
Informatica 29 (2005) 391–400 391

Agent Modeling Language (AML): A Comprehensive Approach to Modeling
MAS

Ivan Trencansky and Radovan Cervenka
Whitestein Technologies, Panenska 28, 811 03 Bratislava, Slovakia
Tel +421 (2) 5443-5502, Fax +421 (2) 5443-5512
E-mail: {itr,rce}@whitestein.com

Keywords: agent, multi-agent system, modeling language, agent-oriented software engineering

Received: May 6, 2005

The Agent Modeling Language (AML) is a semi-formal visual modeling language for specifying, mod-
eling and documenting systems that incorporate features drawn from multi-agent systems theory. It is
specified as an extension to UML 2.0 in accordance with major OMG modeling frameworks (MDA, MOF,
UML, and OCL). The ultimate objective of AML is to provide software engineers with a ready-to-use,
complete and highly expressive modeling language suitable for the development of commercial software
solutions based on multi-agent technologies. This paper presents an overview of AML. The scope of the
language, its structure and extensibility mechanisms are discussed, and the core AML modeling constructs
and mechanisms are introduced and demonstrated by examples.

Povzetek: Opisana je vizualizacija agentnega jezika za modeliranje.

1 Introduction
The Agent Modeling Language (AML) [3, 5, 4] is a semi-
formal1 visual modeling language for specifying, modeling
and documenting systems that incorporate concepts drawn
from Multi-Agent Systems (MAS) theory.

The most significant motivation driving the development
of AML was the extant need for a ready-to-use, com-
prehensive, versatile and highly expressive modeling lan-
guage suitable for the development of commercial software
solutions based on multi-agent technologies. To qualify
this more precisely, AML was intended to be a language
that: (1) is built on proved technical foundations, (2) in-
tegrates best practices from agent-oriented software engi-
neering (AOSE) and object-oriented software engineering
(OOSE) domains, (3) is well specified and documented,
(4) is internally consistent from the conceptual, semantic
and syntactic perspectives, (6) is versatile and easy to ex-
tend, (7) is independent of any particular theory, software
development process or implementation environment, and
(8) is supported by Computer-Aided Software Engineering
(CASE) tools.

Given these requirements, AML is designed to address
the most significant deficiencies with current state-of-the-
art and practice in the area of MAS oriented model-
ing languages, which are often: (1) insufficiently docu-
mented and/or specified, or (2) using proprietary and/or
non-intuitive modeling constructs, or (3) aimed at model-
ing only a limited set of MAS aspects, or (4) applicable
only to a specific theory, application domain, MAS archi-

1The term “semi-formal” implies that the language offers the means to
specify systems using a combination of natural language, graphical nota-
tion, and formal language specification.

tecture, or technology, or (5) mutually incompatible, or (6)
insufficiently supported by CASE tools.

The objective of this paper is to present the approach
applied to specification of AML, and a brief overview of
the various modeling constructs AML provides to model
MASs. Due to limitations in paper length, a comprehen-
sive description of AML abstract syntax, semantics, and
notation is not provided.

The rest of the paper is structured as follows: Section 2
presents the approach applied to specification of AML
and the available extensibility mechanisms. Section 3 ex-
plains the AML fundamental entities and their features,
sections 4, 5, 6, 7 and 8 present an overview of AML ap-
proach to modeling different aspects of agents and MASs,
like social aspects, different kinds of interactions, capabil-
ities, mobility, and mental attitudes. In the end the conclu-
sions are drawn.

2 The AML Approach
Toward achieving the stated goals and overcoming the de-
ficiencies associated with many existing approaches, AML
has been designed as a language, which:

– incorporates and unifies the most significant concepts
from the broadest set of existing multi-agent theo-
ries and abstract models (e.g. DAI [24], BDI [17],
SMART [9]), modeling and specification languages
(e.g. AUML [1, 11, 12], TAO [18], OPM/MAS [20],
AOR [23], UML [15], OCL [14], OWL [19], UML-
based ontology modeling [7], methodologies (e.g.
MESSAGE [10], Gaia [25], TROPOS [2], PASSI [6],



392 Informatica 29 (2005) 391–400 I. Trencansky et al.

Prometheus [16], MaSE [8]), agent platforms (e.g.
Jade, FIPA-OS, Jack, Cougaar) and multi-agent driven
applications,

– extends the above with new modeling concepts to ac-
count for aspects of multi-agent systems thus far cov-
ered insufficiently, inappropriately or not at all,

– assembles them into a consistent framework specified
by the AML meta-model (covering abstract syntax
and semantics of the language) and notation (cover-
ing the concrete syntax), and

– is specified as an extension to UML in accordance
with the OMG modeling frameworks (MDA, MOF,
UML, and OCL).

2.1 The Language Definition
AML is built upon the Unified Modeling Language (UML)
2.0 Superstructure [15], augmenting it with several new
modeling concepts appropriate for capturing the typical
features of multi-agent systems (see Fig. 1).

The main advantages of this approach are:

– Reuse of well-defined, well-founded, and commonly
used concepts of UML.

– Use of existing mechanisms for specifying and ex-
tending UML-based languages (metamodel exten-
sions and UML profiles).

– Ease of incorporation into existing UML-based CASE
tools.

The abstract syntax, semantics and notation of the lan-
guage are defined at the AML Metamodel and Notation
level. The AML Metamodel is further structured into two
main packages: AML Kernel and UML Extension for AML.

UML 2.0 Superstructure

UML 2.0 Profile of AMLUML 1.* Profile of AML

UML 1.* Profiles

Extending AML

UML 2.0 Profiles

Extending AML

AML Metamodel AML
NotationAML KernelUML Extension for AML

UML Language

AML Metamodel
and Notation

AML Profiles

A
M
L

AML Profile Extensions

Figure 1: Levels of AML definition

The AML Kernel is a conservative2 extension of UML
2.0, comprising specification of all the AML modeling ele-
ments. It is logically structured into several packages, each
of which contains specification of modeling elements ded-
icated for modeling specific aspect of MAS.

The UML Extension for AML package adds some meta-
properties and structural constraints to the standard UML

2A conservative extension of UML is an extension of UML which re-
tains the standard UML semantics in unaltered form [22].

elements. It is thus a non-conservative extension of UML,
and therefore an optional part of the language. However,
the extensions contained within are simple and can be eas-
ily implemented in most existing UML-based CASE tools.

Upon the AML Metamodel and Notation two UML pro-
files of AML are specified: UML 1.* Profile for AML
(based on UML 1.*) and UML 2.0 Profile for AML (based
on UML 2.0). The primary objective of these profiles is to
enable implementation of AML into existing UML 1.* and
UML 2.0 based CASE tools, respectively.

2.2 Extensibility of AML
AML is designed to encompass a broad set of relevant the-
ories and modeling approaches, it being essentially impos-
sible to cover all inclusively. In those cases where AML is
insufficient, several mechanisms can be used to extend or
customize it as required:

– Metamodel extension offers first-class extensibility (as
defined by MOF [13]) of the AML metamodel and
notation.

– AML profile extension offers the possibility to adapt
AML for a given domain, platform or development
method by means of UML Profiles, without the need
to modify the underlying AML Metamodel and Nota-
tion.

– Concrete model extension allows to employ alterna-
tive MAS modeling approaches as complementary
specifications to the AML model.

3 Modeling MAS Entities
In general, entities are objects that can exist independently
of others. In order to maximize reuse and comprehensi-
bility of the metamodel AML defines several auxiliary ab-
stract metamodeling concepts called semi-entities and their
types. Semi-entity types are specialized UML classes used
to specify coherent set of features, logically grouped ac-
cording to particular aspects of MASs. They are used to
specify features of other types of modeling elements.

3.1 AML Semi-entities
AML defines the following semi-entities:

Behaviored semi-entities represent elements, which can
own capabilities, observe and/or effect their environment
by means of perceptors and effectors, provide and use ser-
vices, and can be (de)composed into behavior fragments.

Socialized semi-entities represent elements, which can
form societies, can participate in social relationships and
can own social properties.

Mental semi-entities represent elements which can be
characterized in terms of their mental attitudes, e.g. which
information they believe in, what are their objectives,



AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 393

needs, motivations, desires, what goal(s) they are commit-
ted to, when and how a particular goal is to be achieved,
which plan to execute, etc.

3.2 AML Fundamental Entities

The fundamental entities that compose MASs are: agents,
resources, and environments. AML therefore defines three
modeling concepts, which can be used to model the above
mentioned fundamental entities at both type and instance
levels:

Agent type is used to specify the type of agents, i.e. self
contained entities that are capable of interactions, observa-
tions and autonomous behavior within their environment.

Resource type is used to model the type of resources
within the system, i.e. physical or informational en-
tities with which the main concern is their availability
(in terms of its quantity, access rights, conditions of us-
age/consumption, etc.).

Environment type is used to model the type of a system’s
inner environment3, i.e. the logical or physical surround-
ings of entities which provide conditions under which the
entities exist and function.

In AML, all the aforementioned entity types are special-
ized UML classes, and thus can utilize all the features de-
fined for UML classes, i.e. can be instantiated, can own
structural and behavioral features, behaviors, can be struc-
tured into parts and ports, participate in interactions, can
participate in various kinds of relationships (e.g. associa-
tions, generalizations, dependencies), etc. The instances of
the entity types (called entities) can be modeled by means
of UML instance specifications classified according to the
corresponding types.

Furthermore, all the AML fundamental entity types in-
herit features of behaviored semi-entities, and in addition
to these, agent and environment types are also socialized
and mental semi-entities.

Fig. 2 shows an example of a definition of an abstract
class 3DObject that represents spatial objects, charac-
terized by shape and position, existing inside a containing
space. An abstract environment type 3DSpace represents
a three dimensional space. This is a special 3DObject
and as such can contain other spatial objects. 3DSpace
provides a service Motion to the objects contained within
(for details about services see Sect. 5.4). Three con-
crete 3DObjects, an agent type Person, a resource
type Ball and a class Goal are defined as specialized
3DObjects. 3DSpace is further specialized into a con-
crete environment type Pitch representing a soccer pitch
containing two goals and a ball.

3Inner environment is that part of an entity’s environment that is con-
tained within the boundaries of the system.

GoalBallPerson

3DObject

shape

3DObject

3DPlacement

position

space

object

*

*
3DSpace

3DSpace

goal:Goal[2] ball:Ball

Pitch

Motion

Figure 2: Example of entities, their relationships, service
provision and usage

4 Modeling Social Aspects

MASs are commonly perceived as systems comprised of a
number of autonomous agents, situated in a common envi-
ronment, and interacting with each other in order that the
desired functionality and properties of the systems could
emerge. These properties of MAS are not always derivable
or representable solely on the basis of properties and capa-
bilities of individual agents, but are usually given also by
their mutual relationships, interactions, coordination mech-
anisms, social attitudes, etc. Such aspects of MASs are
commonly referred to as social aspects.

From the social perspective the following aspects of
MAS are commonly considered in MAS models (for de-
taisl see [4]):

– Social structure concerning mainly with the identifi-
cation of societies which can evolve within the sys-
tem, specification of their properties, structure, identi-
fication of comprised roles, individual entities that can
participate in such societies, what roles they can play,
their mutual relationships, etc.

– Social behavior covering such phenomena as social
dynamics (i.e. the ability of a society to react to inter-
nal and external events), norms (i.e. rules or standards
of behavior shared by members of a society), social
interactions (how individuals and/or societies interact
with others in order to exchange information, coordi-
nate their activities, etc.), and social activities of in-
dividual entities and societies (e.g. how they change
their attitudes, roles they play, social relationships),
etc.

– Social attitudes addressing the individual and/or com-
mon tendencies (usually expressed in terms of moti-
vations, needs, wishes, intentions, goals, beliefs, com-
mitments, etc.) to anything of a social value.

In this section the focus is on modeling social structure
of multi-agent systems. AML modeling constructs which
can be used to model social behavior and social attitudes
are outlined in the subsequent sections, mainly 5, 6, and 8.



394 Informatica 29 (2005) 391–400 I. Trencansky et al.

In order to accommodate special needs for modeling so-
cial aspects, AML utilizes concepts of: organization units,
social relationships, entity roles, and role properties.

4.1 Organization Units
Organization unit type is a specialized environment type,
and thus inherits features of behaviored, socialized and
mental semi-entity types. They are used to specify the type
of societies that can evolve within the system from both the
external as well as internal perspectives.

From an external perspective, organization units repre-
sent coherent autonomous entities, which can be character-
ized in terms of their mental and social attitudes, can per-
form behavior, participate in different kinds of (social) rela-
tionships, can observe and interact with their environment,
offer and use services, play roles, etc. Their properties and
behavior are both (1) emergent properties and behavior of
all their constituents, their mutual relationships, observa-
tions and interactions, and (2) the features and behavior of
organization units themselves.

For modeling organization units from external perspec-
tives, in addition to features defined for UML classes
(structural and behavioral features, owned behaviors, rela-
tionships, etc.), also all the features of behaviored, social-
ized, and mental semi-entities can be utilized.

From an internal perspective, organization units are
types of environment that specify the social arrangements
of entities in terms of structures, interactions, roles, con-
straints, norms, etc.

For this purpose organization unit types usually utilize
the possibilities inherited from UML structured classifier,
and model their internal structure by contained parts and
connectors, in combination with entity role types used as
types of the parts.

For an example of an organization unit see Fig. 3 (b).

4.2 Social Relationships
Social relationship is a particular type of connection be-
tween social entities related to or having dealings with each
other. For modeling such relationships, AML defines a spe-
cial type of UML property, called social property. The so-
cial property can be used either in the form of an owned
social attribute, or as the end of a social association, and
can specify its social role kind4.

For an example of modeling social relationships see
Fig. 3.

4.3 Roles and Role Properties
Roles are used to define a normative behavioral repertoire
of entities, and thus provide the basic building blocks of
MAS societies. For modeling roles, AML provides entity
role type, a specialized behaviored, socialized and mental

4AML predefines peer, subordinate and superordinate social role
kinds, but this set can be extended as required.

semi-entity type. Entity role types are used to model ab-
stractions of coherent set of features, capabilities, behav-
iors, observations, relationships, participation in interac-
tions, and services offered or required by entities partici-
pating in a particular context. Each entity role type should
be realized by a specific implementation possessed by an
entity that can play that entity role type. An instance of an
entity role type is called entity role and exists only while
some behavioral entity plays it.

For modeling the ability of an entity to play an entity
role type, AML provides role properties. Role property is a
specialized UML property, used to specify that an instance
of its owner (i.e. a behavioral entity) can play one or several
roles of a particular entity role type. The role property can
be used either in the form of a role attribute or as the end of
a play association.

One entity can at each time play several entity roles.
These entity roles can be of the same as well as of dif-
ferent types. The multiplicity defined for a role property
constraints the number of entity roles of given type the par-
ticular entity can play concurrently. Additional constraints
which govern playing of entity roles can be specified by
UML constraints.

To allow explicit manipulation of entity roles in UML
activities and state machines, AML defines a set of actions
for entity role creation and disposal, particularly create role
action and dispose role action.

Fig. 3 (a) contains the diagram depicting an agent of
type Person which can play entity roles of type Player,
Captain, Coach, and Referee. The possibility of
playing entity roles of a particular type is modeled by
play associations. Fig. 3 (b) depicts an organization unit
SoccerMatch, which comprises three referees (of
the Referee entity role type) and two teams (of the
SoccerTeam organization unit type). The SoccerTeam
itself consists of one to three coaches, and eleven to
fifteen players of which one is the captain. The
players are peers to each other (the cooperate con-
nector), and subordinates to the coaches (the manage
connector), and the captain (the lead connector). The
referees are superordinate to the both SoccerTeams
(the control connector).

Fig. 4 shows the instantiation of the previously defined
types in a model of a system’s snapshot, where the agent
Lampard, of type Person, plays the entity role player, and
the agent Terry, also of type Person, plays the entity role
captain and leads Lampard. The agent Mourinho, play-
ing the entity role coach manages both players Lampard
and Terry.

5 Modeling Interactions

To support modeling of interactions in MAS, AML pro-
vides a number of UML extensions, which can be logi-
cally subdivided into: (1) generic extensions to UML in-
teractions, (2) speech act based extensions to UML inter-



AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 395

team:SoccerTeam[2]

referee:Referee[3]

Captain Coach Referee

active:Boolean

Player

0..1captainplayer coach referee0..1 0..10..1

manage manage

control

(a)

(b)

name:String

Person
{xor}

SoccerMatch

cooperatelead

coach:Coach[1..3]

player:Player[10..15]captain:Captain

Figure 3: Example of social structure modeling

coach

manage manage

lead
playercaptain

:Coach

:Captain :Player

Mourinho:Person

Lampard:PersonTerry:Person

Figure 4: Example of the entity role instantiation and play-
ing

actions, (3) observations and effecting interactions, and (4)
services.

5.1 Generic Extensions to UML Interactions
Generic extensions to UML interactions provide means to
model: (1) interactions between groups of entities (multi-
message and multi-lifeline), (2) dynamic change of object’s
attributes to express changes in internal structure of orga-
nization units, social relationships, or played entity roles,
etc., induced by interactions (attribute change), (3) model-
ing of messages and signals not explicitly associated with
the invocation of corresponding methods and receptions
(decoupled message), (4) mechanisms for modification of
interaction roles of entities (not necessary entity roles) in-
duced by interactions (subset and join dependencies), and
(5) modeling the actions of dispatch and reception of de-
coupled messages in activities (send and decoupled mes-
sage actions, and associated triggers).

Multi-message is a specialized UML message which is
used to model a particular communication between (unlike
UML message) multiple participants, i.e. multiple senders
and/or multiple receivers.

Multi-lifeline is a specialized UML lifeline, used to rep-
resent (unlike UML lifeline) multiple participants in inter-
actions.

Decoupled message is a specialized multi-message used
to model the asynchronous dispatch and reception of a mes-
sage payload without (unlike UML message) explicit spec-

ification of the behavior invoked on the side of the receiver.
The decision of which behavior should be invoked when
the decoupled message is received is up to the receiver what
allows to preserve its autonomy in processing messages.

Attribute change is a specialized UML interaction frag-
ment used to model the change of attribute values (state)
of interacting entities induced by the interaction. Attribute
change thus enables to express addition, removal, or mod-
ification of attribute values, and also to express the added
attribute values by sub-lifelines. The most likely utiliza-
tion of attribute change is in modeling of dynamic change
of entity roles played by behavioral entities represented by
lifelines in interactions, and the modeling of entity inter-
actions with respect to the played entity roles (i.e. each
sub-lifeline representing a played entity role can be used
to model interaction of its player with respect to this entity
role).

Subset is a specialized UML dependency between event
occurrences owned by two distinct (superset and subset)
lifelines used to specify that since the event occurrence on
the superset lifeline, some of the instances it represents
(specified by the corresponding selector) are also repre-
sented by another, the subset lifeline.

Similarly, join dependency is also a specialized UML de-
pendency between two event occurrences on lifelines (sub-
set and union ones), used to specify that a subset of in-
stances, which have been until the subset event occurrence
represented by the subset lifeline, is after the union event
occurrence represented by the ŞunionŤ lifeline. The union
lifeline, thus after the union event occurrence represents the
union of the instances it has been representing before, and
the instances specified by the join dependency.

Send decoupled message action is a specialized UML
send object action used to model the action of dispatch-
ing a decoupled message, and accept decoupled message
action is a specialized UML accept event action used to
model reception of a decoupled message action that meets
the conditions specified by the associated decoupled mes-
sage trigger.

A simplified interaction between entities taking part in
a player substitution is depicted in Fig. 5. Once the main
coach decides which players are to be substituted (p1 to
be substituted and p2 the substitute), he first notifies player
p2 to get ready and then asks the main referee for per-
mission to make the substitution. The main referee in
turn replies by an answer. If the answer is “yes”, the
substitution process waits until the game is interrupted. If
so, the coach instructs player p1 to exit and p2 to enter.
Player p1 then leaves the pitch and joins the group of in-
active players and p2 joins the pitch and thereby the group
of active players.

Fig. 6 shows an example of the communicative inter-
action in which the attribute change elements are used to
model changes of entity roles played by agents. The dia-
gram realizes the scenario of a captain change caused by
the original captain (player2) substitution.

At the beginning of the scenario the agent



396 Informatica 29 (2005) 391–400 I. Trencansky et al.

sd PlayerSubstitution

opt

par

coach[main]
:Coach

referee[main]
:Referee

requestSubstitution(p1, p2)

reply(answer)

exit()

<<join>> [is p1]

enter()

[is p1]

[is p2]

Select
p1 and p2

player[active]
:Player[7..11]

player[not active]
:Player[11..15]

<<join>> [is p2]

prepareForSubstitution() [is p2]

[answer == yes]

{game interrupted}

Figure 5: Example of a communicative interaction

player2 is captain (modeled by its role prop-
erty captain). During the substitution, the main
coach gives the player2 order to hand the cap-
tainship over (handCaptainshipOver() message)
and the player1 the order to become the captain
(becomeCaptain() message). After receiving these
messages, the player2 stops playing the entity role
captain (and starts playing the entity role of ordinary
player) and the player1 changes from ordinary
player to captain.

coach[main]
:Coach

becomeCaptain()

handCaptainshipOver()

player1:Person player2:Person

captainplayer

playercaptain

{has been substituted}

Figure 6: Example of a social interaction with entity role
changes

5.2 Speech Act Specific Extensions to UML
Interactions

Speech act specific extensions to UML interactions com-
prise modeling of speech-acts (communication message),
speech act based interactions (communicative interac-
tions), patterns of interactions (interaction protocols), and
modeling the actions of dispatch and reception of speech-
act based messages in activities (send and accept commu-
nicative message actions, and associated triggers).

Communication message is a specialized decoupled
message used to model communicative acts of speech act
based communication within communicative interactions
(a specialized UML interaction) with the possibility of ex-
plicit specification of the message performative and pay-
load. Both the communication message and communica-
tive interaction can also specify used agent communication
and content languages, ontology and payload encoding.

Interaction protocol is a parametrized communicative
interaction template used to model reusable templates of
communicative interactions.

5.3 Observations and Effecting Interactions

AML provides several mechanisms for modeling observa-
tions and effecting interactions in order to (1) allow model-
ing of the ability of an entity to observe and/or to bring
about an effect on others (perceptors and effectors), (2)
specify what observation and effecting interactions the en-
tity is capable of (perceptor and effector types and perceiv-
ing and effecting acts), (3) specify what entities can ob-
serve and/or effect others (perceives and effects dependen-
cies), and (4) explicitly model the actions of observations
and effecting interactions in activities (percept and effect
actions).

Observations are in AML modeled as the ability of an
entity to perceive the state of (or to receive a signal from)
an observed object by means of perceptors, which are spe-
cialized UML ports. Perceptor types are used to specify
(by means of owned perceiving acts) the observations an
owner of a perceptor of that type can make.

Perceiving acts are specialized UML operations which
can be owned by perceptor types and thus used to specify
what perceptions their owners, or perceptors of given type,
can perform.

The specification of which entities can observe others, is
modeled by a perceives dependency. For modeling behav-
ioral aspects of observations, AML provides a specialized
percept action.

Different aspects of effecting interactions are modeled
analogously, by means of effectors, effector types, effecting
acts, effects dependencies, and effect actions.

An example is depicted in Fig. 8 (a) which shows an
entity role type Player with two eyes–perceptors called
eye of type Eye, and two legs–effectors called leg of
type Leg. Eyes are used to see other players, the pitch and
the ball, and to provide localization information to the in-
ternal parts of a player. Legs are used to change the player’s
position within the pitch (modeled by changing of internal
state implying that no effects dependency need be placed
in the diagram), and to manipulate the ball.

5.4 Services

The AML support for modeling services comprises (1) the
means for the specification of the functionality of a service
and the way a service can be accessed (service specification
and service protocol), (2) the means for the specification of
what entities provide/use services (service provision, ser-
vice usage, and serviced property), and (if applicable) by
what means (serviced port).

A service is a coherent block of functionality provided
by a behaviored semi-entity, called service provider, that
can be accessed by other behaviored semi-entities (which



AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 397

can be either external or internal parts of the service
provider), called service clients.

Service specification is used to specify a service by
means of owned service protocols, i.e. specialized inter-
action protocols extended with the ability to specify two
mandatory, disjoint and nonempty sets of (not bound) pa-
rameters, particularly: provider and client template param-
eters.

The provider template parameters of all contained ser-
vice protocols specify the set of the template parame-
ters that must be bound by the service providers, and the
client template parameters of all contained service proto-
cols specify the set of template parameters that must be
bound by the service clients. Binding of these complemen-
tary template parameters specifies the features of the par-
ticular service provision/usage which are dependent on its
providers and clients.

Service provision/usage are specialized dependencies
used to model provision/use of a service by particular enti-
ties, together with the binding of template parameters that
are declared to be bound by service providers/clients.

Fig. 7 shows a specification of the Motion service
defined as a collection of three service protocols. The
CanMove service protocol is based on the standard FIPA
protocol FIPA-Query-Protocol5 [21] and binds the
proposition parameter (the content of a query-if
message) to the capability canMove(what, to) of
a service provider. The participant parameter of
the FIPA-Query-Protocol is mapped to a service
provider and the initiator parameter to a service
client. The CanMove service protocol is used by the ser-
vice client to ask if an object referred by the what parame-
ter can be moved to the position referred by the to param-
eter. The remaining service protocols Move and Turn are
based on the FIPA-Request-Protocol [21] and are
used to change the position or direction of a spatial object.

Binding of the Motion service specification to the
provider 3DSpace and the client 3DObject is depicted
in Fig. 2.

Motion

sd CanMove:FIPA-Query-Protocol <proposition->canMove(what, to)>

participant

initiator

sd Move:FIPA-Request-Protocol <action_spec->move(what, to)>

participant

initiator

sd Turn:FIPA-Request-Protocol <action_spec->turn(what, angle)>

participant

initiator

Figure 7: Example of service specification

5The AML specification of the interaction protocol can be found in [3].

6 Modeling Capabilities and
Behavior

AML extends the capacity of UML to abstract and decom-
pose behavior by another two modeling elements: capabil-
ity and behavior fragment.

Capability is an abstract specification of a behavior
which allows reasoning about and operations on that spec-
ification. Technically, a capability represents a unification
of the common specification properties of UML’s behav-
ioral features and behaviors expressed in terms of their in-
puts, outputs, pre- and post-conditions.

Behavior fragment is a specialized behaviored semi-
entity type used to model a coherent re-usable fragment of
behavior and related structural and behavioral features. It
enables the (possibly recursive) decomposition of a com-
plex behavior into simpler and (possibly) concurrently ex-
ecutable fragments, as well as the dynamic modification of
an entities behavior in run-time. The decomposition of a
behavior of an entity is modeled by owned aggregate at-
tributes of the corresponding behavior fragment type.

Fig. 8 (a) shows the decomposition of the Player
entity role type’s behavior into a structure of behavior
fragments. In part (b) two fragments, Mobility and
BallHandling, are described in terms of their owned
capabilities (turn, walk, catch, etc.).

Player(a)

(b)

Ball

lo:Localization

mo:Mobilitypr:PlayerReasoning

bh:BallHandling

eye:Eye[2]

leg:Leg[2]

<<effects>>

<<perceives>>

<<perceives>>

<<perceives>>

Pitch

BallHandling

catch(ball)
receive(ball, from)
lead(ball)
pass(ball, to)
shoot(ball,position)

Mobility

turn(angle)
walk(to)
run(to)
stop()

Figure 8: Example of behavior fragments, observations and
effecting interactions

7 Modeling MAS Deployment and
Mobility

The means provided by AML to support modeling of MAS
deployment and agent mobility comprise: (1) the support
for modeling the physical infrastructure onto which MAS
entities are deployed (agent execution environment), (2)
what entities can occur on which nodes of the physical in-
frastructure and what is the relationship of deployed enti-
ties to those nodes (hosting property), (3) how entities can
get to a particular node of the physical infrastructure (move
and clone dependencies), and (4) what can cause the en-



398 Informatica 29 (2005) 391–400 I. Trencansky et al.

tity’s movement or cloning throughout the physical infras-
tructure (move and clone actions).

Agent execution environment type is a specialized UML
execution environment used to model types of execution
environments within which MAS entities can run. While it
is a behaviored semi-entity type, it can explicitly, for exam-
ple, also specify a set of services that the deployed entities
can use or should provide at run time.

Agent execution environment can also own hosting prop-
erties, which are used to classify the entities which can be
hosted by the owning agent execution environment. The
hosting property’s hosting kind specifies the relation of the
referred entity type to its owning agent execution environ-
ment (i.e. either resident of visitor).

Hosting association is a specialized UML association
used to specify hosting property in the form of an asso-
ciation end.

Move is a specialized UML dependency between two
hosting properties used to specify that the entities repre-
sented by the source hosting property can be moved to the
instances of the agent execution environments owning the
destination hosting property. Likewise the clone depen-
dency is used.

Move and clone actions are specialized UML add struc-
tural feature actions used to model actions that cause move-
ment or cloning of an entity from one agent execution envi-
ronment to another one. Both the actions thus specify: (1)
which entity is being moved or cloned, (2) the destination
agent execution environment instance where the entity is
being moved or cloned, and (3) the hosting property where
the moved or cloned entity is being placed.

8 Modeling Mental Aspects

Mental semi-entities can be characterized in terms of their
mental attitudes, i.e. motivations, needs, wishes, inten-
tions, goals, beliefs, commitments, etc. To allow modeling
all the above, AML provides: goals, beliefs, plans, con-
tribution relationships, mental properties and associations,
mental constraints, and commit/cancel goal actions.

Goal is a specialized UML class used to model goals, i.e.
conditions or states of affairs with which the main concern
is their achievement or maintenance. Goals can thus be
used to represent objectives, needs, motivations, desires,
etc.

Belief is a specialized UML class used to model a state
of affairs, proposition or other information relevant to the
system and its mental model.

The attitude of a mental semi-entity to a belief or com-
mitment to a goal is modeled by the belief or the goal
instance being held in a slot of the corresponding mental
property (owned by the mental semi-entity, or a mental as-
sociation relating the belief or the goal to the mental semi-
entity).

Plan is a specialized UML activity used to model: prede-
fined plans, or fragments of behavior from which the plans

can be composed.
Mental constraint is a specialized UML constraint used

to specify properties of owning beliefs, goals and plans
which can be used within reasoning processes of mental
semi-entities. Supported kinds of mental constraints are
pre- and post-conditions, commit conditions, cancel condi-
tions and invariants.

Contribution is a specialized UML relationship used to
model logical relationships between goals, beliefs, plans
and their mental constraints. The manner in which the
specified mental constraint (e.g. post-condition) of the con-
tributor influences the specified mental constraint kind of
the beneficiary (e.g. pre-condition) as well as the degree of
the contribution can also be specified.

Actions to model commitments to and de-commitments
from goals within activities are also provided.

<<mental>>

ScoringChance

SoccerTeam Player

{match.isOver and
team.scoredGoals > team.concededGoals}

WinMatch ScoreGoal

<<mental>>

1 0..1
+0.5

<<mental>>

0..1
++

++

Figure 9: Example of a mental model

Fig. 9 shows an example of a snapshot of the mental
model of a soccer team (represented by the SoccerTeam
organization unit type) and its players (Player entity
role type). The soccer team has the goal to win a
match (modeled by the WinMatch goal). The goal
WinMatch is accomplished, when the soccer match is
over and the team has scored more goals than conceded.
This is expressed by the sufficient contribution of the be-
lief {match.isOver and team.scoredGoals >
team.concededGoals} to the postcondition of the
goal WinMatch. The soccer team players may have
goals to score a goal (ScoreGoal) which it is feasi-
ble to commit to, when they are in a scoring chance.
This is expressed by the necessary contribution of the be-
lief ScoringChance to the precondition of the goal
ScoreGoal.

9 Conclusion
The limitation in paper length has not allowed to present
all the modeling elements and mechanisms AML provides
(e.g. support for ontologies, contexts, etc.). Nevertheless,
we believe that from what has been presented in this pa-
per, it is evident that AML provides a rich set of mod-
eling constructs for modeling applications that embody
and/or exhibit characteristics of multi-agent systems. It
integrates best modeling practices and concepts from ex-
isting agent oriented modeling and specification languages



AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 399

into a unique framework built on foundations of UML 2.0
and OCL 2.0. The structure of the language definition to-
gether with the MDA/MOF/UML “metamodeling technol-
ogy” (UML profiles, first-class metamodel extension, etc.,
gives AML the advantage of natural extensibility and cus-
tomization. AML is also supported by CASE tools.

We feel confident that AML is sufficiently detailed, com-
prehensive and tangible to be a useful tool for software ar-
chitects building systems based on, or exhibiting character-
istics of, multi-agent technologies. In this respect we antic-
ipate that AML may form a significant contribution to the
effort of bringing about widespread adoption of intelligent
agents across varied commercial marketplaces.

Acknowledgement
The authors are indebted to Stefan Brantschen, Monique
Calisti, and Dominic Greenwood, for their support and
fruitful comments which have inspired many ideas and thus
substantially influenced the current version of AML.

References
[1] B. Bauer, J.P. Muller, and J. Odell. Agent UML:

A Formalism for Specifying Multiagent Interac-
tion. In P. Ciancarini and M. Wooldridge, editors,
Agent-Oriented Software Engineering, pages 91–103.
Springer-Verlag, Berlin, 2001.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. My-
lopoulos, and A. Perini. TROPOS: An Agent-
Oriented Software Development Methodology. Au-
tonomous Agents and Multi-Agent Systems, 2(3):203–
236, 2004.

[3] R. Cervenka and I. Trencansky. Agent Modeling Lan-
guage: Language Specification. Version 0.9. Techni-
cal report, Whitestein Technologies, 2004.

[4] R. Cervenka, I. Trencansky, and Calisti. Modeling
Social Aspects of Multiagent Systems: The AML
Approach. In J.P. Muller and F. Zambonelli, edi-
tors, The Fourth International Joint Conference on
Autonomous Agents & Multi Agent Systems (AAMAS
05). Workshop 7: Agent-Oriented Software Engineer-
ing (AOSE), pages 85–96, Universiteit Utrecht, The
Netherlands, 2005.

[5] R. Cervenka, I. Trencansky, M. Calisti, and D. Green-
wood. AML: Agent Modeling Language. Toward
Industry-Grade Agent-Based Modeling. In J. Odell,
P. Giorgini, and J.P. Muller, editors, Agent-Oriented
Software Engineering V: 5th International Workshop,
AOSE 2004, pages 31–46. Springer-Verlag, Berlin,
2005.

[6] M. Cossentino, L. Sabatucci, and A. Chella. A Possi-
ble Approach to the Development of Robotic Multi-

Agent Systems. In IEEE/WIC Conference on Intelli-
gent Agent Technology (IAT’03), pages 539–544, Hal-
ifax, Canada, 2003.

[7] S. Cranefield, S. Haustein, and M. Purvis. UML-
Based Ontology Modelling for Software Agents.
In IProceedings of the Workshop on Ontologies in
Agent Systems, 5th International Conference on Au-
tonomous Agents, 2001.

[8] S.A. DeLoach. Multiagent Systems Engineering:
A Methodology and Language for Designing Agent
Systems. In Agent-Oriented Information Systems ’99
(AOIS’99), Seattle, WA, 1999.

[9] M. d’Inverno and M. Luck. Understanding Agent Sys-
tems. Springer-Verlag, Berlin, 2001.

[10] R. Evans, P. Kearny, J. Stark, G. Caire, F. Garijo, J.J.
Gomez-Sanz, F. Leal, P. Chainho, and P. Massonet.
MESSAGE: Methodology for Engineering Systems
of Software Agents. Technical Report P907, EU-
RESCOM, 2001.

[11] J. Odell, H.V.D. Parunak, and B. Bauer. Extend-
ing UML for Agents. In G. Wagner, Y. Lesper-
ance, and E. Yu, editors, Proceedings of the Agent-
Oriented Information Systems Workshop at the 17th
National conference on Artificial Intelligence, pages
3–17, Austin, Texas, 2000.

[12] J. Odell, H.V.D. Parunak, M. Fleischer, and
S. Brueckner. Modeling Agents and their Environ-
ment. In F. Giunchiglia, J. Odell, and G. Weiss, edi-
tors, Agent-Oriented Software Engineering III: Third
International Workshop, AOSE 2002, pages 16–31.
Springer-Verlag, Berlin, 2002.

[13] OMG. Meta Object Facility (MOF) Specification.
Version 1.4, formal/2002-04-03, april 2002.

[14] OMG. UML 2.0 OCL Specification. ptc/03-10-14,
October 2003.

[15] OMG. Unified Modeling Language: Superstructure
version 2.0. ptc/03-08-02, 2003.

[16] L. Padgham and M. Winikoff. Prometheus: A
Methodology for Developing Intelligent Agents. In
F. Giunchiglia, J. Odell, and G. Weiss, editors,
Agent-Oriented Software Engineering III: Third In-
ternational Workshop, AOSE 2002, pages 174–185.
Springer-Verlag, Berlin, 2002.

[17] A.S. Rao and M.P. Georgeff. Modeling Rational
Agents within a BDI-Architecture. In J.F. Allen,
R. Fikes, and E. Sandewall, editors, Knowledge Rep-
resentation and Reasonning (KR&R-91): Principles
of Knowledge Representation and Reasoning, pages
473–484. Morgan Kaufmann Publishers, San Mateo,
California, 1991.



400 Informatica 29 (2005) 391–400 I. Trencansky et al.

[18] V. Silva, A. Garcia, A. Brandao, C. Chavez, C. Lu-
cena, and P. Alencar. Taming Agents and Objects
in Software Engineering. In A. Garcia, C. Lucena,
J. Castro, A. Omicini, and F. Zambonelli, editors,
Software Engineering for Large-Scale Multi-Agent
Systems: Research Issues and Practical Applications,
volume LNCS 2603, pages 1–25. Springer-Verlag,
Berlin, 2003.

[19] M.K. Smith, D. McGuinness, R. Volz, and
C. Welty. Web Ontology Language (OWL),
Guide Version 1.0, W3C Working Draft. URL:
http://www.w3.org/TR/2002/WD-owl-guide-
20021104, 2002.

[20] A. Sturm, D. Dori, and O. Shehory. Single-Model
Method for Specifying Multi-Agent Systems. In Pro-
ceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages
121–128. ACM Press, New York, NY, 2003.

[21] The Foundation for Intelligent Physical
Agents. FIPA Specifications Repository. URL:
http://www.fipa.org/repository/index.html, 2004.

[22] W.M. Turski and T.S.E. Maibaum. The Specification
of Computer Programs. Addison-Wesley, London,
1987.

[23] G. Wagner. The Agent-Object-Relationship Meta-
model: Towards a Unified View of State and Behav-
ior. Information Systems, 28(5):475–504, 2003.

[24] G. Weiss. Multiagent Systems–A Modern Approach to
Distributed Artificial Intelligence. MIT Press, Cam-
bridge, MA, 3rd edition, 2001.

[25] F. Zambonelli, N.R. Jennings, and M. Wooldridge.
Developing multiagent systems: the Gaia Methodol-
ogy. ACM Transactions on Software Engineering and
Methodology, 12(3):317–370, 2003.




