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This research presents a fuzzy PID controller enhanced by an RBF neural network, utilizing MATLAB for 

simulation and testing to explore the integration of intelligent sensors in electrical engineering automation 

systems. The study initially focuses on the specific characteristics and accuracy requirements of electrical 

engineering and automation control, using a permanent magnet brushless DC motor as a case study for 

intelligent technology applications. The fuzzy neural network PID algorithm is applied to analyze the 

control performance of the motor circuit breaker's closing speed. Simulation results indicate that the fuzzy 

neural network PID algorithm reduces the motor's closing tracking speed error rate by 0.33 m/s compared 

to traditional PID algorithms, demonstrating its superior control effect. Subsequently, an experimental 

platform was established with a permanent magnet brushless DC motor, and the fuzzy neural network 

PID control algorithm was implemented. Experimental results show that the algorithm maintains the 

closing tracking speed error rate at a low level of 0.22 m/s. These outcomes highlight the potential of 

integrating fuzzy neural network-based controllers in enhancing the efficiency and precision of 

automation systems. The findings confirm that intelligent fuzzy neural network control algorithms 

significantly improve the accuracy and reliability of automation control in electrical engineering, paving 

the way for more advanced applications. 

Povzetek: Članek obravnava uporabo inteligentnih senzorjev in naprednih algoritmov, kot sta PID mehke 

množice in RBF nevronske mreže, za izboljšanje avtomatizacije in učinkovitosti električnih inženirskih 

sistemov. 

 

1 Introduction 
Electrical engineering automation control plays an 

important role in the operation of the entire power system. 

The automation construction of electrical engineering 

plays a decisive role in the quality of the entire power 

system operation. To promote the comprehensive and 

rapid development of electrical engineering and improve 

the technical level of electrical engineering automation 

control, it is necessary to integrate more advanced 

scientific and technological achievements into electrical 

engineering automation control. Intelligent technology is 

a relatively advanced technology that has been widely 

applied in electrical engineering automation control and 

has provided a promoting role for the development of 

electrical engineering automation control. With the rapid 

development of the national economy and the continuous 

progress at scientific and technological levels, people's 

requirements for quality of life are becoming higher and 

higher. It is urgent to hope that all work, daily life, and 

other things can be achieved through computers or 

artificial intelligence. Of course, it is indeed a bit difficult 

to fully achieve automation at present, but for various 

monitoring systems, it is easy to achieve automated 

monitoring, especially in the electrical equipment 

department environment for the power system [1]. 

 

 

Automated monitoring systems play a very important role 

in the safe operation of electrical equipment in the power 

system and play an indelible role in fully realizing 

computer automation and artificial intelligence 

monitoring. The safe operation of the power system plays 

a crucial role in the stability and unity of a country, the 

stability and harmony of a society, and the rapid 

development of an enterprise. In the power system, 

electrical equipment is a very important and indispensable 

component of the entire system. To ensure the safe and 

stable operation of the power system, a monitoring system 

for the safe and stable operation of electrical equipment is 

essential. In the entire safety and stability monitoring 

system, intelligent sensors are the key components, which 

can not only convert various abnormal signals into 

electrical signals for transmission but also complete 

corresponding data processing, display, and other 

functions. Monitoring the safe and stable operation of 

electrical equipment in the power system is very 

important. Therefore, the application research of 

intelligent sensors in electrical equipment monitoring is of 

great practical significance for learning the safe and stable 

operation of electrical equipment in the power system, as 

well as for subsequent maintenance and repair. With the 

continuous promotion of the automation industry, 

achieving integrated and collaborative control with 

artificial intelligence as the benchmark and terminal 
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control devices as the carrier plays an important role in 

promoting social development and people's lives at this 

stage.  

 
Figure 1: Intelligent sensors for automation equipment in electrical engineering 

 

 

For electrical equipment, the development and application 

of automated monitoring systems can supervise the entire 

process of the equipment system, relying on intelligent 

sensor technology and its equipment to act in various 

control links of electrical institutions, and combining 

information sensing technology, intelligent control 

technology, etc. to achieve integrated and collaborative 

management of equipment in the entire power system, 

once a potential malfunction occurs, the warning function 

of the main system can be triggered promptly, allowing 

staff to clearly understand the current location of the 

malfunction and the various operating conditions of 

electrical equipment, providing decision-making 

suggestions for the later operation and maintenance work.  

Figure 1 depicts the intelligent sensors for automation 

equipment in electrical engineering, which gives a 

summary of the key concept of the research and shows 

how intelligent sensors work with automation equipment 

in electrical engineering. From the perspective of device 

operation mode, comprehensive and three-dimensional 

monitoring is carried out through intelligent sensors. The 

process of converting signal information into electrical 

signals for digital processing can achieve full processing 

and 24/7 detection, ensuring the reliability of power 

equipment and its system operation [2].  

Automation in electrical engineering has transformed 

numerous industries by improving accuracy, productivity, 

and dependability in intricate operations. With the 

increasing demand for advanced and self-sufficient 

systems, the integration of cutting-edge technologies has 

become essential. The objective of this study is to 

investigate and create new control strategies using 

intelligent sensors, with a particular emphasis on 

enhancing control systems by incorporating a fuzzy PID 

algorithm and RBF neural networks. The main goals are 

to create, enhance, and verify these intelligent control 

strategies to enhance system performance, even when 

faced with uncertainties and nonlinearities. Automation in 

electrical engineering plays a vital role in streamlining 

processes, minimizing human involvement, and 

enhancing safety and efficiency in industrial settings. 

Historically, control systems predominantly utilized 

conventional PID controllers because of their simplicity 

and reliability. However, these controllers encounter 

difficulties when handling intricate, nonlinear, and time-

dependent systems. As a result, there has been a rise in 

advanced control techniques that can adjust to varying 

circumstances and enhance the overall efficiency of the 

system. Intelligent technology encompasses systems that 

employ sophisticated computational methods, including 

machine learning, fuzzy logic, and neural networks, to 

analyze data, make informed choices, and enhance 

operational efficiency without human intervention. In the 

realm of electrical engineering automation, intelligent 

technology empowers the creation of adaptive and self-

tuning control systems capable of managing uncertainties, 

nonlinearities, and dynamic environments. Some 

examples of smart technology in this field include fuzzy 

logic controllers, neural network-based control systems, 

and sensors that can analyze data in real time and make 

decisions accordingly. 

An area of growing interest in electrical engineering 

automation equipment is the integration of intelligent 

sensors. Nonetheless, a dearth of thorough studies 

addressing the particular difficulties and possibilities in 

this situation exists. The widespread reliance of existing 

systems on conventional sensors may limit the 

effectiveness and flexibility of automation processes. The 

goal of this study is to investigate how intelligent sensors 

might improve the efficiency and dependability of 

automation equipment used in electrical engineering. Our 

goals are to maximize energy efficiency, enhance fault 

detection, and strengthen the overall robustness of the 

automation system by utilizing the capabilities of these 

sensors. This might have a big impact on sectors like 

manufacturing and energy production that depend on 

reliable and efficient automation systems. By offering a 

comprehensive analysis of the use of intelligent sensors, 

this research aims to advance the field of electrical 

engineering. The study will provide information on the 

development and application of intelligent sensors for 



Application of Intelligent Sensors in the Collection of Electrical… Informatica 49 (2025) 135-146   137 

automation equipment, emphasizing the effects of these 

sensors on fault tolerance, adaptability, and energy 

efficiency. The results of this study can help design more 

intelligent and effective electrical engineering automation 

systems, which will ultimately help a variety of sectors 

and advance environmentally friendly automation 

techniques. 

2 Literature review 
With the rapid development of the electrical industry, 

safety accidents have also increased. In the electrical 

engineering industry, safety issues have always been an 

important issue affecting the sustainable development of 

the industry. Therefore, reducing or preventing the 

occurrence of safety accidents has become a major 

challenge in the electrical engineering industry. The main 

functions of the electrical control system include 

monitoring and measurement, protection, and automatic 

control. The electrical control system consists of three 

main parts: sensors, buttons, switches, and other input 

parts; logic components such as relays and electric shock; 

electromagnetic coils, indicator lights, and other executive 

parts. Due to the complex structure of electrical 

engineering, it is relatively difficult to regulate between 

system modules, which can lead to a series of problems in 

stable operation. This is also an important issue in 

traditional electrical engineering automation control. By 

applying intelligent technology and integrating it into 

electrical engineering automation control systems, the 

system’s operational efficiency can be better improved, 

thereby creating favorable conditions for the progress of 

electrical engineering automation control. Lee et al. 

presented a fuzzy PID control algorithm based on a neural 

network model is proposed. Because neural network 

models can learn a lot, electrical engineers can accurately 

change the dynamic control of variables. This lowers the 

error rate in changing variables and raises the accuracy of 

automatic control in electrical equipment [3].  

Song et al. operated with a permanent magnet motor 

where fuzzy neural network PID control algorithm is used 

to control the permanent. The control experiment of the 

closing time of the magneto vacuum switch proves that, 

compared to other control algorithms, the fuzzy neural 

network PID algorithm can be more flexible in controlling 

the closing time [4]. 

Currently, intelligent technology has been continuously 

promoted and applied in various industries, gradually 

forming a complete system and greatly improving its 

comprehensive performance. Therefore, there is a stronger 

demand for intelligent technology in many fields. To 

better achieve system intelligence, research in this field 

should also be strengthened in future development so that 

intelligence can better liberate human labor, especially in 

some high-risk industries. The application of intelligence 

can better avoid casualties caused by production activities 

and reduce losses. The application of intelligent 

technology in electrical engineering automation control 

mainly focuses on three research directions: how to 

achieve intelligent control, establishing a complete neural 

network, and implementing fuzzy logic. Intelligent 

technology, as a branch of computer technology, is an 

extension of human thinking. By imitating human 

thinking, it can promote the better development of 

intelligent technology [5]. The application of intelligent 

technology mainly involves collecting information and 

then converting and processing it to achieve final 

feedback. Against the backdrop of rapid technological 

development, the application of intelligent technology has 

become ubiquitous in people’s living environments and 

has also been applied in automation technology. In the 

future, continuous in-depth research on intelligent 

technology can better enhance its operability in 

automation applications, thereby achieving effective 

control of machines, intelligent production, and 

effectively improving work efficiency [6]. Table 1 

presents an overview of research articles on the use of 

intelligent sensors in automation equipment for electrical 

engineering.  

 

 

Table 1: An overview of intelligent sensors in automation equipment for electrical engineering 

References Contribution Technology Used Benefits Drawbacks Solutions 

[7] 
Improved fault 

detection 

IoT, Machine 

Learning 

Enhanced 

reliability 
High initial costs 

Cost-effective sensor 

networks 

[8] Energy efficiency 
Wireless 

Communication 

Reduced energy 

waste 

Limited sensor 

lifespan 
Sensor energy harvesting 

[9] Real-time monitoring 
Edge Computing, 

Sensors 

Minimized 

downtime 
Data security concerns Enhanced encryption 

[10] Adaptive automation AI, PLC systems 
Increased 

flexibility 
Complex integration 

Advanced system 

integration 

[11] 
Sustainable 

automation 
Nanosensors, MEMS Green Automation Limited precision Improved calibration 

[12] 
Predictive 

maintenance 

Big Data, Data 

Analytics 
Cost savings Data overload Efficient data processing 

[13] 
Human-machine 

collaboration 
Robotics, IoT Improved safety Potential cyber threats Robust cybersecurity 

[14] Industrial IoT 5G, Cloud Computing 
Enhanced 

connectivity 
Network latency Low-latency networking 
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[15] Condition monitoring 
Wireless Sensor 

Networks 

Early fault 

detection 

Limited network 

coverage 
Distributed sensor nodes 

[16] 
Automation 

adaptability 
Machine Vision, AI 

Improved 

adaptability 
Data privacy concerns Secure data handling 

This literature focuses on the incorporation of intelligent 

sensors in electrical engineering automation equipment 

and is summarized in this table. Together, the publications 

advance several areas in this discipline, including real-

time monitoring, energy efficiency, and defect 

identification. IoT, machine learning, and wireless 

communication are some of the technologies used, which 

have advantages including lower downtime, more energy 

efficiency, and enhanced dependability. Researchers 

suggest low-cost sensor networks, energy harvesting, 

improved encryption, and stronger system integration as 

ways to solve these problems. From the above research, it 

can be seen that the application of intelligent technology 

in electrical engineering and automation control mainly 

focuses on improving control accuracy. Therefore, based 

on the characteristics of intelligent technology in electrical 

engineering and automation control, this study focuses on 

permanent magnet brushless DC motors and uses a fuzzy 

neural network PID algorithm to study the control effect 

of the closing speed of motor circuit breakers [17].  

The integration of intelligent sensors into electrical 

engineering automation has gained considerable attention 

in recent years. Various studies have investigated the use 

of advanced control strategies to solve problems that 

present nonlinearities, uncertainties, and dynamic 

environments in control systems. Recent research has 

investigated a wide range of intelligent control methods 

beyond fuzzy PID algorithms and neural networks. For 

instance, studies have examined the application of genetic 

algorithms, model predictive control (MPC), and adaptive 

neuro-fuzzy inference systems (ANFIS) in enhancing the 

performance of control systems in various industrial 

applications. Chowdhury et al. (2024) explored the use of 

MPC in energy management systems, demonstrating 

improved efficiency and stability in power grids [18]. 

Similarly, Nassef et al. (2023) highlighted the 

effectiveness of ANFIS in optimizing control strategies in 

robotics [19]. These approaches illustrate the diversity of 

methodologies being explored to address complex control 

challenges. While many studies have shown the potential 

of intelligent control strategies, there are still gaps and 

inconsistencies in the literature. For example, despite the 

widespread use of fuzzy PID controllers, some research 

has pointed out their limitations in handling highly 

nonlinear systems without significant tuning efforts [20]. 

Additionally, while neural networks have been praised for 

their adaptability, they often require extensive training 

data and computational resources, which may limit their 

applicability in real-time control scenarios [21]. These 

challenges highlight the need for further research to 

develop more robust and efficient control algorithms that 

can be applied in diverse industrial contexts. In control 

systems, various algorithms like traditional PID 

controllers, Model Predictive Control (MPC), Sliding 

Mode Control (SMC), and adaptive control are used. 

Traditional PID controllers are simple but struggle with 

nonlinearities and require manual tuning. MPC handles 

multi-variable systems but is computationally heavy, 

limiting real-time use. SMC is robust but can cause high-

frequency oscillations, known as chattering. Adaptive 

control adjusts in real-time but can be complex and 

unstable. The proposed fuzzy neural network PID control 

algorithm outperforms these methods by combining the 

adaptability of neural networks with the robustness of 

fuzzy logic, offering better control accuracy and handling 

of nonlinearities without extensive manual tuning. 

3 Fuzzy PID algorithm  
The Fuzzy Proportional-Integral-Derivative (PID) 

algorithm is a widely used control strategy that combines 

the traditional PID controller with fuzzy logic to handle 

nonlinearities and uncertainties in control systems. This 

hybrid approach allows for more adaptive and robust 

control, particularly in complex industrial environments. 

In the design of the Fuzzy PID algorithm, specific choices, 

such as the selection of membership functions and fuzzy 

rules, play a crucial role in determining the controller’s 

performance. The triangular membership function was 

selected due to its simplicity and effectiveness in 

capturing the gradual transitions between different control 

states. Additionally, the fuzzy rules were designed based 

on expert knowledge and system requirements, aiming to 

optimize the control response by adjusting the PID 

parameters dynamically. If the error is large and positive, 

the fuzzy rules might increase the proportional gain to 

speed up the response, while simultaneously adjusting the 

integral and derivative gains to avoid overshooting. Figure 

2 shows the fuzzy PID algorithm control process. It 

includes fuzzification, fuzzy reasoning, speed PID 

adjustment, and deblurring modules. By setting 

membership functions and fuzzy rules, fuzzy PID figures 

out the error e and error rate ec between the given speed 

and the motor’s output speed. It then gets the changes in 

control parameters and finally gets the control variables by 

blurring. 
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Figure 2: Fuzzy PID control process

 

i. Fuzzification: Perform fuzzy processing on the error 

e and error rate ec between the given input speed and 

actual output speed of the system. The specific fuzzy 

processing formula is shown in Equation 1. 
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In the formula, k represents the output quantity; T 

represents time; r represents the given value; Y (h) 

represents the output value 

 

ii. Resolve ambiguity: The ultimate goal of deblurring 

is to obtain clear variable values, and the specific 

deblurring formula is shown in Equation 2. 
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In the formula, Xi represents the ith fuzzy output 

quantity, and (X) represents the membership degree 

of the ith fuzzy output quantity. 

3.1 RBF neural network 

RBF neural networks have the advantages of simple 

structure and strong learning ability, so they are widely 

used in the field of control. Considering the negative 

correlation between the number of network layers and 

computational complexity, to balance the control and 

computational capabilities of the algorithm, a three-layer 

neural network structure was selected as the control 

subject, which includes an input layer, an output layer, and 

a hidden layer. 

3.2 Design of fuzzy neural network PID 

controller 

Fuzzy PID can adjust parameters without a precise 

mathematical model to achieve precise control objectives. 

At the same time, RBF neural networks have strong 

learning abilities and use membership functions to 

determine the weight at a certain time, thereby controlling 

variables. Therefore, combining the two algorithms can 

more effectively achieve precision control. In the 

combination of fuzzy PID and RBF neural networks,  

 

commonly used methods include using a certain algorithm 

as the main method or a comprehensive combination of 

the two. It is tried using both RBF neural networks as the 

main control method and fuzzy PID control as an extra 

method. This is because RBF neural networks can learn on 

their own. During the control process, the neural network 

improves the performance of the speed control system 

through adaptive learning, adjusting network parameters, 

and real-time processing of the speed and current 

information of the driving motor [22]. 

According to Figure 1, the control process of the RBF 

neural network structure is as follows: The fuzzy PID 

algorithm's output is first linearized by the input layer. The 

processing results are then sent to the hidden layer to be 

discretized using Gaussian functions. Finally, the results 

are sent to the output layer to be added up linearly to get 

the final parameter variables. The specific calculation 

formula is as follows:  

 

i. In the hidden layer, the Gaussian function expression 

is shown in equation (3). 
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ii. In the output layer, the linear summation formula is 

shown in equation (4), where   represents the 

network weight. 

mmm hhhy  ++= 2211
 (4) 

 

The Radial Basis Function (RBF) Neural Network is a 

type of artificial neural network that is particularly well-

suited for function approximation, pattern recognition, 

and control system applications. The RBF network is 

valued for its ability to model complex nonlinear 

relationships with a relatively simple structure, which 

includes an input layer, a hidden layer with radial basis 

functions, and an output layer. The core concept of an RBF 

Neural Network lies in the transformation of input data 

into a higher-dimensional space, where it becomes easier 

to separate or approximate the desired output. In this 

network, the hidden layer consists of neurons that employ 

radial basis functions (typically Gaussian functions) as 

activation functions. 
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Figure 3: Structure of RBF neural network 

 

Each neuron in the hidden layer calculates the distance 

between the input vector and a center point (a prototype 

vector), and then applies the radial basis function to 

produce an output. This output, which represents the 

activation level of the neuron, is then weighted and 

summed in the output layer to produce the final result. The 

RBF Neural Network offers several advantages in the 

context of control systems. One of the primary benefits is 

its ability to approximate nonlinear functions with high 

accuracy due to the localized nature of the radial basis 

functions. This makes the RBF network particularly 

effective in scenarios where the system dynamics are 

complex and highly nonlinear. Additionally, the training 

process for RBF networks is often faster than that of 

traditional multilayer perceptrons (MLPs), as it typically 

involves solving a linear problem once the centers are 

fixed. 

The structure of the RBF Neural Network is depicted in 

Figure 3. The input layer receives the raw input data, 

which is then passed on to the hidden layer. Each input 

corresponds to one neuron in this layer, meaning the 

number of neurons in the input layer equals the 

dimensionality of the input data. The second layer is 

hidden layer which is the core of the RBF network. Each 

neuron in this layer computes the distance between the 

input vector and a predefined center, applies a radial basis 

function (such as a Gaussian function) to this distance, and 

outputs a value representing the neuron's activation level. 

The number of neurons in the hidden layer determines the 

network's capacity to model complex functions. Each 

hidden neuron has an associated width (spread) parameter, 

which controls the radius of influence of the radial basis 

function. The final layer is the output Layer that computes 

the weighted sum of the activation levels from the hidden 

layer to produce the final output. In a control system 

application, the output might represent control signals or 

predicted system behavior. The weights connecting the 

hidden and output layers are typically adjusted during the 

training process to minimize the error between the 

predicted and actual outputs. 

4 Experimental verification 
The experiments were conducted in a MATLAB/Simulink 

environment. The system being controlled was modeled as 

a nonlinear dynamic system, with parameters chosen to 

reflect realistic conditions. The fuzzy PID controller and 

RBF Neural Network were implemented using custom 

MATLAB functions and Simulink blocks. The design 

involved selecting appropriate membership functions for 

the input and output variables. The fuzzy rules were 

created based on expert knowledge of the system 

dynamics. The network was trained using a dataset 

generated from the system’s response under various 

control conditions. The number of neurons in the hidden 

layer and the spread parameters were optimized using 

cross-validation. 

4.1 Simulation experiment verification 

Build the motor and its control system using Matlab 

software; analyze and compare the control effects of the 

fuzzy neural network PID controller and the traditional 

PID controller [23]. To verify the driving effect of the 

simulation motor system, the following no-load 

simulation driving experiments are conducted on the 

simulation model, and the simulation motor parameters 

are set as: The stator winding inductance of the motor is 

3.3 mL, the resistance is 0.335, the motor has 2 pairs of 

pole pairs, the rotational inertia is 0.36 kg/m2, the voltage 

is 210 V, and the simulation time is 72 ms [24].  

4.2 Simulation of fuzzy neural network PID 

algorithm 

4.2.1 Load and parameter settings 

The experiment in simulation is done with no load on the 

motor. In real life, the motor control system will create 

load from the driving motor’s angular displacement, 

which is mostly seen in the circuit breaker opening and 

closing. The opening and closing processes of circuit 

breakers are opposite but have analogies. The author takes 

circuit breaker closing as an example, starting from the 

perspectives of constant load and variable load and 

combining the simulation model of the motor control 

system. The simulation experiments are conducted on the 

algorithm control in Chapter 2, comparing the control 

effect of the traditional PID algorithm and the fuzzy neural 

network PID algorithm on the motor speed during the 

circuit breaker closing process. The simulation experiment 

parameters are set as shown in Table 2.  

4.2.2 Control algorithm simulation 

The simulation is carried out for constant and variable load 

simulation and each of these analyses is explained below. 

 

i. Constant load simulation:  

Keep the load power of the driving motor constant, and set 

the maximum speed change node at the gate close position 

with a size of 2.20 m/s and a simulation time of 65 ms. 

The resulting curves obtained from the two control 

algorithms are shown in Figure 4 (a), (b), (c), and (d). 

According to the results, the maximum error of traditional 

PID control is 0.04 m/s within 0–25 ms before just closing. 

Within the first 25 ms to 65 ms after the fusion, the 
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maximum tracking speed error is 0.20 m/s, while the 

maximum error of traditional PID control is 0.20 m/s. 

Under the control of a fuzzy neural network, the maximum 

error is 0.03 m/s within 0 ms to 25 ms before the initial 

closure; within the first 25 ms to 65 ms after the collision, 

the maximum tracking speed error is 0. At 7 m/s, the 

maximum error of fuzzy neural network control is 0.07 

m/s. The comparison results demonstrate that fuzzy neural 

network control reduces traditional PID control’s error in 

the pre-closure stage by 0.02 m/s and that in the post-

closure stage, fuzzy neural network control’s maximum 

error is 0.05 m/s less than that of traditional PID control. 

The experimental results show that under constant load 

conditions, the fuzzy neural network control algorithm has 

smaller errors, smaller curve fluctuations, and more 

accurate control results compared to traditional PID 

control algorithms [25, 26]. 

 

ii. Variable load simulation: 

At the same time, adjust the constant power of the driving 

motor to the same magnitude and change the speed. The 

preset maximum speed is still set at the gate close position, 

with a value of 2.26 m/s and a simulation time of 66 ms. 

The control algorithm's control effect on the variable and 

the simulation experimental results are shown in Figure 5 

(a), (b), (c), and (d). 

According to the results, the maximum speed error in the 

pre-closing stage (0 ms~26 ms) under traditional PID 

control is 0.08 m/s. In the post-closing stage (26 ms~66 

ms), the maximum speed following the difference is 0.49 

m/s. Therefore, the maximum PID control error is 0.49 

m/s. The maximum error of fuzzy neural network control 

is 0.08 m/s in the pre-closure stage (0 ms~26 ms) and 0.16 

m/s in the post-closure stage (26 ms~66 ms). Therefore, 

the maximum error of fuzzy neural network control is 0.16 

m/s. The comparison of experimental results shows that in 

the pre-closure stage, the maximum error of fuzzy neural 

network control is 0.03 m/s lower than that of traditional 

PID control. In the post-closure stage, the maximum error 

of fuzzy neural network control is 0.33 m/s lower than that 

of traditional PID control. In the experimental process, the 

error value of fuzzy neural network control is smaller than 

that of PID control, and the control effect is better [27, 28]. 

According to the comparison results of (a) and (c) in 

Figure 4, both control algorithms experience speed 

fluctuations when the motor changes load. Among them, 

the maximum error between the actual speed of the motor 

and the preset speed under PID control is 0.47 m/s, with a 

fluctuation duration of 24 ms, a large fluctuation 

amplitude, and a long time, indicating that PID control 

cannot quickly and effectively suppress fluctuations 

caused by variable loads. In comparison, the maximum 

error between the actual speed of the motor and the preset 

speed under fuzzy neural network control is 0.14 m/s, with 

a fluctuation duration of 12 ms, a small fluctuation 

amplitude, and a short time. Under the same load change, 

the fuzzy neural network reduces the speed error of PID 

control by 0.14 m/s. The comparison of experimental 

results shows that under variable load conditions, the 

fuzzy neural network control algorithm has better control 

performance than traditional PID control [29, 30]. 

4.3 Intelligent control test of motor 

operating mechanism  

 To fully validate the effectiveness of the fuzzy neural 

network control algorithm in electrical automation 

control, control experiments will be conducted on the 

closing process of circuit breakers in permanent magnet 

brushless DC motors, tracking and testing the control 

performance of the PID algorithm and fuzzy PID 

algorithm in practical applications. 

Set the motor testing parameters with a capacitance of 

0.27F, a voltage of 210 V, and a tracking sampling 

frequency of 0.3S/time. The PID parameters are kp = 55.3, 

ki = 20.9, and kd = 4.3, with a preset maximum speed of 

2.26 m/s and a duration of 65.7 ms.  

 

 

 

Table 2: Circuit breaker closing simulation experimental parameters 

Parameter 

Name 
Output kp Output kp Output kp 

Working 

voltage 

Model 

learning rate 

Parameter value 0.3 0.4 0.6 210v 0.9 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4: Constant load simulation results of different control algorithms. (a) Traditional PID controller speed change; 

(b) Traditional PID control speed error; (c) Fuzzy Neural PID Control for Speed Change; (d) Fuzzy Neural PID 

Control for Speed Error

 

The control results of the circuit breaker closing speed 

based on PID control are shown in Figure 6. According to 

Figure 5, the higher the motor driving speed, the greater 

the speed tracking error under PID control. Before the 

circuit breaker is closed, the maximum tracking speed 

error is 0.23 m/s, which is relatively small. When the 

motor speed suddenly increases when it reaches the just-

reach position (33 ms), the speed error reaches its 

maximum at 0.45 m/s, and the curve fluctuates greatly, 

lasting for 12 ms. The experimental results indicate that 

traditional PID control lacks the ability to adjust 

parameters when driving motor speed changes, resulting 

in significant errors in speed tracking and the inability to 

effectively control the system beyond a certain speed [31]. 

The results are shown in Figure 7. 

 

From the experimental results in Figure 6, it can be seen 

that fuzzy neural network control can achieve ideal control 

effects in the motor driving process. Before the circuit 

breaker is closed, the maximum tracking speed error is 

0.02 m/s, which is very close to a constant load and has a 

good control effect. The entire control process 

experienced a brief fluctuation at the rigid junction, with a 

maximum tracking speed error of 0.22 m/s, which belongs 

to a lower level. The control effect of nearly constant load 

was restored within the following 6 ms, and the control 

effect was good. The above experimental results indicate 

that motor operation based on a fuzzy neural network 

control algorithm has the best control effect [32].  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5: Curve chart of variable load simulation experiment results. (a) Traditional PID speed change; (b) Traditional 

PID speed change error; (c) (C) Fuzzy Neural PID Control for Speed Change; (d) Fuzzy neural PID control for speed 

variation error 

 

 

 
Figure 6: Experimental results of motor operation PID 

control 

 

 

 

 
Figure 7: Fuzzy neural PID control speed change 
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Figure 8: Performance evaluation in terms of system 

response under several control strategies 

 

Before closing, the tracking speed error of the fuzzy neural 

network PID control algorithm was reduced by 0.22 m/s 

compared to the traditional PID algorithm. After the initial 

closure, the fuzzy neural network control algorithm 

reduced the speed error by 0.21 m/s, significantly 

improving the control accuracy.  

Figure 8 presents the graph that compares the system 

responses under different control strategies: Fuzzy PID, 

RBF Neural Network (NN), and Traditional PID [18, 19]. 

The graph illustrates how each method performs over 

time, showing the system output as it stabilizes. The 

experiments have shown that fuzzy neural network control 

algorithms can achieve ideal control effects in complex 

electrical engineering automation control. The 

computational complexity of the Fuzzy PID algorithm is a 

critical consideration, especially when applied in real-time 

control systems. The algorithm’s complexity arises from 

the fuzzification process, the evaluation of fuzzy rules, 

and the defuzzification process. The number of fuzzy rules 

exponentially increases with the number of input variables 

and membership functions, potentially leading to higher 

computational demands. However, optimizations, such as 

reducing the number of fuzzy sets or employing efficient 

rule evaluation techniques, can mitigate this issue. In 

practical applications, it’s essential to balance the 

algorithm’s complexity with the system’s real-time 

requirements, ensuring that the controller can operate 

efficiently without causing delays or instability. The 

Fuzzy PID algorithm is particularly effective in addressing 

challenges such as nonlinearities and uncertainties in the 

control process. Nonlinearities, which often arise in 

complex systems, can lead to significant performance 

degradation in traditional PID controllers. The fuzzy logic 

component of the Fuzzy PID algorithm allows for more 

flexible and adaptive control by adjusting the PID gains 

based on the system’s current state, thus accommodating 

nonlinear behaviors more effectively. Furthermore, the 

algorithm can handle uncertainties by incorporating expert 

knowledge into the fuzzy rules, which helps in predicting 

and compensating for unexpected changes in the system’s 

dynamics. 

5 Conclusion 
The study thoroughly examined the control method, 

simulation tests, and system adaptive control tests of a 

permanent magnet brushless motor operating system, 

leading to four key conclusions. First, a fuzzy neural 

network PID control algorithm was successfully 

developed, integrating an RBF neural network as the core 

with a fuzzy PID algorithm, demonstrating a synergistic 

approach for enhanced control. Second, a MATLAB-

based simulation model of the drive motor control system 

was created, enabling the testing of the fuzzy neural 

network PID control method. The simulation results 

revealed a reduction in tracking speed error by 0.01 m/s 

under constant load conditions and 0.33 m/s under 

nonlinear load conditions, highlighting the algorithm’s 

robust learning and adaptation capabilities. Third, an 

experimental setup for the control of high-voltage circuit 

breakers using a permanent magnet brushless motor was 

established, with results indicating that the conventional 

PID control method exhibited a speed error rate of up to 

0.45 m/s during rapid load changes, while the fuzzy neural 

network control method maintained a significantly lower 

error rate of 0.22 m/s, confirming its superior accuracy in 

motor operation control. Finally, the overall experimental 

findings underscored the potential of intelligent 

technology to correct errors and enhance intelligent 

control in electrical engineering automation, paving the 

way for more precise and reliable automation systems. 

Future work will explore optimizing the fuzzy neural 

network PID algorithm for more complex and dynamic 

systems, aiming to enhance control accuracy and 

computational efficiency in broader electrical engineering 

applications.  
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