40] for a more detailed description of the algorithmic
steps for the key phases. Both implemented manifold dual
contouring algorithms used rectilinear grids to represent the
extraction of implicit models. Implementation by Greß and
Klein [17] employed the combination of uniform grids with
the topology preserving scheme for manifold extracted iso-
surfaces with sharp features. This implementation resulted
in the generation of too many polygons. This was not de-
sirable, particularly during extraction of relatively flat sur-
faces. Numerous polygons wouldmake it difficult to render
large models made of flat surfaces.

3.1 Phase 1: Construction of the underlying
rectilinear grid

Phase 1 of the implementation of the two algorithms in-
volved constructing the underlying rectilinear grid. The
advantages of rectilinear grids are a negligible memory
footprint and readily support smooth data reconstruction,
though with reduced geometric flexibility [50]. Construc-
tion of the rectilinear grid was required for working with
implicit surface representations of extracted isosurfaces.
Sub-phase 1.1 involved the formulation of the QEFs.

This study adopted the QEF formulation from Ju et al. [20]
as given by Equations (1) and (3) in Subsection 2.1.2. These
equations allowed us to determine the corresponding vertex
locations and the error associated with those locations. In
a situation where the accuracy of positioning the vertices
is more important than the basic representation of the QEF,
the relationship between the orthogonal matrixQ of the QR

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 409

Table 2: The summary of the reviewed literature (in the chronological order) – Part II
Techniques Key Results Identified Gaps
Corrected marching
cubes 33 [33]

Addressed topological issues in
MC33

Hole generation in original method

GPU-based polygoniza-
tion and optimization
[36]

Improved mesh quality and extrac-
tion speed

Limited to GPU-based methods

Edge-crossing probabil-
ity for uncertainty han-
dling [37]

Resolved ambiguities in topology Complexity in handling uncertainty

Gradient-based mesh
optimization [49]

Flexible vertex positioning, high-
quality meshes

Numerical instabilities, limited flexibility

Improved dual contour-
ing [44]

Watertight and two-manifold
meshes

Complexity in implementation

Interpolation scheme on
octree volume fraction
data [47]

Accurate vertex computation, im-
proved mesh quality

Limited to octree structures

Multi-resolution isosur-
face extraction [38]

Efficient data reduction while main-
taining rendering

Difficulty in accurately determining the isosur-
face location, holes that may occur when merg-
ing or transitioning between isosurfaces

Parallel dual marching
cubes without look-up
tables [48]

High accuracy, efficient on GPU Transition issues between volume data layers

decomposition can be used to satisfy the relationQTQ = I ,
leading to the error equationE[x] to be determined through
Equation (15):

(Ax− b)T (Ax− b) = (Ax− b)TQTQ(Ax− b)

= (QAx−Qb)T (QAx−Qb)

= (Ax̂− b̂)T (Ax̂− b̂) + r2.

(15)

In this form, the evaluation of E[x] becomes attainable by
computing the squared vector product of the vector Âx− b,
before adding r2. For a non-singular Â case, minimiza-
tion of x can be calculated through solving the equation
Âx̂ = b̂ by performing back substitution. Â is calculated
from the noisy normals tending to always be coplanar. The
same matrix Â becomes approximately singular. Minimiz-
ing the x̂ value results in setting in the far outside of the
outlining cube. Solving this problem means that the sin-
gular value decomposition (SVD) of Â must be computed,
and its pseudo-inverse must be formed by cutting down its
trivial singular values:

Â = UΣV T , (16)

where Σ is a diagonal matrix with singular values. The
pseudo-inverse Â+ of Â is given by Equation (17)

Â+ = V Σ+UT , (17)

whereΣ+ contains reciprocals of non-zero singular values.
Using SVD, the minimizer x is computed as follows:

x = V Σ+UT b. (18)

Sub-phase 1.2 involved the generation of the scalar field. A
scalar field refers to a function ϕ which specifies a constant
or scalar value to every point in three-dimensions. A scalar
field is a function associating a single number to every point
in a space. The focus of this implementation was on isosur-
face extraction of implicit surface representations, and the
scalar fields were generated from implicit functions.
The formulation of QEFs and generation of the scalar

field in Sub-phases 1.1 and 1.2 provided the inputs for Sub-
phase 1.3, namely, composition of vertex data with Hermite
data. Inputs included information regarding the positioning
of the vertices and their related attributes. A scalar field rep-
resents every angular point in the three-dimensional space
referred to as a vertex. Each of these vertices contains at-
tributes such as a vertex position and normal. This informa-
tion was required in the extraction of the isosurface for the
algorithm to determine what type of surface was extracted
at that particular vertex. The approach used to process ver-
tices tagged with Hermite data was similar to the one intro-
duced in [20].
Sub-phase 1.4 involved the preparation of the manifold

criterion topology preserving scheme. For the implementa-
tion involving isosurface simplification using octrees, the
manifold vertex clustering technique was adopted from
Schaefer et al. [40]. For the implementation using k-d trees
in the manifold vertex clustering technique by Schaefer et
al., the octree isosurface simplification was replaced with
the k-d tree adaptive isosurface simplification. For both im-
plementations the simplification error thresholds were the
same.
Sub-phase 1.5 pertained to the construction of the gen-

410 Informatica 48 (2024) 399–418 T. Ramaijane et al.

Start

Declare
variables
planeDir,

depth

Create
new

rectilinear
grid

structure

Declare and set
boolean

clusterable{true}

Declare new kdtree
*subnodes[2]{nullpt
r, nullptr} structure

Instantiate
constructor

Kdtree(QefSolver
sum, PositionCode

&minCode,
PositionCode

&maxCode, dir,
depth)

Declare
fixed

arrays
Facekd,
Edgekd

Initialize arguments
in

kdtree():grid(minCo
de, maxCode, sum),

planeDir(dir),
depth(depth)

If no subnodes

Call inline boolean
function

isContouringLeaf(th
reshold)

If v.error >
threshold

Declare auto
v:grid.vertices

Return clusterable

Call inline boolean
function isLeaf()

Return neither
subnode

Return true

Return false

Call inline function
axis()

Assert !isLeaf()

If first subnode
return maximum
grid position in
plane direction
to first subnode

return minimum
grid position in

plane direction to
second subnode

Call inline kdtree
constructor

*getChild(int I, float
threshold)

If
grid.approximat

e.error <
threshold

Return thisReturn subnodes

Call function
combineQef()

Call function
calclusterability()

Call function
generateVertexIndic

es()

Call function
contourCell()

Call function
contourFace()

Call function
detectQuad()

Call function
contourEdge()

Call function
generateQuad()

Call function
chooseAxisDir

Instantiate
constructor

buildFromRectilinea
r(rectilinear grid,

PositionCode
&minCode,

PositionCode
&maxCode,

ScalarField *t, depth
)

Call function
drawkDtree(kdtree
*root, Mesh *mesh,

float threshold)

Call mesh
constructor

extractMesh(kdtree
*root, ScalarField

*t, float threshold)

End

Figure 3: Flowchart for the implementation of the k-d tree algorithm

eral mesh according to the topology preserving scheme.
The previous sub-phases 1.1-1.4 supplied the information
required for the construction of the embedded polygonal
mesh as part of the underlying rectilinear grid. The first
step in this sub-phase was to draw an axis aligned bound-
ing box (AABB) enclosing the whole mesh including all
vertices and triangles of the polygons. Each vertex con-
tained attributes to be used by the algorithm for position-
ing and clustering of that particular vertex. The attributes
comprised a vertex’s index, position and normal in relation
with the mesh and the overall rectilinear grid. The algo-
rithm added vertices into the grid according to the associ-
ated scalar field representation of the surface. This was per-
formed through QEF based computation of each vertex lo-
cation with respect to edges of the AABB. The flat normals
were generated for each vertex according to its position of
each. After that, to ensure that the mesh was topologically
correct for watertight and two-manifold and surfaces, the
vertices were clustered through the manifold vertex clus-
tering scheme.

3.2 Phase 2: Isosurface extraction through
error controlled simplification

The first two sub-phases of isosurface extraction through
error controlled simplification were generation of the scalar
field of the implicit surface representation (Sub-phase 2.1),
and preparation of the computation of topology preserving
vertex clustering using QEFs (Sub-phase 2.2). Those stan-
dard sub-phases were adopted from Schaefer et al. [40].

The next sub-phase (2.3) involved QEF-controlled isosur-
face simplification on implicit k-d tree or octree based adap-
tive grids. Our main focus was on utilization of the k-d tree
for simplification of the rectilinear grid surface representa-
tion in order to adaptively contour implicit surfaces of any
dimensions. The simplification scheme was adopted from
[40] with the exception of a k-d tree being utilized instead
of an octree. The algorithm performed traversal of the k-d
tree in a top-down manner. For every leafless k-d tree cell,
two offspring nodes were considered. Two offspring nodes
had faces internal to their associated parent cell along each
Euclidean axis. Similar to the previous phase (Sub-phase
1.4), vertices were clustered with consideration to the man-
ifold criterion. The difference was that this time vertices
were topologically linked together by their edges twofold
to the internal faces of the parent cell. The vertex edges
were identified through recursion. In each set, vertices were
clustered together through a combination of their QEFs and
minimising error functions to evaluate the new vertex’s lo-
cation and its associated error. If the error for evaluating
and locating the new vertex was less than the given thresh-
old, then this vertex was marked as collapsible. The subdi-
vision process involved storing a list of faces within the cell
and of each individual subdivision step. The faces within
the cell were clipped to the partitioning plane in accordance
with the manifold criterion. Each of these clipped faces
was moved into the associated sub-cell. Information ob-
tained from the clipping process included the orientation of
the planes the faces were clipped against. This information
was used in detection of vertices associated with the inter-

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 411

section points found on the edges of the grid.

4 Methodology
The k-d tree and octree algorithms were implemented on a
Windows 10 system with an Intel Core i5 CPU, NVIDIA
GeForce MX150 GPU, and 4 GB RAM. The k-d tree con-
struction involved recursive subdivision along one dimen-
sion, using QEFs for vertex placement and clustering based
onmanifold criteria. The octree construction used recursive
space subdivision into eight octants, applying QEF sim-
ilarly and ensuring crack-free, manifold surfaces through
dual contouring. Both algorithms employed predefined er-
ror thresholds to control the level of detail. Performance
metrics like build time, extraction time, and triangle count
were used for comparative analysis.
To ensure that the evaluation tool would work for im-

plicit surface representations of extracted isosurfaces, im-
plicit models were prepared using an implicit function with
a scalar field quantity as an input. An implicit function is
a function defined for differentiation of functions contain-
ing the variables, which cannot be easily expressed in the
form of y = f(x) [51]. An implicit function is a mathemat-
ical function taking in more than one related variable at a
time.
The implicit function was programmed in C++ with its

inputs being the scalar field quantity and the depth of the
field. The time (seconds) for extracting an implicit surface
representation from the generated implicit model was deter-
mined for each of the two dual manifold contouring algo-
rithms, the k-d tree- and octree-based, as part of the com-
parative evaluation process. The extraction of an implicit
surface representation was performed in the CPU using the
OpenGL API. The rendering of graphics on the screen was
carried out in the GPU, also using OpenGL API.

5 Results

5.1 Implicit surface representations for
selected objects

Both compared algorithms were run on a variety of implicit
models depicted in Figures 4 (a cube), 5 (a sphere), 6 (a
cylinder), 7 (a torus), and 8 (a random surface).
The implicit surface representations from the extracted

isosurface meshes displayed the solid objects commonly
studied or modeled, for example, in computer aided de-
sign (CAD) and constructive solid geometry (CSG). The
solid volumes were shaded through to reflect the nature of
the represented real-life physical objects. The assumption
was that the materials depicted in the surface representa-
tions were solid in nature, although in reality this might not
always be the case. The implicit surface representations
considered in this research were computer-generated solid
objects extracted frommodels of implicit functions, and not
from volumetric datasets of actual physical objects. The

Figure 4: A cube

Figure 5: A sphere

Figure 6: A cylinder

412 Informatica 48 (2024) 399–418 T. Ramaijane et al.

Figure 7: A torus

Figure 8: A random surface

manifold dual contouring algorithm was used to extract the
embedded mesh and simplify the surface representation of
the underlying rectilinear grid for a given error threshold.
Figure 9 shows a wire frame of axis-aligned bounding

box (AABB) and its enclosed sphere. This diagram shows
how clustered vertices were connected into polygons of the
resulting extracted isosurface.

Figure 9: A sphere enclosed inside an AABB

5.2 Results of evaluation of the two
algorithms

The two algorithms for isosurface extraction, (k-d tree and
octree-based, were evaluated and compared using three
parameters, namely, visualization, performance, and effi-
ciency.
In regard to visualization, no noticeable difference was

observed in the visual graphics extracted by the k-d tree-
and octree-based algorithms. Both algorithms utilized the
manifold vertex clustering scheme for dual contouring of
isosurfaces. The images in Figures 4-9 could have been
produced by any of the two algorithms. It could, however,
be expected that there might be a difference in the rendering
of large models in favor of the octree-based algorithm. An
octree-based algorithm would generate more visual details
by using a larger number of triangles in its simplification
process as compared to the k-d tree algorithm as shown in
Tables 3 and 4 (triangle count) for various simplification er-
ror thresholds (denoted as Simpl. Err. Threshold). The vi-
sual difference also could have been observed if one of the
two algorithms was based on an entirely different isosur-
face extraction approach, e.g., the original marching cubes
algorithm.
The performance of each algorithm was measured using

two metrics, (1) the time to build the adaptive hierarchy of
the data structure (Build Time) and (2) the time taken to
extract the implicit surface representations (Extract Time).
The values of these metrics for various simplification er-
ror thresholds (Simpl. Err. Threshold) are shown in Tables
3 and 4. The comparison between the two algorithms indi-
cated that for building and extraction of an identical implicit
surface representation under the same simplification error
threshold the k-d three-based algorithm performed better
than the octree-based algorithm. For example, in the case
of a cylinder model with the simplification error threshold

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 413

Table 3: Results for the k-d tree-based manifold dual contouring algorithm
Object Modeled Simpl. Err. Threshold Build Time (sec) Extract Time (sec) Triangle Count

1e−3 0.3349 0.015 2266
Cylinder 1e−5 0.015 0.029 2244

1e−7 0.347 0.015 2280
1e−9 0.351 0.015 2336
1e−3 0.326 0.036 9190

Sphere 1e−5 0.333 0.035 9206
1e−7 0.348 0.037 9206
1e−9 0.337 0.036 9206
1e−3 0.095 0.01 2080

Torus 1e−5 0.09 0.01 2080
1e−7 0.088 0.01 2080
1e−9 0.089 0.01 2080
1e−3 0.284 0.033 7626

Random surface 1e−5 0.284 0.033 7550
1e−7 0.278 0.033 7558
1e−9 0.279 0.033 7558

Table 4: Results for the octree-based manifold dual contouring algorithm
Object Modeled Simpl. Err. Threshold Build Time (sec) Extract Time (sec) Triangle Count

1e−3 1.545 0.028 14303
Cylinder 1e−5 1.588 0.029 14192

1e−7 1.598 0.028 14304
1e−9 1.583 0.028 14400
1e−3 1.557 0.02 9472

Sphere 1e−5 1.568 0.02 9464
1e−7 1.558 0.019 9464
1e−9 1.542 0.019 9464
1e−3 1.693 0.007 2080

Torus 1e−5 1.712 0.007 2080
1e−7 1.708 0.006 2080
1e−9 1.924 0.007 2080
1e−3 1.78 0.025 7928

Random surface 1e−5 1.75 0.02 7928
1e−7 1.754 0.019 7928
1e−9 1.741 0.018 7928

of 1e−3, a k-d tree-based manifold dual contouring algo-
rithm achieved the 78% reduction in build time and 46%
reduction in extract time as compared to the octree-based
algorithm. The average reduction of the build and extract
times, across all modeled objects and all simplification er-
ror thresholds, was 83.4% and 61.2%, respectively, in favor
of the k-d tree-based algorithm.
The evaluation of efficiency involved determining the

numbers of triangles for both algorithms under various sim-
plification error thresholds and for variousmodeled objects.
There is a direct link between efficiency and the triangle
counts as the less is the triangle count, the higher is the sim-
plification efficiency. The average improvement in simpli-
fication efficiency across all modeled objects and simplifi-
cation error thresholds for the k-d tree-based algorithm was
calculated at 17.7% as compared to the octree-based algo-
rithm. In case of the cylinder model, across all simplifica-

tion error thresholds the improvement in efficiency was the
highest (84.5%) for the k-d tree-based algorithm. However,
for the torus model the triangle count across all simplifica-
tion error thresholds for simplifying the representation of
the torus model was the same for both algorithms. This can
be explained by the model size because a smaller model
with fewer triangles could not be simplified any further by
either algorithm. The evaluation results demonstrated that
the octree-based algorithm is more effective in preserving
the original geometric details of an implicit model. On av-
erage, the octree-based algorithm generated a higher num-
ber of rectangles, making it the more suitable choice for
applications requiring detailed geometric accuracy.

414 Informatica 48 (2024) 399–418 T. Ramaijane et al.

6 Discussion
The comparative analysis conducted in this study revealed
several insights into the performance and efficiency of the
k-d tree- and octree-based manifold dual contouring algo-
rithms in relation to the state of the art. This discussion
compares the results of our work with those listed in Table
1, focusing on performance metrics, visual and efficiency
outcomes, potential reasons for observed differences, and
novel contributions and advancements over the similar ex-
isting work.

6.1 Differences in performance metrics
The performance metrics evaluated in this study included
build time, extract time, and triangle count. The k-d
tree-based algorithm demonstrated superior performance in
terms of build and extract times compared to the octree-
based algorithm. Specifically, the k-d tree-based algorithm
achieved an average reduction of 83.4% in build time and
61.2% in extract time across all modeled objects and simpli-
fication error thresholds. In contrast, previous studies, for
example, by Greß and Klein [17], did not provide a direct
comparative analysis between k-d trees and octrees, thus
lacking a performance benchmark for k-d tree efficiency.

6.2 Visual and efficiency outcomes
In terms of visual outcomes, no significant differences were
observed between the k-d tree- and octree-based algorithms
when evaluated visually. Both algorithms utilized the man-
ifold vertex clustering scheme, ensuring high-quality iso-
surface representations. However, the octree-based algo-
rithm excelled in preserving geometric details, producing
an average of 20% more triangles than the k-d tree-based
algorithm. This aligns with findings by Schaefer and War-
ren [10] and Kim et al. [47], who emphasized the superior
visual detail retention of octree-based methods.
Regarding efficiency, the k-d tree-based algorithm

showed an improvement in simplification efficiency, with
an average reduction in triangle count by 17.7% compared
to the octree-based algorithm. This efficiency gain is par-
ticularly relevant for large implicit models, where reduc-
ing geometric complexity is crucial. Previous studies, such
as those by Jin et al. [12] and Vignoles et al. [15], high-
lighted improvements in specific aspects of the marching
cubes algorithm but did not achieve the overall efficiency
gains demonstrated by the k-d tree-based approach in our
research.

6.3 Potential reasons for observed
differences

The observed differences in performance and efficiency can
be attributed to the inherent characteristics of k-d trees and
octrees. K-d trees partition the space adaptively along one
dimension at a time, which allows for more flexible and

efficient handling of large datasets with varying geometric
complexities. This adaptive partitioning reduces the overall
geometric complexity more effectively than the simultane-
ous three-dimensional subdivision used by octrees.
Additionally, the k-d tree’s ability to minimize build and

extract times stems from its binary partitioning scheme,
which simplifies the computational process. In contrast, the
octree’s approach to maintaining high visual detail results
in higher triangle counts and longer processing times.

6.4 Study contributions
The contributions of this study to the body of knowledge
in computer science, specifically in the areas of computer
graphics and geometric modeling, are as follows.
First, unlike previous studies that primarily focused on

individual algorithm improvements, this study provides a
comprehensive empirical comparison between k-d tree- and
octree-based manifold dual contouring algorithms. For ex-
ample, Schaefer et al. [40] focused on octree-based dual
contouring methods without juxtaposing them against k-d
tree methodologies, while others whose research is listed
in Table 1 have only improved aspects of individual algo-
rithms.
Second, by evaluating build time, extract time, and tri-

angle count across various simplification error thresholds,
this study presents a holistic view of algorithm efficiency.
This multi-metric evaluation approach advances the under-
standing of performance trade-offs in isosurface extraction.
Third, the findings will assist researchers and practition-

ers in selecting suitable adaptive data structures for differ-
ent application scenarios. The demonstrated efficiency of
the k-d tree-based algorithm for large implicit models offers
a practical alternative to octree-based methods.
Fourth, the k-d tree-based algorithm’s superior perfor-

mance in reducing geometric complexity without compro-
mising visual quality represents a significant advancement
in isosurface extraction techniques.
Lastly, the comparative analysis undertaken in this study

demonstrated the strengths and weaknesses of k-d tree- and
octree-based manifold dual contouring algorithms, provid-
ing insights for future research and practical implementa-
tions in the field of isosurface extraction.

7 Conclusions, limitations and
future work

7.1 Conclusions
This paper presented an evaluation of the twomanifold dual
contouring algorithms using k-d trees and octrees across
various simplification error thresholds. The first manifold
dual contouring octree-based algorithm was adopted from
Schaefer et al. [40]. The second manifold dual contouring
algorithm was adopted from the same work by Schaefer et
al. [40] but a k-d tree was employed instead of the octree

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 415

for simplification as proposed by Greß and Klein in [17].
A rectilinear grid was developed as a prerequisite to cap-
ture the initial representation of the underlying mesh, and
the QEFwas formulated, resulting in the construction of the
general mesh according to the topology preserving scheme.
The isosurface extraction of implicit models was carried out
through the error controlled k-d tree and octree simplifica-
tion.
The following conclusions were drawn from the evalu-

ation of visualization, performance and efficiency of the
compared algorithms. Scaling implicit environments can
impact the performance of a manifold dual contouring al-
gorithm due to the processing of excessive geometric de-
tails. The k-d tree-based algorithm was found to be more
suitable, as this adaptive data structure significantly reduces
the amount of geometry in large implicit models. For a sce-
nario requiring more of the geometric detail of the simpli-
fied implicit model to be retained, the octree would be con-
sidered more suitable because of this data structure’s ability
to preserve geometric detail as demonstrated by the higher
triangle count of the simplification results.
The performance of each algorithm was measured using

two metrics, (1) the time taken to build the adaptive hier-
archy of the data structure and (2) the time taken to extract
the implicit surface representations. The comparison of the
two algorithms demonstrated that for building and extrac-
tion of a implicit surface representation under the same sim-
plification error threshold the k-d tree-based algorithm per-
formed better than the octree-based algorithm. The average
reduction of the build and extract times, across all modeled
objects and all simplification error thresholds, was 83.4%
and 61.2%, respectively, in favor of the k-d tree-based algo-
rithm. The evaluation of efficiency for the two algorithms
involved determining the numbers of triangles for both al-
gorithms under various simplification error thresholds for
various modeled objects. The average improvement in sim-
plification efficiency across all modeled objects and sim-
plification error thresholds by the k-d tree-based algorithm
was calculated at 17.7% as compared to the octree-based
algorithm. However, if geometry had to be preserved as
much as possible in order to capture the original geomet-
ric details of an implicit model, the octree would be more
applicable as, on average, it generated more rectangles.
Research results presented in this paper could be useful

for both researchers and practitioners in the area of visual-
ization facing a choice of a suitable adaptive data structure
(i.e., a k-d tree or an octree) for better simplification results
in implementations of the manifold dual contouring algo-
rithm.

7.2 Study limitations

The study had several limitations that need to be addressed
in future research. Firstly, the research scope was restricted
to a specific set of implicit models (cube, sphere, cylinder,
torus, and random surface). Including additional models
with varying complexities could provide a broader eval-

uation. Secondly, experiments were conducted on a sin-
gle PC configuration due to resource constraints, which
might affect performance results on different hardware se-
tups. Thirdly, the focus was on specific implementations
of k-d tree- and octree-based algorithms; however, explor-
ing other variations might offer new insights. Fourthly, as
this research used predefined simplification error thresh-
olds, varying these could affect performancemetrics and vi-
sual quality. Fifthly, further experiments are needed to val-
idate the scalability of both algorithms with larger datasets
and more complex implicit models. Lastly, the study did
not include visual comparisons of the extracted isosurfaces
under different simplification thresholds, which would help
illustrate the practical implications of the quantitative re-
sults.

7.3 Future work
Future research could include a more diverse set of im-
plicit models to enhance the generalizability of the find-
ings. Evaluating the performance on distributed comput-
ing systems or different hardware configurations could pro-
vide deeper insights into the scalability and efficiency of
the algorithms. Investigating other variations or hybrid ap-
proaches of k-d tree and octree-based algorithms might un-
cover new performance benefits. Implementing adaptive
simplification thresholds based on the model’s complexity
and application requirements could further optimize the al-
gorithms’ performance and efficiency. Applying these al-
gorithms to real-world datasets, such as medical imaging or
geological surveys, could demonstrate their practical utility
and reveal additional areas for improvement. Including vi-
sual comparisons of the extracted isosurfaces from both al-
gorithms under different simplification thresholds will help
in illustrating the practical implications of the quantitative
results presented.

References
[1] C. Hansen, C. Johnson, The visualization handbook,

Cambridge, MA: Academic Press, 2004.

[2] W. Wu, L. Ye, Research on real scene robot 3d visu-
alization of historical architectural heritage based on
big data objects, Informatica (Slovenia) 48 (2024) 93–
102. doi:10.31449/inf.v48i8.5776.

[3] D. Cheng, Animation vr scene stitching modeling
based on genetic algorithm, Informatica (Slovenia) 48
(2024) 83–96. doi:10.31449/inf.v48i5.5364.

[4] S. H. Al-Dhaimesh, N. Taib, Review paper: investi-
gation of augmented reality – bim benefits in design
process in the aec industry, Informatica (Slovenia) 47
(2023) 111–126. doi:10.31449/inf.v47i5.4671.

[5] H. Fan, B. Goyal, K. Z. Ghafoor, Computer-aided
architectural design optimization based on bim tech-

https://doi.org/10.31449/inf.v48i8.5776
https://doi.org/10.31449/inf.v48i5.5364
https://doi.org/10.31449/inf.v47i5.4671

416 Informatica 48 (2024) 399–418 T. Ramaijane et al.

nology, Informatica (Slovenia) 46 (2022) 323–332.
doi:10.31449/inf.v46i3.3935.

[6] I. Bankman, Handbook of medical image processing
and analysis, Cambridge, MA: Academic Press, 2009.

[7] J. O’Brien, G. Turk, Modelling with implicit surfaces
that interpolate, ACM Transactions on Graphics 21
(2002) 855–873. doi:10.1145/571647.571650.

[8] M. Edmunds, R. Laramee, G. Chen, N. Max,
E. Zhang, C. Ware, Surface-based flow visualization,
Computers Graphics 36 (2012) 974–990. doi:10.
1016/j.cag.2012.07.006.

[9] W. Lorensen, H. Cline, Marching cubes: A high reso-
lution 3d surface construction algorithm, ACM SIG-
GRAPH Computer Graphics 21 (1987) 163–169.

[10] S. Schaefer, J. Warren, Dual marching cubes: Primal
contouring of dual grids, in: Proceedings of the Pa-
cific Conference on Computer Graphics and Applica-
tions, 2004, pp. 70–76. doi:10.1109/pccga.2004.
1348336.

[11] S.-W. Lee, H.-Y. Jung, R. Prost, A. Senot, Regular-
ized marching cubes mesh, in: Proceedings of the
IEEE International Conference on Image Processing,
Vol. 3, 2005, pp. 788–791. doi:10.1109/icip.
2005.1530510.

[12] J. Jin, Q. Wang, Y. Shen, J. Hao, An improved march-
ing cubes method for surface reconstruction of vol-
ume data, in: Proceedings of the World Congress
on Intelligent Control and Automation, Vol. 2, 2006,
pp. 10454–10457. doi:10.1109/wcica.2006.
1714052.

[13] R. Strand, P. Stelldinger, Topology preserving march-
ing cubes-like algorithms on the face-centered cubic
grid, in: Proceedings of the 14th International Con-
ference on Image Analysis and Processing, 2007, pp.
781–788. doi:10.1109/iciap.2007.4362871.

[14] Z. Xu, C. Xiao, X. Xu, An improved marching cubes
algorithm based on edge contraction, in: Proceedings
of the International Conference on Signal Process-
ing Proceedings, 2010. doi:10.1109/icosp.2010.
5655719.

[15] G. Vignoles, M. Donias, C. Mulat, C. Germain,
J.-F. Delesse, Simplified marching cubes: an effi-
cient discretization scheme for simulations of depo-
sition/ablation in complex media, Computational Ma-
terials Science 50 (2011) 893–902. doi:10.1016/j.
commatsci.2010.10.027.

[16] Q. Du, J. Zhao, L. Shi, L. Wang, Efficient improved
marching cubes algorithm, in: Proceedings of the
2nd International Conference on Computer Science
and Network Technology, 2012, pp. 416–419. doi:
10.1109/iccsnt.2012.6525967.

[17] A. Greß, R. Klein, Efficient representation and ex-
traction of 2-manifold isosurfaces using kd-trees, in:
Proceedings of the 11th Pacific Conference on Com-
puter Graphics and Applications, 2003, pp. 370–397.
doi:10.1109/pccga.2003.1238278.

[18] J. Bentley, Multidimensional binary search trees used
for associative searching, Communications of the
ACM 18 (1975) 509–517. doi:10.1145/361002.
361007.

[19] D. Meagher, Octree generation, analysis and manipu-
lation, Ph.D. thesis, Rensselaar Polytechnic Institute,
Troy New York (1982).

[20] T. Ju, F. Losasso, S. Schaefer, J. Warren, Dual con-
touring of hermite data, ACMTransactions on Graph-
ics 21 (2002) 339–346. doi:10.1145/566654.
566586.

[21] J.-D. Boissonnat, S. Oudot, Provably good sampling
and meshing of surfaces, Graphical Models 67 (2005)
405–451. doi:10.1016/j.gmod.2005.01.004.

[22] M. Garland, P. Heckbert, Surface simplification us-
ing quadric error metrics, in: Proceedings of the
ACM SIGGRAPH Conference on Computer Graph-
ics, 1997, p. 209–216. doi:10.1145/258734.
258849.

[23] Y. Livnat, C. Hansen, C. Johnson, Isosurface ex-
traction for large-scale data sets, in: Proceedings
of the Conference on Data Visualization: The State
of the Art, 2003, pp. 77–94. doi:10.1007/
978-1-4615-1177-9_6.

[24] T. Newman, H. Yi, A survey of the marching cubes
algorithm, Computers Graphics 30 (2006) 854–879.
doi:10.1016/j.cag.2006.07.021.

[25] D. Rajon, W. Bolch, Marching cube algorithm: re-
view and trilinear interpolation adaptation for image-
based dosimetric models, Computerized Medical
Imaging and Graphics 27 (2003) 411–435. doi:10.
1016/s0895-6111(03)00032-6.

[26] C. Maple, Geometric design and space planning using
the marching squares, in: Proceedings of the Interna-
tional Conference onGeometricModeling andGraph-
ics, 2003, pp. 90–95. doi:10.1109/gmag.2003.
1219671.

[27] C. Andujar, P. Brunet, A. Chica Calaf, J. Rossignac,
A. Vinacua, Optimizing the topological and combi-
natorial complexity of isosurfaces, Computer-Aided
Design 37 (2005) 847–857. doi:10.1016/j.cad.
2004.09.013.

[28] X. Renbo, L. Weijun, Y. Wang, A robust and topolog-
ical correct marching cube algorithm without look-up

https://doi.org/10.31449/inf.v46i3.3935
https://doi.org/10.1145/571647.571650
https://doi.org/10.1016/j.cag.2012.07.006
https://doi.org/10.1016/j.cag.2012.07.006
https://doi.org/10.1109/pccga.2004.1348336
https://doi.org/10.1109/pccga.2004.1348336
https://doi.org/10.1109/icip.2005.1530510
https://doi.org/10.1109/icip.2005.1530510
https://doi.org/10.1109/wcica.2006.1714052
https://doi.org/10.1109/wcica.2006.1714052
https://doi.org/10.1109/iciap.2007.4362871
https://doi.org/10.1109/icosp.2010.5655719
https://doi.org/10.1109/icosp.2010.5655719
https://doi.org/10.1016/j.commatsci.2010.10.027
https://doi.org/10.1016/j.commatsci.2010.10.027
https://doi.org/10.1109/iccsnt.2012.6525967
https://doi.org/10.1109/iccsnt.2012.6525967
https://doi.org/10.1109/pccga.2003.1238278
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/566654.566586
https://doi.org/10.1145/566654.566586
https://doi.org/10.1016/j.gmod.2005.01.004
https://doi.org/10.1145/258734.258849
https://doi.org/10.1145/258734.258849
https://doi.org/10.1007/978-1-4615-1177-9_6
https://doi.org/10.1007/978-1-4615-1177-9_6
https://doi.org/10.1016/j.cag.2006.07.021
https://doi.org/10.1016/s0895-6111(03)00032-6
https://doi.org/10.1016/s0895-6111(03)00032-6
https://doi.org/10.1109/gmag.2003.1219671
https://doi.org/10.1109/gmag.2003.1219671
https://doi.org/10.1016/j.cad.2004.09.013
https://doi.org/10.1016/j.cad.2004.09.013

Evaluation of Manifold Dual Contouring Algorithms… Informatica 48 (2024) 399–418 417

table, in: Proceedings of the 5th International Confer-
ence on Computer and Information Technology, 2005,
pp. 565–569. doi:10.1109/cit.2005.44.

[29] N. Chrisochoides, D. Nave, Simultaneous mesh gen-
eration and partitioning for delaunay meshes, Mathe-
matics and Computers in Simulation 54 (1999) 321–
339. doi:10.1016/s0378-4754(00)00192-0.

[30] S. H. Cui, J. Liu, Simplified patterns for extracting
the isosurfaces of solid objects, Image and Vision
Computing 26 (2008) 339–346. doi:10.1016/j.
imavis.2007.02.003.

[31] T. Etiene, C. Scheidegger, L. Nonato, R. Kirby,
C. Silva, Verifiable visualization for isosurface extrac-
tion, IEEE Transactions on Visualization and Com-
puter Graphics 15 (2009) 1227–1234. doi:10.1109/
tvcg.2009.194.

[32] Q. Xiaoqing, W. Davis, An extended cuberille model
for identification and display of 3d objects from 3d
gray value data, in: Proceedings of the Conference on
Graphics Interface, 1992, pp. 70–77.

[33] L. Custodio, T. Etiene, S. Pesco, C. Silva, Practical
considerations on marching cubes 33 topological cor-
rectness, Computers Graphics 37 (2013) 840–850.
doi:10.1016/j.cag.2013.04.004.

[34] E. Tcherniaev, Marching cubes 33: Construction of
topologically correct isosurfaces, Tech. rep., Institute
for High Energy Physics (1996).

[35] T. Lewiner, H. Lopes, A. Vieira, G. Tavares, Efficient
implementation of marching cubes’ cases with topo-
logical guarantees, Journal of Graphics Tools 8 (2012)
1–15. doi:10.1080/10867651.2003.10487582.

[36] J. Chen, X. Jin, Gpu-based polygoniza-
tion and optimization for implicit surfaces,
The Visual Computer 31 (2014) 119–130.
doi:10.1007/s00371-014-0924-7.

[37] T. Athawale, E. Sakhaee, E. Alireza, Isosurface visu-
alization of data with nonparametric models for uncer-
tainty, IEEE Transactions on Visualization and Com-
puter Graphics 22 (2015) 777–786. doi:10.1109/
tvcg.2015.2467958.

[38] Y. Ronghuan, X. Wei, W. Lingda, H. Hongxing,
Research on multi-resolution isosurface extraction
method for 3d scalar field, in: Proceedings of the
2nd IEEE International Conference on Data Science
in Cyberspace, 2017, pp. 359–362. doi:10.1109/
DSC.2017.79.

[39] N. Zhang, W. Hong, A. Kaufman, Dual contour-
ing with topology-preserving simplification using en-
hanced cell representation, in: Proceedings of the
IEEE Visualization Conference, 2004, pp. 505–512.
doi:10.1109/visual.2004.27.

[40] S. Schaefer, T. Ju, J. Warren, Manifold dual contour-
ing, IEEE Transactions on Visualization and Com-
puter Graphics 13 (2007) 610–619. doi:10.1109/
tvcg.2007.1012.

[41] Y. Zhang, J. Qian, Dual contouring for domains with
topology ambiguity, Computer Methods in Applied
Mechanics and Engineering s 217–220 (2012) 34–45.
doi:10.1016/j.cma.2012.01.004.

[42] X. Liang, Y. Zhang, An octree-based dual contour-
ing method for triangular and tetrahedral mesh gen-
eration with guaranteed angle range, Engineering
with Computers 30 (2014) 211–222. doi:10.1007/
s00366-013-0328-8.

[43] A. Peixoto, C. Moura, Topology preserving
algorithms for implicit surfaces simplifying
and sewing, in: Proceedings of the Inter-
national Conference on Computational Sci-
ence and Its Applications, 2014, pp. 352–367.
doi:10.1007/978-3-319-09129-7_27.

[44] T. Rashid, S. Sharmin, M. Audette, Watertight and 2-
manifold surface meshes using dual contouring with
tetrahedral decomposition of grid cubes, Procedia En-
gineering 163 (2016) 136–148. doi:10.1016/j.
proeng.2016.11.037.

[45] G. Varadhan, S. Krishnan, Y. Kim, D. Manocha,
Feature-sensitive subdivision and isosurface recon-
struction, in: Proceedings of the IEEE Visualiza-
tion Conference, 2003, pp. 99–106. doi:10.1109/
visual.2003.1250360.

[46] G. Nielson, Dual marching cubes, in: Proceedings of
the IEEE Visualization Conference, 2004, pp. 489–
496. doi:10.1109/visual.2004.28.

[47] S. Kim, Y. Ohtake, Y. Nagai, H. Suzuki, A novel in-
terpolation scheme for dual marching cubes on oc-
tree volume fraction data, Computers and Graphics 66
(2017) 169–178. doi:10.1016/j.cag.2017.05.
021.

[48] R. Grosso, D. Zint, A parallel dual marching cubes
approach to quad only surface reconstruction, The Vi-
sual Computer 38 (2022) 1301–1316. doi:10.1007/
s00371-021-02139-w.

[49] Y. He, M. Mirzargar, S. Hudson, M. Kirby,
R. Whitaker, An uncertainty visualization tech-
nique using possibility theory: Possibilistic march-
ing cubes, International Journal for Uncertainty Quan-
tification 5 (2015) 433–451. doi:10.1615/int.j.
uncertaintyquantification.2015013730.

[50] D. El-Rushaidat, R. Yeh, X. Tricoche, Accurate paral-
lel reconstruction of unstructured datasets on rectilin-
ear grids, Journal of Visualization 24 (2021) 787–806.
doi:10.1007/s12650-020-00740-0.

https://doi.org/10.1109/cit.2005.44
https://doi.org/10.1016/s0378-4754(00)00192-0
https://doi.org/10.1016/j.imavis.2007.02.003
https://doi.org/10.1016/j.imavis.2007.02.003
https://doi.org/10.1109/tvcg.2009.194
https://doi.org/10.1109/tvcg.2009.194
https://doi.org/10.1016/j.cag.2013.04.004
https://doi.org/10.1080/10867651.2003.10487582
https://doi.org/10.1007/s00371-014-0924-7
https://doi.org/10.1109/tvcg.2015.2467958
https://doi.org/10.1109/tvcg.2015.2467958
https://doi.org/10.1109/DSC.2017.79
https://doi.org/10.1109/DSC.2017.79
https://doi.org/10.1109/visual.2004.27
https://doi.org/10.1109/tvcg.2007.1012
https://doi.org/10.1109/tvcg.2007.1012
https://doi.org/10.1016/j.cma.2012.01.004
https://doi.org/10.1007/s00366-013-0328-8
https://doi.org/10.1007/s00366-013-0328-8
https://doi.org/10.1007/978-3-319-09129-7_27
https://doi.org/10.1016/j.proeng.2016.11.037
https://doi.org/10.1016/j.proeng.2016.11.037
https://doi.org/10.1109/visual.2003.1250360
https://doi.org/10.1109/visual.2003.1250360
https://doi.org/10.1109/visual.2004.28
https://doi.org/10.1016/j.cag.2017.05.021
https://doi.org/10.1016/j.cag.2017.05.021
https://doi.org/10.1007/s00371-021-02139-w
https://doi.org/10.1007/s00371-021-02139-w
https://doi.org/10.1615/int.j.uncertaintyquantification.2015013730
https://doi.org/10.1615/int.j.uncertaintyquantification.2015013730
https://doi.org/10.1007/s12650-020-00740-0

418 Informatica 48 (2024) 399–418 T. Ramaijane et al.

[51] J. Stewart, Calculus early transcendentals, Cengage
Learning, 2015.

	Introduction
	Literature review
	Background to the study
	Adaptive data structures
	Isosurface simplification strategies for adaptive data structures
	Metrics used in topology simplification schemes

	Related work
	The marching cubes algorithm and its modifications
	The dual contouring algorithm and its modifications
	Dual marching cubes

	Literature review summary

	Proposed approach to implementation of the two algorithms
	Phase 1: Construction of the underlying rectilinear grid
	Phase 2: Isosurface extraction through error controlled simplification

	Methodology
	Results
	Implicit surface representations for selected objects
	Results of evaluation of the two algorithms

	Discussion
	Differences in performance metrics
	Visual and efficiency outcomes
	Potential reasons for observed differences
	Study contributions

	Conclusions, limitations and future work
	Conclusions
	Study limitations
	Future work

