
https://doi.org/10.31449/inf.v49i15.5524 Informatica 49 (2025) 145–154 145

Optimizing Swarm Intelligence: A Comprehensive Analysis of

Mutation-Based Enhancements

Muchamad Kurniawan*1, Gusti E. Yuliastuti1, Siti Agustini2, Maftahatul Hakimah1, and Wahyu Widyanto1.
1 Institut Teknologi Adhi Tama Surabaya/ Department of Informatics, Surabaya, Indonesia
2 Institut Teknologi Sepuluh Nopember/ Electrical Engineering, Surabaya, Indonesia

E-mail: muchamad.kurniawan@itats.ac.id, gustieky@itats.ac.id, 7022211005@student.its.ac.id,

hakimah.mafta@itats.ac.id, wahyuuwy01@gmail.com

*Corresponding author

Keywords: mutation, swarm intelligence optimization, exploration optimization, exploitation optimization

Received: December 7, 2023

Swarm Intelligence (SI) represents an optimization approach inspired by the collective behavior

observed in swarms during the search for food. Well-established SI methods, such as Ant Colony

Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC), are

complemented by newer methodologies like Cat Swarm Optimization (CSO) and Grasshopper

Optimization Algorithm (GOA). Typically, exploration techniques in SI are more effective than

exploitation techniques. To enhance exploration capabilities, this research employs a modification

technique based on mutation, chosen for its strong exploratory attributes and low complexity.

This study introduces 16 modifications by combining four frameworks with four operators. Each

modification is paired with the fundamental methods for comprehensive testing. The experimental phase

encompasses five benchmark functions of varying dimensions, resulting in 8,000 experiments. Three

analytical assessments were conducted based on these results.

The initial analysis reveals that the mutation modification has the most substantial impact on the basic

ACO method. The second analysis indicates that mutation modification significantly influences the

objective function in scenarios with large dimensions. The concluding analysis highlights the

paramount influence of the modification incorporating the random parameter mutation framework,

whereas the mutation operator modification shows comparatively less significant results.

A detailed impact assessment shows that Modification 2B achieved the highest number of positive

results, succeeding in 69 out of 100 tests, while 2D modifications yielded the smallest sum and average

values. The influence of different frameworks and operators was further analyzed, revealing that

frameworks have a more pronounced impact on performance than operators. Framework number 2, in

particular, demonstrated the most significant effect on improving average impact values.

Povzetek: Analiziran je vpliv mutacijskih izboljšav na algoritme inteligence rojev (SI), kot so ACO,

PSO, ABC, CSO in GOA. Predstavlja 16 modifikacij z združevanjem štirih okvirov in štirih operatorjev

mutacije s ciljem izboljšanja raziskovalnih sposobnosti algoritmov. Rezultati kažejo, da imajo okviri

mutacije večji vpliv na učinkovitost kot operatorji, pri čemer modifikacija z naključnim parametrom

mutacije dosega najboljše rezultate.

1 Introduction
Optimization is a pivotal method used to achieve the most

optimal results from an objective function. Optimization

methods are generally classified into classic and modern

approaches, with frameworks categorized as either

metaheuristics or heuristics. Metaheuristic optimization

algorithms can be further distinguished based on

behavioral similarity or artificial sources of intelligence.

Early metaheuristic optimization algorithms

predominantly focused on evolution and swarm

intelligence, with a particular emphasis on swarm-based

algorithms [1]. Evolution-based algorithms, such as

Genetic Algorithm (GA) and Differential Evolution (DE),

use selection, crossover, and mutation operators. Swarm

intelligence algorithms, like Ant Colony Optimization

(ACO), Particle Swarm Optimization (PSO), Cat Swarm

Optimization (CSO), and Grasshopper Optimization

Algorithm (GOA), rely on internal swarm interactions to

facilitate various search solutions. On the other hand,

swarm intelligence algorithms are typified by interactions

within the internal swarm. These interactions serve

diverse purposes, such as facilitating various search

solutions or inducing alterations in particle values.

Notable examples of swarm intelligence algorithms

comprise Ant Colony Optimization (ACO), Artificial Bee

Colony (ABC), Particle Swarm Improvements in

exploration using the mutation operator have been applied

to enhance the standard Particle Swarm Optimization

(PSO) [8], [9]. The Hybrid PSO with Mutation Operator

(HPSOM) method was developed specifically for

implementation as a clustering algorithm, demonstrating

superior results compared to two other optimization

algorithms across six measurements and datasets [4].

mailto:muchamad.kurniawan@itats.ac.id
mailto:gustieky@itats.ac.id
mailto:hakimah.mafta@itats.ac.id
mailto:wahyuuwy01@gmail.com

146 Informatica 49 (2025) 145–154 M. Kurniawan et al.

Wang et al. proposed PSO Mutation (MPSO) to address

multi-objective function problems, specifically with

thermoelectric generator (TEG) datasets [10]. In this

study, the mutation process is controlled by a parameter

with a random value. If the random value exceeds the

parameter value, one individual undergoes mutation;

otherwise, a position change is made, akin to standard

PSO.

Exploration and exploitation are two key techniques

within optimization algorithms. Exploration refers to the

algorithm's ability to search the entire space for the

optimal solution, while exploitation involves refining

solutions to converge towards the optimal outcome.

Swarm intelligence methods typically excel at

exploitation but often struggle with exploration, leading to

premature convergence and suboptimal solutions.

To enhance the exploration capabilities of PSO, Jana

et al. introduced the repository and mutation technique to

create RMPSO. The fitness values and convergence rates

of RMPSO were compared with seven previously

modified PSO studies [11]. Optimization (PSO), Cat

Swarm Optimization (CSO), and Grasshopper

Optimization Algorithm (GOA) [2]. It is noteworthy that

the landscape of metaheuristic optimization is dynamic,

continually witnessing the assimilation of novel

algorithms and techniques.

Exploration and exploitation represent two pivotal

techniques within optimization algorithms. Exploration

pertains to the algorithm's efficacy in locating the optimal

solution across the entire search space. Conversely,

exploitation involves the capacity of individuals to update

their values with the goal of converging towards the

optimal solution. Generally, specific operators or

parameters govern these two techniques. A higher

exploitation value accelerates the algorithm's convergence

to a solution, but the obtained solution is susceptible to

local optima or spurious solutions. Swarm intelligence

methods inherently possess heightened exploitation

capabilities relative to exploration. Notably, contemporary

studies have incorporated the mutation operator to

enhance exploratory capabilities.

To enhance the efficacy of swarm intelligence

algorithms, the incorporation of a mutation operator has

been proposed as a viable solution [3] [4] [5]. The

introduction of a mutation operator serves to augment

exploratory capabilities, thereby preventing rapid

convergence of the algorithm [6]. An additional advantage

associated with the integration of the mutation operator

lies in its computational efficiency compared to

adjustments involving crossbreeding, modifications to

alternative optimization algorithms, or alterations

requiring multiple populations [7]. Various studies

investigating the incorporation or modification of swarm-

based algorithms with mutation operators have

consistently demonstrated performance improvements.

Cat Swarm Optimization (CSO), initially proposed

by Chu et al. in 2006, is a swarm-based optimization

algorithm that has been employed in diverse case studies

[11], [12]. While bearing resemblance to PSO, the CSO

algorithm features a distinct exploration and exploitation

mechanism involving two types of individuals, namely

seekers and tracers. A 2018 study reported that the

incorporation of a mutation operator into CSO enhances

optimal global search capabilities, particularly in high

dimensions [14].

The swarm intelligence algorithm by adopting

grasshoppers in search of food was first reported by

Saremi et al. 2017 with the name grasshopper

optimization algorithm (GOA). The results of a paper

survey on GOA from 2017 to 2020 stated that there were

more than 200 implementation or development studies

[14]. The limitation of this algorithm is that it is stuck in

local optimal and convergent time [16] to be used in

various cases. A development of GOA with the addition

of the Caucy mutation was reported in 2021 [17]. Research

conducted by Ghaleb et al. in 2021 using six different

mutation operators implemented in GOA, the results of

this study were not a significant increase when compared

to the standard GOA [18].

Studies of hybrid mutation and ACO discuss the

implementation of a random injection operator on ACO by

looking at the diversity value of the swarm [18]. Two-

point standard mutation and refined mutation are operators

used in research [20], and partial ACO mutation is the

algorithm's name with the GA standard operator

implemented in ACO partially [21]. Cauchy mutation and

ABC algorithm can improve standard ABC performance

[22]. The uniform mutation is used for searching on the

ABC algorithm [23]. These research show that hybrid

mutation can improve performance. However, the level of

randomness of the mutation technique is still low, so the

resulting solution is pre-mature convergence.

To address this limitation, recent studies have

incorporated mutation operators into swarm intelligence

algorithms to enhance their exploratory capabilities.

Mutation operators introduce random variations,

preventing rapid convergence and improving the overall

performance of the algorithms.

This research aims to improve the exploration

capabilities of swarm intelligence algorithms by

introducing a new mutation technique using novel

operators and frameworks. We propose 16 different

combinations of four frameworks and four operators,

applied to PSO, GOA, BCO, ACO, and ABC algorithms.

The goal is to achieve a more robust level of exploration,

leading to more optimal solutions across various swarm-

based optimization algorithms. Our contributions include

demonstrating the robustness of these mutation methods

and their effectiveness in enhancing the performance of

swarm intelligence algorithms.

Figure 1: Hybrid framework of swarm-based optimization

and mutation processes

Optimizing Swarm Intelligence: A Comprehensive Analysis of… Informatica 49 (2025) 145–154 147

2 Method
Within this section, we introduce novel mutation

techniques. The focus of this research is to categorize

mutation into two components: operator and framework.

The operator will be represented by an alphabetic code,

while the framework will be denoted by a numeric code,

simplifying future references. An operator refers to a

method employed to modify the value of a particle. In

total, there are four distinct types of operators.: (A) full

injection gaussian random mutation [24], (B) n-point

gaussian random injection mutation, (C) arithmetic

random operator mutation, and (D) even odd random

injection mutation. Framework mutation is the workflow

of the mutation technique. There are four mutation

frameworks used: (1) random picker particle mutation, (2)

random parameter mutation, (3) sorting mutation, and (4)

dynamic sorting mutation. Operators and frameworks

cross combined, so there are sixteen mutation techniques:

{1A,1B, …,3D,4D}. We assume that the mutation rate

value, mr, is 0.3 and there are n particles.

2.1 Hybrid swarm-based and mutation

technique

In general, the procedure for initializing a swarm-

based algorithm is parameter initialization, searching for

each particle, determining the 𝐺𝑏𝑒𝑠𝑡, and updating each

particle. This procedure will be repeated until the stopping

criteria are met. The main methodology of this research is

to modify optimization methods with a mutation process,

so a hybrid is needed that can be implemented in all

optimization methods. The algorithm used in this study

(Figure. 1) is to add mutations after the algorithm process

of the optimization method and then update the value for

the best solution value or Gbest in swarm-based.

2.2 Full injection gaussian random

mutation operator

This operator is a mutation operator by utilizing the

Gaussian distribution to generate random numbers. The

mean and standard deviation values are obtained from all

particle values in each dimension. The resulting random

number will be used to update the new particle with

several dimensions of the objective function as shown in

Figure. 2. For example, there are 5 dimensions in an

objective function. Each particle that has a mutation will

generate a random number of 5 dimensions.

2.3 N-point gaussian random mutation

operator

In the 𝑛-point gaussian random mutation operator, the

randomization process is not carried out at all positions in

the particle. The first step is to determine the 𝑛 number of

particle positions carried out to mutation process. The

second step is generating other 𝑛 random value. The

resulting random values will replace the particle values at

these positions. So that the mutation results are obtained

which experience slight changes, because not all the

particles are mutated. As an illustration, the value of 𝑛 is

determined to be 3, then there will be 3 positions that are

mutated. We need to generate 3 random values as shown

in Figure. 3 and then carry out the mutation process at 3

predetermined points. The mutation process is carried out

by changing the values of the 3 positions with the values

generated by random value generation as shown in Figure.

4.

2.4 Arithmetic random mutation operator

The mutation process in arithmetic random mutation is

carried out by involving several arithmetic operators

including addition operators, subtraction operators, and

multiplication operators. The multiplication operator is

used for two conditions, namely the multiplication of

positive values and the multiplication of negative values.

The first step is to generate a random value (𝑟1) round

value between 1 and 4. The first random value is used to

determine the next selected operator process. Then the

process continues to generate a second random value (𝑟𝟐)

with decimals. The second random value is used as the

value on which the selected operator operates. If the value

1 appears, then the operator used is addition. If value 2

appears, then the operator used is subtraction. If the value

3 appears, then the operator used is the multiplication of

positive values. If the value 4 appears, then the operator

used is negative multiplication. The simulation of this

operator can be seen in Figure. 5, when the value of 𝑟1 =
3 or selected operator is multiplication, and the value of

𝑟2 = 3.2 as the coefficient value, the updated particle

value is obtained from the addition of the particle value

with the coefficient value.

Figure 3: N random generated values

Figure 2: Full injection gaussian random mutation

illustration

Figure 6: Even Odd Random Injection Mutation

Illustration

148 Informatica 49 (2025) 145–154 M. Kurniawan et al.

Figure 4: N-Point gaussian random mutation illustration

Figure 5: Arithmetic random operator mutation

illustration

2.5 Even odd random injection mutation

operator

The even odd random injection mutation determines the

mutation process based on a binary random value as

shown in Fig. 6. If the binary value is 0, then the mutation

operator randomizes the value at an even position.

Meanwhile, if the value 1 appears, then the mutation

operator randomizes the value at the odd gene position [6].

Randomizing the values at these positions is done

randomly as shown in Fig. 6. The key distinction of the B,

C, and D mutation operators lies in their partial

modification of vector values, specifically targeting odd or

even indices. These operators involve sampling random

values and assigning them to specific dimensions within

the decision vector. The range of each dimension within

the vector is determined by the minimum and maximum

values specified in the range dimension of each objective

function.

2.6 Random picker mutation framework

The random picker mutation framework begins

with computing the 𝑛𝑀𝑢𝑡 value by multiplying

𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 and 𝑚𝑟. The variable 𝑛𝑀𝑢𝑡 is used to

determine the number of particles that carried out to

mutation process. The particles that carried out to

mutation process are determined randomly. The detailed

this framework can be seen in Algorithm 1.

Algorithm 1: Random Picker Mutation Framework

// mr is mutation rate

// particles is all particle in entire swarm

// nParticles is size swarm

nMut floor (nParticles ∗ mr)

for i 1 to nMut :

 mutIndex random index (particles) ;

 newParticle mutation operator (particles[mutIndex]);

 newFitness objective function (newParticle) ;

 particles [mutIndex] newParticle ;

 fitness [mutIndex] newFitness ;

end for

2.7 Random parameter mutation

framework

The random parameter mutation framework

focuses on determining which particles will undergo

mutation. We assume that there are 𝑛 particles. The

random values, 𝑟𝑎𝑛𝑑𝑖 , where 𝑖 = 1, 2, 3, … , 𝑛, are

generated and assigned each value into each particle. Each

random value, 𝑟𝑎𝑛𝑑𝑖 , will be compared to mutation rate,

𝑚𝑟. If the random value, 𝑟𝑎𝑛𝑑𝑖 less than mutation rate,

𝑚𝑟 so the 𝑖-th particle will be carried out the mutation

process. The new particle and fitness values resulting from

the mutation will replace the previous values. The entire

steps of algorithms can be seen in Algorithm 2.

Algorithm 2: Framework Random Parameter Mutation

 // mr is mutation rate

// particles is all particle in entire swarm

// nParticles is size swarm

for i 1 to nParticles :

 if rand < mr :

 newParticle mutation operator (particles [i]) ;

 newFitness objective function (newParticle) ;

 particles [i] newParticle ;

 fitness [i] newFitness ;

 end if

end for

2.8 Sorting mutation framework

The Sorting Mutation Framework (Algorithm 3)

works the mutation process by sorting descending

particles based on their fitness values. Particles with the

worst fitness value will be subject to mutation. The 𝑛𝑀𝑢𝑡

variable controls the number of the worst particle

mutations carried 𝑜𝑢𝑡𝑀𝑢𝑡 variable, which is obtained

from the total number of 𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 multiplied by the

mutation parameter 𝑚𝑟. The mutated particles will replace

the old particles.

Algorithm 3: Framework Sorting Mutation

// mr is mutation rate

// particles is all particle in entire swarm

// nParticles is size swarm

// fitness is return value from objective function

nMut floor (nParticles ∗ mr) ;

worst sorting desc index by (fitness) ;

for i 1 to nMut :

 newParticle mutation operator (particles[worst[i]) ;

 newFitness objective function (newParticle) ;

 particles [worst[i]] newParticle ;

 fitness [worst[i]] newFitness ;

Optimizing Swarm Intelligence: A Comprehensive Analysis of… Informatica 49 (2025) 145–154 149

end for

2.9 Dynamic sorting mutation framework

The basis of this framework is a sorting mutation

framework with dynamic mutation arrangements. The

difference is that in this framework, parameters adjust the

number of dynamically mutated particles. Setting the

number of mutation particles will continue to increase as

the number of iterations increases. In Algorithm 4, there is

a dynamic 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑀𝑢𝑡, the control parameter for

dynamic mutations.

Algorithm 4: Framework Dynamic Sorting Mutation

// mr is mutation rate

// particles is all particle in entire swarm

// nPop is size swarm

// fitness is return value from objective function

// maxIter is maximum iteration

dinamicMut ceil ((mr/maxIter) ∗ iter) ;

nMut floor (nParticles ∗ dinamicMut) ;

worst sorting desc index by (fitness) ;

for i 1 to nMut :

 newParticle mutation operator (particles[worst[i]) ;

 newFitness objective function (newParticle) ;

 particles [worst[i]] newParticle ;

 fitness [worst[i]] newFitness ;

end for

2.10 Objective function

The objective function used in this study is divided

into two groups. The first group is a function that has a

single optimal result or is often called unimodal. The

second group is a multimodal function. In the unimodal

group the objective functions used are the De Jong, and

Rosenbrock functions and the other group functions are

Rastrigin, Griewank, and Ackley. The equation used for

the De Jong function can be seen in Eq. (1), the

Rosenbrock function uses Eq. (2), the Rastrigin, Griwank,

Ackley functions use Eq. (3)-(5).

 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 (1)

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (1 + 𝑥𝑖)2]𝑛−1

𝑖=1 (2)

𝑓(𝑥) = 10𝑛 + ∑ [𝑥𝑖
2 − 10 cos (2𝜋𝑥𝑖)]𝑛

𝑖=1 (3)

𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1 (4)

𝑓(𝑥) = −𝑎 . exp (−𝑏 . √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1) −

exp (
1

𝑛
∑ cos (𝑐. 𝑥𝑖

𝑛
𝑖=1)) + 𝑎 + exp (1) (5)

3 Result and discussion
In this study the optimization method or algorithm

used is PSO, GOA and ACO. Mutation modification will

have 16 modifications from 4 types of frameworks and 4

types of mutation operators that will be added to each

method. To make it easier to read, the method given the

mutation modification will be affixed with the letter 'M'

which indicates modified followed by the code number

which indicates the mutation. There are 6 types of

benchmark functions used: Rosenbrock, De Jong,

Rastrigin, Greiwangk, and Ackley with 4 different

dimensions (2, 5, 10, and 30). Because the initial

initialization uses random values, to get the best results,

the test is carried out ten times for one test scenario. The

initialization of parameter values of SI algorithm can be

seen in Table 1. These values are fixed so that can measure

the effectiveness of research contributions without being

influenced by other parameters.

 This section will be subdivided into three

analyses to ensure a comprehensive evaluation. The first

analysis examines the method that exhibits the most

significant impact when mutations are introduced. The

subsequent analysis investigates the effects of objective

function types, specifically unimodal and multimodal

functions. Lastly, an analysis is conducted to determine

the framework and mutation operators that exert the most

substantial influence. The impact calculation is performed

using Equation 6. This equation quantifies the difference

between the fitness value of the baseline method, denoted

as G(x), and the fitness value of the modified method,

denoted as G(x)'. The difference is divided by the fitness

value of the baseline method and then multiplied by 100

to amplify the impact.

𝐼 =
𝐺(𝑥)−𝐺(𝑥)′

𝐺(𝑋)
 (6)

 Table 1. Setup parameters of SI

Method Parameter

PSO 𝑐1 = 1; 𝑐2 = 2

ACO 𝑎𝑙𝑝ℎ𝑎 = 1; 𝑏𝑒𝑡𝑎 = 3; 𝑟ℎ𝑜 = 0.1

CSO
𝑠𝑚𝑝 = 10; 𝑚𝑟 = 0.2; 𝑠𝑝𝑐 = 𝑇𝑟𝑢𝑒;
𝑐𝑑𝑐 = 1; 𝑠𝑟𝑑 = 0.01; 𝑐1 = 0.5

GOA
𝑐𝑚𝑖𝑛 = 0.1; 𝑐𝑚𝑎𝑥 = 1;
𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 1; 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 1.5

ABC 𝑏𝑒𝑒𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = 8; 𝑛𝑢𝑚𝑠𝑜𝑢𝑟𝑐𝑒𝑓𝑜𝑜𝑑 = 2;

Figure 7: Accumulated total impact value.

-80

-60

-40

-20

0

20

40

M
-1A

M
-2A

M
-3A

M
-4A

M
-1B

M
-2B

M
-3B

M
-4B

M
-1C

M
-2C

M
-3C

M
-4C

M
-1D

M
-2D

M
-3D

M
-4D

Im
p

ac
t

v
al

u
e

ABC ACO CSO GOA PSO

150 Informatica 49 (2025) 145–154 M. Kurniawan et al.

3.1 Objective function analysis

To analyze the impact of mutations on the

fundamental methods, it is imperative to conduct a

comprehensive comparison of mutation effects across all

benchmark functions. Figure 7 illustrates the outcomes of

all mutation modifications applied to the basic method,

with the dotted line denoting the baseline method (having

a y-axis value of zero). A positive value signifies that the

modified method outperforms the basic method, while a

negative value indicates inferior performance. The results

of testing the basic method are presented in Figure 7,

where a larger positive value denotes a more pronounced

impact. Notably, among all the basic methods tested, the

ACO method exhibits the most substantial impact, as

evidenced by the prevalence of modified methods with

values above zero. It is worth mentioning that the addition

of mutation modifications exerts varying effects on the

ACO method.

In addition to leveraging the difference in mean

values, a paired T-Test is employed for a statistical

assessment to ascertain whether the modification of the

basic method yields significant positive changes. Each

method modification result is paired with the method

result without modification. With an alpha value of 0.05

and a t-table value of 2.9803, the T-Test results were

obtained for all method results, as illustrated in Fig. 8.

From these results, the modification that exhibited the

most positive effect was observed in the ABC method with

the M-1D modification. Among the basic methods, the

one that underwent the most successful modifications was

the 9th method.

The overall summary of mutation results obtained

4 results as shown in Table 2. The first result is ACO with

the M-1C modification gets the best score with a value of

19,70. The second result obtained is the value of the

biggest negative impact on CSO. The third result is that

only ACO has a positive value from the calculation of the

average impact. The final result obtained from all

experiments is that the most successful mutation

modification is in the ACO method with 15 modifications

(out of a total of 16 modifications).

Mutation Impact Analysis of Dimension and Function

Problem

To conduct an impact analysis on the introduction

of mutations to the dimensions and types of problem

functions in this section, the benchmark functions and

dimensions will be initially classified. The dimensions of

the problem will be categorized into two types: low

dimensions (2 and 5 dimensions) and high dimensions (10

and 30 dimensions). Similarly, the types of functions will

be distinguished between unimodal functions

(Rosenbrock and De Jong) and multimodal functions

(Rastrigin, Griewank, and Ackley).

The best fitness results from 10 trials are

summarized, including the best value or minimum value,

worst value, average, and total, as depicted in Appendix A

for unimodal functions and Appendix B for multimodal

functions. Following the grouping based on the problem

function, the best value results will be further categorized

based on the dimensions employed.

Out of the 16 modifications applied to all basic

methods and across 10 trials for each test, all basic

methods exhibit the best results among the mutation

modifications used. The ACO method, with its mutation

modification, demonstrates the most significant positive

Table 2: Summary of the impact of mutations on

basic methods

Method Best Worst Average
Positive

Totals

ABC 12,69 -24,15 -5,95 5

ACO 19,70 -0,68 9,24 15

CSO -5,37 -62,56 -28,13 0

GOA 11,57 -41,96 -14,95 1

PSO 0,73 -10,15 -4,27 2

Fig. 8. T-Test Results

-20
-10

0
10
20
30
40
50

T-
Te

st
 V

al
u

e

T-Test Results

ABC ACO CSO

GOA PSO - T table'

Figure 9: Number of positive impacts by cluster operator and framework mutation modification

Optimizing Swarm Intelligence: A Comprehensive Analysis of… Informatica 49 (2025) 145–154 151

impact, securing the best value across all groupings. The

GOA method, with its mutation modification, achieves the

highest result, with an impact value of 3,484 on high-

dimensional unimodal functions. ACO emerges as the

method with the most substantial impact, boasting an

average modification value of 16 mutations with positive

results across all dimensions and problem function types,

totaling 0.55.

The ABC and CSO methods yield favorable results

in dimensions 10 and 30 (high dimensions) for both

unimodal and multimodal functions. On the other hand,

PSO and GOA methods exhibit less favorable outcomes

with the addition of mutations. PSO only demonstrates

improved results on high dimensions with multimodal

function mutations. Conversely, mutations applied to

GOA show no positive effects and even exacerbate the

performance of the basic GOA method, resulting in an

average negative impact of mutations.

3.2 Framework and operator modification

analysis

The impact of mutation modifications can be assessed

through an analysis of the summary of impact values for

the 5 basic methods, 4 dimensions, and 5 objective

functions—essentially, the average impact value derived

from 100 iterations. The summarized value encompasses

the total sum, average, best, worst, and total modifications

that yield positive values (n positive), as depicted in Table

7. Modification 2B stands out as the modification with the

highest number of positive results, achieving success in 69

out of the 100 conducted tests. Conversely, the smallest

sum and average values are produced by 2D

modifications.

To analyze the influence of different frameworks and

operators, the results from Table 7 are organized by

framework and mutation operator. Figure 10 presents a

graph illustrating the groupings of frameworks and

operators based on the sum of positive results. The blue

line represents the results from Table 7, while the yellow

line represents the average value of the grouped operators

(left picture) and frameworks (right picture).

From Figure 10, it becomes apparent that the grouping

of frameworks has a more pronounced influence than that

of the operators. In the grouping of operators, the average

values appear consistent, whereas in the grouping of

frameworks, the results exhibit variation. Modification of

framework number 2 emerges with the best results,

indicating that this modification has the most significant

effect. Similarly, an analysis of modifications influencing

the average impact value reveals that modifications with

Framework 2 yield the best results based on Figure 10.

The graphical pattern observed aligns with that depicted

in Figure 9, which is based on operator modifications.

The study reveals that mutation modifications have a

substantial positive impact on the Ant Colony

Optimization (ACO) method, with 15 out of 16

modifications showing improved results. Notably, the

ACO with the M-1C modification achieved the highest

score of 19.70. Additionally, the Artificial Bee Colony

(ABC) method with the M-1D modification exhibited

significant positive effects. Among the tested frameworks,

Framework number 2 emerged as the most effective,

yielding the best results across various dimensions and

objective functions. In high-dimensional unimodal

functions, the Grasshopper Optimization Algorithm

(GOA) with its mutation modification achieved the

highest result. Both ABC and Cat Swarm Optimization

(CSO) methods performed well in high dimensions (10

and 30) for both unimodal and multimodal functions,

while the Particle Swarm Optimization (PSO) method

showed improvement only in high dimensions with

multimodal functions. Conversely, mutations generally

worsened the performance of GOA, resulting in an

average negative impact. The analysis also indicates that

the grouping of frameworks has a more pronounced

influence on performance than the grouping of operators,

with Modification 2B standing out for its high number of

positive results in 69 out of 100 tests. These findings

highlight the enhanced optimization performance

achieved through specific mutation modifications,

emphasizing the importance of selecting appropriate

frameworks and mutation techniques. The results provide

valuable insights for optimizing swarm intelligence

algorithms, suggesting that ACO and ABC methods are

particularly suitable for problems requiring enhanced

exploration, while GOA may require further refinement

Figure 10: Number of positive impacts by cluster operator and framework mutation modification

152 Informatica 49 (2025) 145–154 M. Kurniawan et al.

for targeted applications in high-dimensional unimodal

functions.

4 Conclusion
Based on the results obtained from all conducted trials

in this study, it is deduced that mutation modification

exerts the most substantial impact on optimization

methods characterized by low complexity. Among these,

the ACO, ABC, and PSO methods exhibit superior values

compared to CSO and GOA. The application of T-Test

analysis reveals that the ABC method demonstrates the

most favorable effect in response to mutations.

A secondary conclusion drawn is that mutation

modification exerts the most notable influence on

multimodal problem functions and those with high

dimensions. This is substantiated by the observation that

mutation modification impedes the optimization methods

from converging rapidly, thereby leading to more optimal

results. In summary, this study affirms that the mutation

modification yielding the most significant impact is the

2nd framework modification (Algorithm 2), also known as

Random Parameter Mutation.

5 Future work
Expanding upon the insights gained from this study,

several promising avenues for future research in

optimizing swarm intelligence algorithms emerge. A

pivotal direction involves advancing mutation techniques

to fine-tune their efficacy within swarm intelligence

frameworks. This could entail exploring adaptive

mutation strategies that dynamically adjust mutation rates

based on algorithmic performance feedback or hybrid

approaches that integrate multiple mutation operators

tailored to specific problem characteristics. Such

endeavors aim to deepen the algorithms' capacity for

efficient exploration and exploitation in complex

optimization landscapes, thereby enhancing their

robustness and adaptability.

Another critical area for exploration lies in extending

the study to encompass multi-objective optimization

scenarios. Investigating how mutation modifications

influence the trade-offs between conflicting objectives in

multi-dimensional optimization problems could pave the

way for developing versatile multi-objective swarm

intelligence algorithms. These algorithms would be

capable of handling diverse decision-making challenges

across domains such as engineering design, finance

portfolio optimization, and logistics planning.

Furthermore, future research could focus on

validating and refining optimized swarm intelligence

algorithms through rigorous applications in real-world

settings. By testing these algorithms against practical

datasets and scenarios in sectors like healthcare resource

allocation, industrial process optimization, and urban

planning, researchers can assess their scalability,

robustness, and applicability under real-world constraints

and uncertainties.

Advancements could also involve exploring novel

algorithmic enhancements beyond mutation. This includes

investigating adaptive parameter tuning mechanisms that

autonomously adjust algorithmic parameters in response

to environmental changes or problem-specific dynamics.

Additionally, the integration of advanced initialization

techniques and meta-heuristic adaptations could further

accelerate convergence rates and improve solution quality

across diverse optimization tasks.

Comparative studies across mutation techniques and

other state-of-the-art optimization algorithms present

another promising avenue. Conducting comprehensive

comparative analyses could elucidate the comparative

advantages and limitations of swarm intelligence

approaches relative to evolutionary strategies, gradient-

based methods, and machine learning-driven

optimizations in various complex optimization scenarios.

Moreover, theoretical investigations into the

underlying mechanisms and mathematical foundations of

mutation-based swarm intelligence optimizations could

provide deeper insights into algorithmic behaviors and

performance landscapes. These theoretical insights would

not only enhance algorithm design principles but also

contribute to advancing the theoretical foundations of

meta-heuristic optimization methodologies.

Lastly, expanding the scope of benchmark functions

and problem dimensions used in experimental validations

would bolster the generalizability and robustness of

findings. This expansion would encompass more intricate

optimization landscapes and problem complexities,

ensuring the thorough validation of mutation-driven

enhancements in swarm intelligence algorithms across

diverse and challenging optimization environments.

By pursuing these multifaceted research directions,

future studies can significantly advance the field of swarm

intelligence optimization. This advancement promises to

elevate the practical applicability and effectiveness of

swarm intelligence algorithms in tackling real-world

optimization challenges across various scientific and

industrial domains.

References
[1] Mykel J. Konchenderfer and T. A. Wheeler,

Algorithms For Optimization. London: MIT Press,

2019.

[2] A. Naik and S. C. Satapathy, “A comparative study of

social group optimization with a few recent

optimization algorithms,” Complex & Intelligent

Systems, vol. 7, no. 1, pp. 249–295, 2021, doi:

10.1007/s40747-020-00189-6.

[3] R. Hinterding, H. Gielewski, and T. Peachey, “The

Nature of Mutation in Genetic Algorithms.,”

Proceedings of the Sixth International Conference on

Genetic Algorithms, pp. 65–72, 1995, [Online].

Available:

http://pdf.aminer.org/000/310/686/the_nature_of_mu

tation_in_genetic_algorithms.pdf

[4] M. Sharma and J. K. Chhabra, “Sustainable automatic

data clustering using hybrid PSO algorithm with

Optimizing Swarm Intelligence: A Comprehensive Analysis of… Informatica 49 (2025) 145–154 153

mutation,” Sustainable Computing: Informatics and

Systems, vol. 23, pp. 144–157, Sep. 2019, doi:

10.1016/j.suscom.2019.07.009.

[5] S. Rani, B. Suri, and R. Goyal, “On the effectiveness

of using elitist genetic algorithm in mutation testing,”

Symmetry (Basel), vol. 11, no. 9, 2019, doi:

10.3390/sym11091145.

[6] A. Hassanat, K. Almohammadi, E. Alkafaween, E.

Abunawas, A. Hammouri, and V. B. S. Prasath,

“Choosing mutation and crossover ratios for genetic

algorithms-a review with a new dynamic approach,”

Information (Switzerland), vol. 10, no. 12, 2019, doi:

10.3390/info10120390.

[7] C. Audet and W. Hare, “Genetic Algorithms,”

Springer Series in Operations Research and Financial

Engineering, pp. 57–73, 2017, doi: 10.1007/978-3-

319-68913-5_4.

[8] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-

Tashi, M. A. Summakieh, and S. Mirjalili, “Particle

Swarm Optimization: A Comprehensive Survey,”

IEEE Access, vol. 10, pp. 10031–10061, 2022, doi:

10.1109/ACCESS.2022.3142859.

[9] E. H. Houssein, A. G. Gad, K. Hussain, and P. N.

Suganthan, “Major Advances in Particle Swarm

Optimization: Theory, Analysis, and Application,”

Swarm Evol Comput, vol. 63, Jun. 2021, doi:

10.1016/j.swevo.2021.100868.

[10] X. Wang, P. Henshaw, and D. S. K. Ting,

“Exergoeconomic analysis for a thermoelectric

generator using mutation particle swarm optimization

(M-PSO),” Appl Energy, vol. 294, Jul. 2021, doi:

10.1016/j.apenergy.2021.116952.

[11] B. Jana, S. Mitra, and S. Acharyya, “Repository and

Mutation based Particle Swarm Optimization

(RMPSO): A new PSO variant applied to

reconstruction of Gene Regulatory Network,”

Applied Soft Computing Journal, vol. 74, pp. 330–

355, Jan. 2019, doi: 10.1016/j.asoc.2018.09.027.

[12] R. R. Ihsan, S. M. Almufti, B. M. S. Ormani, R. R.

Asaad, and R. B. Marqas, “A Survey on Cat Swarm

Optimization Algorithm,” Asian Journal of Research

in Computer Science, pp. 22–32, Jun. 2021, doi:

10.9734/ajrcos/2021/v10i230237.

[13] A. M. Ahmed, T. A. Rashid, and S. A. M. Saeed, “Cat

Swarm Optimization Algorithm: A Survey and

Performance Evaluation,” Computational

Intelligence and Neuroscience, vol. 2020. Hindawi

Limited, 2020. doi: 10.1155/2020/4854895.

[14] L. Pappula and D. Ghosh, “Cat swarm optimization

with normal mutation for fast convergence of

multimodal functions,” Applied Soft Computing

Journal, vol. 66, pp. 473–491, May 2018, doi:

10.1016/j.asoc.2018.02.012.

[15] Y. Meraihi, A. B. Gabis, S. Mirjalili, and A.

Ramdane-Cherif, “Grasshopper optimization

algorithm: Theory, variants, and applications,” IEEE

Access, vol. 9, pp. 50001–50024, 2021, doi:

10.1109/ACCESS.2021.3067597.

[16] L. Abualigah and A. Diabat, “A comprehensive

survey of the Grasshopper optimization algorithm:

results, variants, and applications,” Neural

Computing and Applications, vol. 32, no. 19.

Springer Science and Business Media Deutschland

GmbH, pp. 15533–15556, Oct. 01, 2020. doi:

10.1007/s00521-020-04789-8.

[17] S. Zhao, P. Wang, A. A. Heidari, X. Zhao, C. Ma, and

H. Chen, “An enhanced Cauchy mutation

grasshopper optimization with trigonometric

substitution: engineering design and feature

selection,” Eng Comput, Dec. 2021, doi:

10.1007/s00366-021-01448-x.

[18] S. A. A. Ghaleb, M. Mohamad, E. F. H. Syed

Abdullah, and W. A. H. M. Ghanem, “Integrating

mutation operator into grasshopper optimization

algorithm for global optimization,” Soft comput, vol.

25, no. 13, pp. 8281–8324, Jul. 2021, doi:

10.1007/s00500-021-05752-y.

[19] B. N. Silva and K. Han, “Mutation operator integrated

ant colony optimization based domestic appliance

scheduling for lucrative demand side management,”

Future Generation Computer Systems, vol. 100, pp.

557–568, 2019, doi: 10.1016/j.future.2019.05.052.

[20] J. H. Tam, Z. C. Ong, Z. Ismail, B. C. Ang, and S. Y.

Khoo, “A new hybrid GA−ACO−PSO algorithm for

solving various engineering design problems,” Int J

Comput Math, vol. 96, no. 5, pp. 883–919, 2019, doi:

10.1080/00207160.2018.1463438.

[21] D. M. Chitty, “Partial-ACO as a GA mutation

operator applied to TSP instances,” GECCO 2021

Companion - Proceedings of the 2021 Genetic and

Evolutionary Computation Conference Companion,

pp. 69–70, 2021, doi: 10.1145/3449726.3459424.

[22] H. Li and W. Li, “Enhanced artificial bee Colony

algorithm and its application in multi-threshold image

feature retrieval,” Multimed Tools Appl, vol. 78, no.

7, pp. 8683–8698, 2019, doi: 10.1007/s11042-018-

6066-6.

[23] F. Ye, Z. Zhou, H. Tian, Q. Sun, Y. Li, and T. Jiang,

“Intelligent Anti-Jamming Decision Method Based

on the Mutation Search Artificial Bee Colony

Algorithm for Wireless Systems,” 2019 USNC-URSI

Radio Science Meeting (Joint with AP-S

Symposium), USNC-URSI 2019 - Proceedings, pp.

27–28, 2019, doi: 10.1109/USNC-

URSI.2019.8861785.

[24] G. E. Yuliastuti, A. M. Rizki, W. F. Mahmudy, and I.

P. Tama, “Optimization of Multi-Product Aggregate

Production Planning using Hybrid Simulated

Annealing and Adaptive Genetic Algorithm,”

International Journal of Advanced Computer Science

and Applications, vol. 10, no. 11, pp. 484–489, 2019,

doi: 10.14569/IJACSA.2019.0101167.

[25] B. Jana, S. Mitra, and S. Acharyya, “Repository and

Mutation based Particle Swarm Optimization

(RMPSO): A new PSO variant applied to

reconstruction of Gene Regulatory Network,”

Applied Soft Computing Journal, vol. 74, pp. 330–

355, Jan. 2019, doi: 10.1016/j.asoc.2018.09.027

154 Informatica 49 (2025) 145–154 M. Kurniawan et al.

APPENDIX A. Result of unimodal objective function

 Rosenbrock De Jong

 2-D 5-D 10-D 30-D 2-D 5-D 10-D 30-D

ABC

Mean -2,88 -0,86 0,48 0,33 -1,89 -1,16 -0,65 0,39

Sum -46,11 -13,80 7,62 5,26 -30,19 -18,53 -10,44 6,29

Worst -13,43 -5,23 0,06 -0,47 -8,59 -12,56 -4,71 -0,05

Best 0,61 0,84 0,97 0,99 0,77 1,00 0,98 1,00

ACO

Mean 0,20 0,85 0,53 0,55 0,68 0,37 0,60 0,52

Sum 3,14 13,65 8,53 8,79 10,83 5,93 9,66 8,24

Worst -1,96 0,55 -0,08 -0,03 -0,47 -0,13 0,09 0,04

Best 0,98 0,98 0,97 0,99 1,00 1,00 1,00 1,00

CSO

Mean -21,22 -0,96 -0,06 -0,11 0,03 -4,06 -0,02 0,23

Sum -339,45 -15,32 -0,89 -1,75 0,43 -64,96 -0,26 3,66

Worst -52,09 -5,66 -0,87 -0,46 -2,77 -6,98 -0,64 0,05

Best -0,23 0,27 0,85 0,27 0,88 -0,63 0,32 0,34

GOA

Mean 0,29 -0,01 -0,26 -8,50 -1,17 -0,57 0,01 -0,01

Sum 4,66 -0,22 -4,23 -135,93 -18,78 -9,06 0,15 -0,23

Worst 0,00 -0,23 -0,52 -37,61 -4,42 -2,09 -0,67 -0,13

Best 0,63 0,16 0,02 13,30 0,93 0,66 0,48 0,15

PSO

Mean 0,59 -0,89 0,03 0,10 0,09 -0,39 0,17 -0,02

Sum 9,43 -14,24 0,41 1,66 1,49 -6,17 2,65 -0,36

Worst -0,14 -2,35 -0,80 -0,31 -2,19 -1,88 -0,60 -0,15

Best 1,00 0,05 0,84 0,49 0,99 0,46 0,63 0,32

APPENDIX B. Result of multimodal objective function

Rastrigin Griewangk Ackley

2-D 5-D 10-D 30-D 2-D 5-D 10-D 30-D 2-D 5-D 10-D 30-D

ABC

Mean 0,03 0,01 0,28 0,19 -1,26 -0,05 0,16 0,28 -0,23 0,43 0,19 0,25

Sum 0,54 0,19 4,45 3,04 -20,08 -0,79 2,64 4,56 -3,71 6,83 3,08 3,95

Worst -1,09 -0,81 -0,20 -0,29 -3,61 -1,43 -0,32 -0,15 -1,39 -0,05 -0,05 -0,01

Best 0,99 1,00 0,94 0,92 0,75 0,78 0,96 1,00 0,93 0,94 0,86 0,99

ACO

Mean 0,16 0,38 0,37 0,33 0,16 0,38 0,37 0,33 0,61 0,37 0,40 0,36

Sum 2,57 6,06 5,84 5,31 2,57 6,06 5,84 5,31 9,68 5,93 6,39 5,76

Worst -2,05 -0,31 0,00 0,00 -2,05 -0,31 0,00 0,00 -0,01 -0,13 0,00 0,00

Best 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

CSO

Mean -0,23 -0,37 0,11 -0,01 0,32 -0,19 0,06 0,08 -1,31 -0,48 0,03 0,01

Sum -3,75 -5,84 1,76 -0,12 5,10 -3,05 1,02 1,20 -20,99 -7,61 0,49 0,21

Worst -5,26 -1,06 -0,08 -0,10 -0,51 -1,33 -0,39 -0,15 -6,31 -1,10 -0,08 -0,02

Best 0,88 0,50 0,44 0,13 0,96 0,55 0,38 0,33 0,61 0,65 0,13 0,06

GOA

Mean -0,26 0,06 0,06 -0,11 -2,29 0,10 0,05 -0,10 -2,29 0,10 0,05 -0,10

Sum -4,19 0,93 0,93 -1,70 -36,63 1,57 0,87 -1,61 -36,63 1,57 0,87 -1,61

Worst -2,41 -0,32 -0,07 -0,21 -3,30 -0,33 -0,17 -0,37 -3,30 -0,33 -0,17 -0,37

Best 0,99 0,47 0,34 0,06 -0,62 0,47 0,28 0,17 -0,62 0,47 0,28 0,17

PSO

Mean 0,25 0,21 0,16 0,06 -1,78 0,03 -0,39 -0,01 -2,31 -0,09 0,07 -0,03

Sum 4,07 3,39 2,63 0,92 -28,52 0,53 -6,29 -0,20 -37,03 -1,50 1,06 -0,56

Worst -0,38 -0,04 -0,01 -0,02 -3,96 -0,47 -1,14 -0,26 -4,33 -0,32 -0,02 -0,07

Best 0,86 0,55 0,28 0,15 -0,23 0,54 0,36 0,29 0,64 0,20 0,16 0,01

