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In this paper, a lossless audio codec is proposed by leveraging Wavelet transformation, Hierarchical en-
coding with Convolutional Neural Network architecture. In the first phase, three level 1D wavelet decom-
position is applied on the input audio for generating approximation and detail coefficients. In the next
phase, the approximation and detail coefficients are transformed into binary streams by utilizing the pro-
posed dynamic hierarchical encoding algorithm. In this encoding technique, coefficients are converted to
binary by dynamically accumulating the binary path values. In the subsequent phase, the binary stream is
transformed into image patterns and further compressed by reducing the dimensionality by the proposed
convolutional neural network(CNN) model. The model’s effectiveness is evaluated against current conven-
tional lossless audio benchmarks and machine learning-based methods. Experiment results demonstrate
that the method shows better performance than existing lossless audio techniques.

Povzetek: Razvit je avdio kodek, ki združuje valovne transformacije, hierarhično kodiranje in konvolucijske
nevronske mreže za izboljšanje kompresije.

1 Introduction

In today’s world, immense amount of audio data is being
generated at every moment. Therefore, using the network
bandwidth and storage space efficiently, audio data com-
pression is one of the paramount important. The advent
of deep neural network opened the possibilities of achiev-
ing excellent result along with the conventional techniques
in this area. Lossless audio compression [1] is the audio
compression technique utilized whenever the requirement
is to preserve the quality of the original input audio and re-
constructed audio signal. It also reduces the file size with-
out losing the audio information. On the contrary, lossy
audio compression losses some audio data permanently to
achieve higher compression. Lossless audio data [2] com-
pression is used where data loss is not expected at all. A
graph based [3] and cluster quantization [4] based audio en-
coding techniques introduced recently. Deep learning [5]
based approaches are applied recently in audio compres-
sion. Lossless compression is required in medical industies
for compression and sending various bio-signals [6].
In this present work, we proposed an lossless audio codec
(WLCLAC) by sequentially integrating three layer 1D
wavelet [7] decomposition, adaptive hierarchical binary
encoding, and CNN [8] compression architecture. The
proposed model works in three stages. In the first step,
the input audio sampled values are transformed using a
three-level one-dimensional discrete wavelet decomposi-
tion approach. Using wavelet transformations, detail co-

efficients(cD) and approximation coefficients(cA) are gen-
erated at each level of decomposition. For the signal S, the
structure of the wavelet decomposition at i level is as fol-
lows: [cAi, cDi, .., cD1] For i = 3, this structure comprises
the terminal nodes of the following tree shown in figure 1.
In the second step, hierarchical binary encoding technique
is applied on the input wavelet coefficients. Coefficients
are segregated into integers first, then search in the pro-
posed hierarchy. If the node is matched with the input digit,
then binary path values are accumulated and translated as
an encoded binary stream of the input digit.
In the third step, CNN encoder decoder model is used to
further compress the binary stream.

Figure 2 depicts the encoding and decoding model. Uti-
lizing the encoder, size of the input audio compressed in
the encoding step. Compressed signal stored as the latent
space with reduced and compressed form. Decoder section
reconstructs the signal which is very much similar to the
input.

The proposed technique has significant potential for real-
time applications in the field of audio compression. Upon
deployment, it can enhance the compression ratio and pro-
cessing speed while reducing the model’s complexity. This
improvement would lead to reduced memory usage and
lower network bandwidth requirements, making the system
highly efficient for real-time audio transmission and storage
in various applications, such as streaming services, commu-
nication systems, and data storage solutions.
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Figure 1: Three level 1D wavelet decomposition tree

Figure 2: Encoder and decoder framework

1.1 Notations and symbols
The terminology and their complete explanations that are
relevant to the abbreviations used in this work are provided
in Table 1.

Table 1: Symbol and abbreviation form of some terms
Symbol / Abbreviation Meaning / Full form

CNN Convolutional Neural Network
DNN Deep neural networks
PNSR Peak signal-to-noise ratio
NCC Normalised cross correlation
cA Approximation coefficients
cD Detail coefficients

2 Literature survey
In 2003, lossless audio codec standard MPEG-4(ALS) [9]
was introduced. This LPC (linear prediction encoding)
based technique improves the residual coding and reduce
the bit rate compared to PCM like approaches. The pre-
dictor coefficient cost during decoding and demultiplex-
ing is this codec’s drawback. A new variant of this tech-
nique, MPEG-4 ALS (RLS-LMS) introduced later by com-

bining LPC model with RLS-LMS. RLS-LMS predictors
are used in place of the LPC model in this model, which
eliminates the predictor coefficient from the coded stream.
It has rapid speed of decoding. But, Instability in numbers
accompanied by a white or lightly variable signal. MPEG-
4 SLS model introduced in 2006 with improved compres-
sion rate around 50% [10]. With an extra ”lossless” com-
putational layer, this approach expands on the MPEG-4
AAC lossy compression. Enhanced Scalable-to-Lossless
(SLS) released in 2010 with faster decoding and encod-
ing speed but having lower compression rate. Laplacian
distribution input data is replaced with a Gaussian distri-
bution in this model for the BPCG Entropy Block. An-
other adaptive coding based lossless audio codec; Enhanced
Code Excited Linear Prediction (CELP) was introduced in
2010. From the processing speed perspective, it is faster
than MPEG – 4 ALS but required more storage [11]. In
order to eliminate intersample correlation, this model uses
code-exited sample-by-sample adaptable coding. In 2013,
entropy encoding based IEEE 1857.2 was introduced which
have more than 50% compression rate, but processing per-
formance is slow [12] because of Arithmetic coding’s av-
erage computational complexity. In the same year another
codec Sparse Linear Predictor [31] was introduced. This
codec uses sparse predictors in place of LPC predictors.
Although the compression ratio was higher, the decoding
speed was slower with this model. In the next year, OLS
and LMS filter based cascaded OLSNLMS was introduced
which possess reduced computational complexities. An-
other popular lossless audio encoder Free Lossless Audio
Codec (FLAC) released its latest version on 23rd June 2023
using MD5 and prediction model [13]. FLAC possesses
around 70% average compression ratio [14]. Wavpack [15]
released its latest version (5.6.0) on November 23, 2022
which have around 40% average compression ratio [14].
Famous lossless audio encoder Monkey’s, which is based
on integer discrete flow, achieves around 60% compression
ratio [16]. An integrated model [17] of wavelet transform
and Huffman encoding based lossless audio encoder intro-
duced in 2020. In 2017 [18], a neural network-based model
was introduced in which raw audio input transformed into
features and processed using CNN subsequently. Lossless
audio encoder based on dynamic cluster quantization tech-
nique [4] introduced In 2020. In the proposed clustering-
based technique, dynamically cluster selection and bit se-
lection for setting up the quantization level performed. In
2020, a deep learning based audio codec [5] was introduced
which was based on hidden layerwise sampled value reduc-
tion technique. This technique improves the compression
ratio(%) above 70% but computational complexities also
increased. A model for audio compression based on deep
neural networks [19] was presented in 2021 utilizing the
RNN approach. As a reparametrization technique for dis-
crete data representations, it applies the Bernoulli distribu-
tion and uses an end-to-end learning technique. This tech-
nique acheives average Signal to Distortion Ratio (SDR)
of 20.53 dB with a compression ratio(%) exceeding 70%.
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A Machine learning based toolkit [20] introduced recently
which is used for unsupervised learning from acoustic data.
The approach is based on repetitive sequential autoencoder
approach which learn from time series type data using tem-
poral motion. In these models, on the input sequence VAE
is applied and RNN is applied on the output distribution
subsequently to recognize the signal. Another audio com-
pression approach that was unveiled in 2022 is the linear
predictive neural net encoder (LINNE) [21]. It compresses
audio by more than 60%. Also, another lossless encod-
ing methodology based on optimum graph encoding was
released in 2022 [3], and it significantly improves process-
ing speed and compression efficiency. In 2022, The natural
gradient sign algorithm (NGSA) and normalized NGSA are
two adaptive algorithms that serve as the foundation for a
lossless audio codec that is called NARU [32], or natural-
gradient autoregressive lossless audio compressor. The uti-
lization of a natural gradient in this work improves the sign
algorithm’s (SA) convergence performance. These meth-
ods significantly speed up decoding by using multiply-add
operations to determine the natural gradient at each step,
assuming a p-th order autoregressive model for the input
data. Nonetheless, this method achieves a compression per-
formance of about 60%.
Even though various neural network based as well as clas-
sical lossless audio compression approaches introduced,
achieving compression rates like MP3 remain a mile away.
Therefore, developing a lossless audio compression tech-
nique with higher compression rate and lower processing
time is the need of the hour. The proposed lossless au-
dio encoder based on neural network that achieves a higher
compression ratio to fulfil this goal.

3 The technique

The proposed audio codec consists of 1Dwavelet decompo-
sition, hierarchical binary encoding and convolutional neu-
ral network enabled compressed latent space representation
technique. Figure 1 displays the 1D three level wavelet de-
composition tree. cA represents the approximation coeffi-
cients and cD represents the detail coefficients. Figure 3
shows the hierarchy structure.
The novelty of the proposed work lies in the integration of
wavelet transformation with hierarchical encoding within a
Convolutional Neural Network (CNN) architecture. This
combination allows for more efficient feature extraction
and data representation, leading to a significant improve-
ment in the compression ratio. Wavelet transformation is
leveraged to capture both time and frequency domain fea-
tures, which are critical for effective audio compression.
The hierarchical encoding further refines the data repre-
sentation by breaking down the audio signal into progres-
sively finer details, which are then processed by the CNN
to identify and compress redundant information. The pro-
posed model has been rigorously tested against both ma-
chine learning-based techniques and state-of-the-art tradi-

tional lossless audio benchmarks. The experimental re-
sults demonstrate that our model not only achieves a higher
compression ratio but also maintains superior audio quality,
thereby outperforming existing lossless audio techniques.

Figure 3: Hierarchical structure

Table 2 shows the nodes in each of the layer of the struc-
ture. Also, it contains the corresponding binary values of
the level.

Table 2: Hierarchy levels and corresponding nodes

Level Binary value Nodes in the level
0 00 0
1 01 1,2
2 10 3,4,5,6
3 11 7,8,9

Algorithm 1: Encoding algorithm
Input: A slice of audio signal
Output: Compressed latent space representation of the
input audio
Method: The steps are given as below

1 (Sampling): The input stream is sampled, and the
sampled values are produced using the sampling pro-
cess. Let fmax is the highest signal frequency and
fsig be the frequency used for sampling. The Nyquist
theorem requires that the following criteria (1) be followed.

fsig > 2xfmax (1)

2 (Wavelet transformation): One dimensional three level
wavelet decomposition is utilized for the input vector (cre-
ated using audio sampled data) to create approximation co-
efficients (cA) and detail coefficients (cD). Equation (2)
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represents the wavelet transformation over input audio x(t).

Xa,b = 2−
a
b

∫ ∞

−∞
x(t)Ψa,b(t)dt (2)

a and b work as frequency parameter and time respec-
tively. Ψa,b(t) demonstrates shifted and dilated variety of
the mother wavelet Ψ(t). It is shown in equation (3).

Ψa,b(t) = 2−
a
b Ψ(2−at− b) (3)

2−
a
2 is constant. For wavelet transformation, which is iter-

ative in nature, decimal valued αab coefficient is applied.
Aab is represented as approximation coefficient and αab as
wavelet coefficient which are shown in equation 4 and 5
respectively .

Aa,b(t) =
∑
i

l(2b−i)A(a−1)i (4)

αa,b(t) =
∑
i

h(2b−i)α(a−1)i (5)

The multilevel discrete 1-D wavelet transformation creates
approximation coefficients (cA), detail coefficients (cD) in
each level.
Step 3 (Wavelet coefficient segregation): If the coeffi-
cient is positive, add two binary digits 00 else 10 for nega-
tive numbers. Multiply the numberwith 10000. And get the
absolute value. If the absolute value is single digit, prepend
3 zeros. If the absolute value is two digits, prepend 2 zeros
and prepend 1 zero if the absolute value is three digits. Pass
these 4 digits to hierarchical encoding module.
Step 4 (Hierarchical encoding):
i. Each of the digit from 0 to 9 is encoded using the hierar-
chical encoding technique following the figure 3 with pat-
tern like <hierarchical level><accumulated path value>
except 0.
Intput digit will be searched with the root node i.e.,

0 which is on the first level. If it is matched, encode it
with level number 0 and binary stream is 00. As 0 is the
root node, to encode 0, no extra bit is added with level.
Therefore, 0 will be coded as 00.

ii. If the input is 1 or 2, go to the table 2, correspond-
ing level is 1 and binary stream 01. Start s�earching
from left to right in the level 1. If the input digit is 1,
it will be encoded as 010 as it is in the left node of 0.
If 2, then it will be encoded as 011 as 2 is the right node of 0.

iii. If t�he input digits is 3 or 4 or 5 or 6, then as per
the table 2, level is 2 and binary as 10. Searching s�tart
from left to right in the level 2. If the input is 3, it will be
encoded as 1000 as it is in the left child of node 1. If the
input is 4, it will be encoded as 1001 as it is in the right
child of node 1. If the input is 5, it will be encoded as
1010 as it is in the left child of node 2. If the input is 6,
it will be encoded as 1011 as it is in the right child of node 2.

iv. If t�he input digits is 7 or 8 or 9, then as per the table 2,
corresponding level is 3 and binary as 11. Searching s�tart
from left to right in the level 3. If the input digit is 8, it will
be encoded as 11001 as it is in the right child of node 3. If
the input digit is 9, it will be encoded as 11010 as it is in the
left child of node 9.
Step 4 (CNN encoder): These binary streams are sent to
the CNN encoder for further compression.

Algorithm 2: Decoding algorithm
Input: CNN regenrated bit stream.
Output: Reconstructed original input audio.
Method: The steps are given as below

1. Step 1 (Hierarchical decoding):
i. CNN reconstructed bit streams are checked. First 2 bi-
nary bits are checked, if these bits are 0, then it is the root
node 0 and no extra bits need to check. It decoded as inte-
ger 0.
ii. Next 2 bits are checked, if it is 01, check the next single
bit. If it is 0, decoded as integer 1, else 2.
iii. Check the next 2 bits, if it is 10, test the next 2 bits. If
next 2 bits are 00, decode the integer as 3, 01 decoded as 4,
10 as 5, and 11 as 6.
iv. Test next 2 bits. If it is 11 then check next 3 bits. If next
3 bits are 000 then decoded as integer 7. If 001 then 8. If
010 then 9.
2. Step 2 (Inverse wavelet transformation): Inverse
wavelet is applied to reconstruct the input signal. Equation
(5) is used for discrete inverse wavelet transformation.

x(t) =
∑
a

∑
b

Aa,bΨa,b(t) (6)

3.1 CNN encoder decoder
Convolution Neural Network (CNN) [22] is very useful to
extract spatial features from the dataset by using CNN ker-
nel. In 2D CNN, Kernel slides along the two dimension.
This 2D CNN is very useful in extracting features from im-
age patterns. In the proposed technique, 2D convolutional
layer is being used for feature extraction from 68 x 68 x1
input image patterns.

3.1.1 Data preprocessing

Binary data stream generated from hierarchical encodeing
module preprocessed and fed as input to the CNN model.
Whole binary stream is segregated into each row of 4624
columns and stored as .csv file. Each row of 4624 binary
stream (0/1) is converted into into 68 x68 x 1 size im-
age patterns sequentially. Each of the binary bit is trans-
formed as pixel in the image. The CNN model is trained
and tested with these image patterns.Figure 4 shows how
the the binary strem is converted into image pattern required
for CNN codec input.
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Figure 4: Image pattern formation

3.1.2 CNN model configuration

The proposed CNNmodel’s computational efficiency is in-
creased by the optimal number of setup parameters, such
as convolutional layers, kernel size, stride, learning rate,
and optimizer function. A trial-and-error approach is used
to select the optimal parameters. Determining the opti-
mal parameter selection is aided by observing the increased
compression ratio, compression speed, and lower MSE. To
compute model losses, the mean square error(MSE) is em-
ployed. In addition, the audio quality of the regenerated sig-
nal was evaluated using additional quality parameters such
as PSNR, entropy, SDR, NCC, and MAE. Optimal design
configuration parameters are described in table 3. The pro-
posed CNN encoder decoder model consists of 4 convo-
lution and 4 deconvolution layers. To extract the feature
from the raw audio signal, we used 2D convolutional layer.
To reconstruct the signal, deconvolutional feature extrac-
tor has been used. Adam optimization has been applied to
fine tune the network. Various combinations of kernel and
stride sizes were tried along with filters during the experi-
ment. Trial and error methods were used to finalize the pa-
rameters until the least amount of loss was achieved. Input
layer of the CNN accepts 68 x 68 x 1 size image generated
from binary data as input, the output layer of the CNN ex-
tracts features from input, and hidden layers are used for
processing purposes. With this architecture, the learning of
the neural network performed for every input a weight that
demonstrates a particular output. Convolution kernels are
(3,3) in each layer with an activation function (ReLU). The
CNN layer selected above for the experiment by trial-and-
error method for getting the best result. To prevent over-
fitting dropout is considered as 0.1. 100 epochs were se-
lected for evaluating the performance of the current model.
Figure 11 shows the shpae and parameters of the CNN en-
coder model. Figure 12 shows the shpae and parameters of
the CNN decoder model. Figure 13 shows the shpae and
parameters of the CNN encoder decoder combined model.

3.1.3 Training

The entire CNN network is built and trained using the Ten-
sorflow / Keras framework [15]. The ability to create net-

Table 3: CNN Model parameter configuration
Sl. no Model Parameters Value
1 Number of convolution layer 4
2 Convolution layer kernel size (4 layer) (3,3)
3 Convolution layer stride (2,2)
4 Convolution layer activation function ReLU
5 Number of hidden units in LSTM layer 24
6 Batch size 128
7 Learning rate 0.001
8 Optimizer Adam.
9 Loss function MSE
10 Epochs 100

work layers and train the network in according to the sug-
gested specifications is greatly facilitated by Tensorflow /
Keras. As a result, the network is trained after it converges,
and appreciable decrease in training loss is seen. The final
step is to evaluate, examine, and compare the total results
to the established benchmark results.
The practical aspects of implementing the proposed codec
are addressed by highlighting that the method can be tai-
lored to specific needs in the audio compression field. Im-
plementing the suggested model will lead to reduced com-
plexity, improved compression ratio, and faster processing
speeds. Additionally, it will decrease memory usage and
network bandwidth requirements, making it more efficient
for real-world applications

4 Experimental setup
This section discusses a number of necessary elements for
the experiment, such as the environment setup, dataset
preparation, data preprocessing, tools and software used,
etc.

4.1 Environment
Tensorflow and Keras framework with Python 3.6 was used
to implement the proposedmodel. Intel Core i7-4790S Pro-
cessor, 16 GB RAM, 64-bit operating system, and 1 TB
Hard drive were used to carry out the experiment.

4.2 Datasets
We prepared a customized dataset WL-
CLAC_model_training_dataset to train the WLCLAC
model. Three hundred audio files, all of the same duration
approximate (3 seconds), make up the dataset. Rabindra
Sangeet, classical, rock, pop, and sufi are among the genres
of audio songs. The training dataset was not divided into
separate sets for testing. Rather, we employ 25 distinct
audio tracks that fall into the five categories listed above,
each lasting approximately ten seconds. The training and
testing datasets are prepared using audio songs of the.wav
file type, with a sampling rate of 44100 Hz. To record the
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Table 4: Recording parameters

Recording parameter name Values
Recorded file format .wav

Recording time(training) approx. 3 seconds
Sampling rate 44100 Hz

Recording time(testing) approx. 10 seconds
Bit depth 16 bits
Channel Mono (1)

music in.wav format and play the audio on the computer,
Audacity software (Audacity 2.3.2) was utilized. The
two-channel stereo audio signals are transformed to mono.
The audio track has 16 bits of bit depth.

4.3 Details of recording parameters
The preparation process and parameters
for the WLCLAC_audio_training_and WL-
CLAC_audio_testing_datasets is covered in detail in
this section. Songs are recorded in.wav format using
Audacity, resulting in a data collection with a 44100 Hz
sample rate. The songs that comprise the customized
dataset are recorded using five standard parameters. Table
4 displays the parameters’ setup values.

4.4 Evaluation metrics
Evaluation of the proposed model’s correctness and perfor-
mance is required. In order to assess performance, several
metrics are employed which are discussed below.

– Compression. Compression measures the amount of
storage space the model can spare for the data. To
compute the space saving, utilize equation (7) [17].
Compression ratio is a crucial metric for assessing the
suggested model’s capacity for compression. Here,
the recommended WLCLAC approach was used to
achieve average 85.72% compression while maintain-
ing signal quality.

Compression(%) =
Original–compressed

Original
× 100

(7)

– Mean square error(MSE). Performance of the pro-
posed audio codec is assessed using mean square
error[23]. Here, equation (8) is utilized to determine
the MSE of the present model.

MSE =

∑n
j=1(xj − x′

j)
2

n
(8)

Where n is the number of sample points, xj and x’j are
the actual and reconstructed values of each data point,
respectively

– Entropy. Entropy is the average amount of informa-
tion contained in a symbol or variable [24]. The un-
predictable nature is shown by the entropy. Equation
(9) is used to calculate the entropy for the proposed
model.

H(X) =

m∑
k=1

P (xk) log2 P (xk) (9)

H(x) indicates entropy of x. Here, x denotes the
random variable. It takes values from the set
of values x1, x2, ...xm corresponding probabilities
P (x1), P (x2), ..P (xm) where

∑
k=1..m P (xk) = 1

– PSNR(in dB). A technique for assessing the quality of
the original signal in compressed audio files is the peak
signal to noise ratio (PSNR) [25] [26]. Equation (10)
is used to calculate PSNR

PSNR = IJ

∑
i,j X

2
i,j∑

i,j(Xi,j −Xi,j)2
(10)

Here, Xi,j denotes the original values and is repre-
sented by Xi,j reconstructed values.

– Normalised cross correlation. Input and reconstructed
audio signals are compared using NCC. Higher cor-
relation is indicated by a higher NCC. Two identical
signals result in a score of 1. NCC is calculated using
equation (11).

NCC =

∑
i,j Xi,jXi,j∑

i,j X
2
i,j

(11)

Where X are the reconstructed values, and X are the
input values to the model.

– Mean Absolute Error(MAE). The average of the vari-
ations between the generated values and the original
values is referred to as the ”mean absolute error” [27].
This measure displays the variations between the input
and the reconstructed value. Equation (12) gives the
following illustration of it:

MAE =

∑n
j |Xj −X ′

j |
n

(12)

– Signal distortion ratio(SDR): The experiment uses
SDR[28] to measure the reconstructd signal’s audio
quality. The SDR uses decibels (dB). SDR is a mea-
sure of how close the reconstructed signal(Srecon) was
to the original signal(Sorig). The calculation is as fol-
lows. The proposed method produces an average Sig-
nal to Distortion Ratio (SDR) of 42.45 dB.

SDR = 10log10
|Sorig|2

|Srecon − Sorig|2
(13)
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5 Results and analysis
The wavelet decomposition module receives all of the au-
dio from the WLCLAC_audio_training_dataset. Using
the proposed hierarchical binary encoder, the appropriate
wavelet coefficients are encoded into binary patterns. The
CNN encoder-decoder model uses all of the binary data
streams that match the training dataset as input. 30% of
the CNN model’s input training dataset is used for val-
idation and 70% for training. The CNN model testing
dataset is generated in a similar manner from the WL-
CLAC_audio_testing_dataset. The WLCLAC codec is
tested individually using this testing dataset. In order to
compute the compression independently, the three stages
of the suggested codec are assessed during the experiment.
The results are thoroughly explained in Section 4.1.

5.1 Experimental results
Three existing conventional lossless audio compression
techniques like Monkey’s Audio [29], Wavpack Lossless
[15], and FLAC [13] are considered as referenced systems
to evaluate the performance of the proposed model. Ta-
ble 5 shows the compression performance of the proposed
codec with the three existing codecs and it is evident that
the current model achieves 85.72% (shown in table 5) com-
pression which is higher than 56.45%, 51.18%, and 70.64%
compressions achieves by Monkey’s Audio [29], Wavpack
Lossless [15], and FLAC [13] respectively. Figure 5 shows
the graphical representation of the compression, PSNR, and
entropy achieved using WLCLAC with reference to exist-
ing referenced lossless audio compression techniques.
Using a variety of audio tracks, the compression speed

implies encoding and decoding times of the proposed tech-
nique are compared with other state-of-the lossless audio
codecs. The resultset is shown in table 6 and it is evident
that a reduction in the encoding and decoding times of the
suggested approach translates into an increase in compres-
sion speed. Figure 6 compares the encoding and decod-
ing speed graphically. For all the parameters, WLCLAC
achieves better results.

Table 5: Performance of the proposed model in relation to
the existing audio codecs

Method Compression(%) Entropy PSNR(dB)
Monkey’s Audio 56.45 13.35 52.98

Wavpack 51.18 13.55 52.12
FLAC 70.64 13.56 52.56

WLCLAC 85.72 13.67 56.56

Also, we have done the robustness performance evalu-
ation of the proposed model with 3 others existing deep
learning based lossless audio codecs : i) DLLAE [5] ii)
Daniela N. Rim et al.[19] iii) LINNE [30]. Proposed WL-
CLAC model is capable of regenerating the original audio
signal with very negligible deviations. Mean square error

Figure 5: Comparison of the compression and quality pa-
rameters for WLCLAC

Table 6: Encoding and decoding time comparison

Method Encoding(sec.) Decoding(sec.)
Monkey’s Audio 0.06782 0.06802

Wavpack 0.07134 0.07211
FLAC 0.06871 0.06921

WLCLAC 0.06321 0.06431

value evaluated for the proposed model is 0.001822. Also,
the RMSE of the proposed model is 0.042684. MAE value
calculated for the proposed model is 0.033912. Close to 0
value of the MAE and RMSE indicates the robustness of
the system and close similarities between original and pre-
dicted signal. Also, another parameter called NCC used to
measure the regenerated signal quality is 0.998761. Closer
to 1 NCC value indicates regeneration is good. Table 7
shows the evaluated values of the parameters like MSE,
RMSE, MAE, and NCC of the current model with respect
to the other referenced prediction system to demonstrate the
accuracy and robustness of the model. Table 8 compares
the compression ratio(%) produced by the new approach to
the other DNN model. According to table 8, the proposed
lossless audio codec produces more compression than the
existing models. Figure 7 shows the graphic comparison of
category-wise compression of compression ratio (%) of the
proposed model with other existing neural network based
models.

Table 7: Robustness performance comparison with exiting
DNN model

Method MSE RMSE MAE NCC
WLCLAC 0.001822 0.042684 0.33912 0.998761
DLLAE [5] 0.017872 0.133686 1.161451 0.985634

Daniela N. Rim et al.[19] 0.134536 2.185838 2.617224 0.981232
LINNE[30] 0.125162 0.158625 2.017224 0.986578



648 Informatica 48 (2024) 641–652 A. Debnath et al.

Figure 6: Comparison of the compression speed

Table 8: Categorywise compression comparison

Method Pop Sufi Ghazal Rabi Classical
DLLAE [5] 87.18 86.47 86.01 87.01 86.12

Daniela N. Rim et al. [19] 84.21 82.34 82.15 83.81 83.27
LINNE [30] 73.76 75.32 73.38 71.13 73.48

Proposed method 85.18 85.01 86.89 85.4 86.12

Figure 7: Comparison of the compression ratio(%)with ex-
isting DNN models

Figure 8 represents the regenerated audio signal by the
WLCLAC model. Therefore, it is visible that regener-
ated signal is like original signal with negligible deviations.
Therefore, the experimental data set demonstrates that the
proposed method, when compared with existing standard
audio compression approaches, acquired a higher compres-
sion ratio and improved audio regeneration quality.

Figure 8: Comparison of the original and regenerated signal

Figure 9 shows the epochwise loss of the model. Figure
10 shows the epochwise training pregress and correspond-
ing mse loss of the model.

Figure 9: Model loss

Figure 10: Epochwise training progress

Figure 11: Shape and parameters of the CNN encoder
model
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Figure 12: Shape and parameters of the CNN decoder
model

Figure 13: Shape and parameters of the CNN encoder de-
coder model

The Mean Opinion Score (MOS) is used to assess the
perceptual quality of the regenerated audio signals . Table
9 displays the MOS measurement of the regenerated au-
dio quality. According to table 9, a sound quality grade of
”5” indicates ”Excellent” sound, while a grade of ”1” in-
dicates ”Bad” sound. The ITUR Rec. 500 quality rating
is appropriate for the present quality measuring activities.
because it offers a quality rating ranging from 1 to 5 [33].
The MOS (mean opinion score) number for the various cat-
egories evaluated by the current technique, 5, indicates that
the reconstructed audio quality remains unaffected by this
tiny data change throughout the transformation, since it is
over the threshold level of human perception.

Table 9: A rating system to evaluate the decline in audio
quality.
Rating Impairment Quality

1 Very annoying Bad
2 Annoying Poor
3 Slightly annoying Fair
4 Perceptible, not annoying Good
5 Imperceptible Excellent

6 Conclusion and future scope
The proposed model has been trained and validated using
real-time audio data. The proposed model’s performance
is assessed in comparison with those of current standard
lossless audio codecs. The mean square error of the robust
model is very less. Compression of the proposed model
is 85.72%, which is higher compared with existing loss-
less audio codecs. The computational time for the model
is lower than the referenced systems. The future scope of
the work is to enhance the computational performance and
compression by enhancing the model.
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