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Swarm Intelligence (SI) represents an optimization approach inspired by the collective behavior 

observed in swarms during the search for food. Well-established SI methods, such as Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC), are 

complemented by newer methodologies like Cat Swarm Optimization (CSO) and Grasshopper 

Optimization Algorithm (GOA). Typically, exploration techniques in SI are more effective than 

exploitation techniques. To enhance exploration capabilities, this research employs a modification 

technique based on mutation, chosen for its strong exploratory attributes and low complexity. 

This study introduces 16 modifications by combining four frameworks with four operators. Each 

modification is paired with the fundamental methods for comprehensive testing. The experimental phase 

encompasses five benchmark functions of varying dimensions, resulting in 8,000 experiments. Three 

analytical assessments were conducted based on these results. 

The initial analysis reveals that the mutation modification has the most substantial impact on the basic 

ACO method. The second analysis indicates that mutation modification significantly influences the 

objective function in scenarios with large dimensions. The concluding analysis highlights the 

paramount influence of the modification incorporating the random parameter mutation framework, 

whereas the mutation operator modification shows comparatively less significant results. 

A detailed impact assessment shows that Modification 2B achieved the highest number of positive 

results, succeeding in 69 out of 100 tests, while 2D modifications yielded the smallest sum and average 

values. The influence of different frameworks and operators was further analyzed, revealing that 

frameworks have a more pronounced impact on performance than operators. Framework number 2, in 

particular, demonstrated the most significant effect on improving average impact values. 

Povzetek: Analiziran je vpliv mutacijskih izboljšav na algoritme inteligence rojev (SI), kot so ACO, 

PSO, ABC, CSO in GOA. Predstavlja 16 modifikacij z združevanjem štirih okvirov in štirih operatorjev 

mutacije s ciljem izboljšanja raziskovalnih sposobnosti algoritmov. Rezultati kažejo, da imajo okviri 

mutacije večji vpliv na učinkovitost kot operatorji, pri čemer modifikacija z naključnim parametrom 

mutacije dosega najboljše rezultate. 

 

1 Introduction 
Optimization is a pivotal method used to achieve the most 

optimal results from an objective function. Optimization 

methods are generally classified into classic and modern 

approaches, with frameworks categorized as either 

metaheuristics or heuristics. Metaheuristic optimization 

algorithms can be further distinguished based on 

behavioral similarity or artificial sources of intelligence. 

Early metaheuristic optimization algorithms 

predominantly focused on evolution and swarm 

intelligence, with a particular emphasis on swarm-based 

algorithms [1]. Evolution-based algorithms, such as 

Genetic Algorithm (GA) and Differential Evolution (DE), 

use selection, crossover, and mutation operators. Swarm 

intelligence algorithms, like Ant Colony Optimization 

(ACO), Particle Swarm Optimization (PSO), Cat Swarm  

 

Optimization (CSO), and Grasshopper Optimization 

Algorithm (GOA), rely on internal swarm interactions to 

facilitate various search solutions. On the other hand, 

swarm intelligence algorithms are typified by interactions 

within the internal swarm. These interactions serve 

diverse purposes, such as facilitating various search 

solutions or inducing alterations in particle values. 

Notable examples of swarm intelligence algorithms 

comprise Ant Colony Optimization (ACO), Artificial Bee 

Colony (ABC), Particle Swarm Improvements in 

exploration using the mutation operator have been applied 

to enhance the standard Particle Swarm Optimization 

(PSO) [8], [9]. The Hybrid PSO with Mutation Operator 

(HPSOM) method was developed specifically for 

implementation as a clustering algorithm, demonstrating 

superior results compared to two other optimization 

algorithms across six measurements and datasets [4]. 
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Wang et al. proposed PSO Mutation (MPSO) to address 

multi-objective function problems, specifically with 

thermoelectric generator (TEG) datasets [10]. In this 

study, the mutation process is controlled by a parameter 

with a random value. If the random value exceeds the 

parameter value, one individual undergoes mutation; 

otherwise, a position change is made, akin to standard 

PSO. 

Exploration and exploitation are two key techniques 

within optimization algorithms. Exploration refers to the 

algorithm's ability to search the entire space for the 

optimal solution, while exploitation involves refining 

solutions to converge towards the optimal outcome. 

Swarm intelligence methods typically excel at 

exploitation but often struggle with exploration, leading to 

premature convergence and suboptimal solutions. 

To enhance the exploration capabilities of PSO, Jana 

et al. introduced the repository and mutation technique to 

create RMPSO. The fitness values and convergence rates 

of RMPSO were compared with seven previously 

modified PSO studies [11]. Optimization (PSO), Cat 

Swarm Optimization (CSO), and Grasshopper 

Optimization Algorithm (GOA) [2]. It is noteworthy that 

the landscape of metaheuristic optimization is dynamic, 

continually witnessing the assimilation of novel 

algorithms and techniques. 

Exploration and exploitation represent two pivotal 

techniques within optimization algorithms. Exploration 

pertains to the algorithm's efficacy in locating the optimal 

solution across the entire search space. Conversely, 

exploitation involves the capacity of individuals to update 

their values with the goal of converging towards the 

optimal solution. Generally, specific operators or 

parameters govern these two techniques. A higher 

exploitation value accelerates the algorithm's convergence 

to a solution, but the obtained solution is susceptible to 

local optima or spurious solutions. Swarm intelligence 

methods inherently possess heightened exploitation 

capabilities relative to exploration. Notably, contemporary 

studies have incorporated the mutation operator to 

enhance exploratory capabilities. 

To enhance the efficacy of swarm intelligence 

algorithms, the incorporation of a mutation operator has 

been proposed as a viable solution [3] [4] [5]. The 

introduction of a mutation operator serves to augment 

exploratory capabilities, thereby preventing rapid 

convergence of the algorithm [6]. An additional advantage 

associated with the integration of the mutation operator 

lies in its computational efficiency compared to 

adjustments involving crossbreeding, modifications to 

alternative optimization algorithms, or alterations 

requiring multiple populations [7]. Various studies 

investigating the incorporation or modification of swarm-

based algorithms with mutation operators have 

consistently demonstrated performance improvements. 

Cat Swarm Optimization (CSO), initially proposed 

by Chu et al. in 2006, is a swarm-based optimization 

algorithm that has been employed in diverse case studies 

[11], [12]. While bearing resemblance to PSO, the CSO 

algorithm features a distinct exploration and exploitation 

mechanism involving two types of individuals, namely 

seekers and tracers. A 2018 study reported that the 

incorporation of a mutation operator into CSO enhances 

optimal global search capabilities, particularly in high 

dimensions [14]. 

The swarm intelligence algorithm by adopting 

grasshoppers in search of food was first reported by 

Saremi et al. 2017 with the name grasshopper 

optimization algorithm (GOA). The results of a paper 

survey on GOA from 2017 to 2020 stated that there were 

more than 200 implementation or development studies 

[14]. The limitation of this algorithm is that it is stuck in 

local optimal and convergent time [16] to be used in 

various cases. A development of GOA with the addition 

of the Caucy mutation was reported in 2021 [17]. Research 

conducted by Ghaleb et al. in 2021 using six different 

mutation operators implemented in GOA, the results of 

this study were not a significant increase when compared 

to the standard GOA [18].  

Studies of hybrid mutation and ACO discuss the 

implementation of a random injection operator on ACO by 

looking at the diversity value of the swarm [18]. Two-

point standard mutation and refined mutation are operators 

used in research [20], and partial ACO mutation is the 

algorithm's name with the GA standard operator 

implemented in ACO partially [21]. Cauchy mutation and 

ABC algorithm can improve standard ABC performance 

[22]. The uniform mutation is used for searching on the 

ABC algorithm [23]. These research show that hybrid 

mutation can improve performance. However, the level of 

randomness of the mutation technique is still low, so the 

resulting solution is pre-mature convergence. 

To address this limitation, recent studies have 

incorporated mutation operators into swarm intelligence 

algorithms to enhance their exploratory capabilities. 

Mutation operators introduce random variations, 

preventing rapid convergence and improving the overall 

performance of the algorithms. 

This research aims to improve the exploration 

capabilities of swarm intelligence algorithms by 

introducing a new mutation technique using novel 

operators and frameworks. We propose 16 different 

combinations of four frameworks and four operators, 

applied to PSO, GOA, BCO, ACO, and ABC algorithms. 

The goal is to achieve a more robust level of exploration, 

leading to more optimal solutions across various swarm-

based optimization algorithms. Our contributions include 

demonstrating the robustness of these mutation methods 

and their effectiveness in enhancing the performance of 

swarm intelligence algorithms. 

 

Figure 1:  Hybrid framework of swarm-based optimization 

and mutation processes 
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2 Method 
Within this section, we introduce novel mutation 

techniques. The focus of this research is to categorize 

mutation into two components: operator and framework. 

The operator will be represented by an alphabetic code, 

while the framework will be denoted by a numeric code, 

simplifying future references. An operator refers to a 

method employed to modify the value of a particle. In 

total, there are four distinct types of operators.: (A) full 

injection gaussian random mutation [24], (B) n-point 

gaussian random injection mutation, (C) arithmetic 

random operator mutation, and (D) even odd random 

injection mutation. Framework mutation is the workflow 

of the mutation technique. There are four mutation 

frameworks used: (1) random picker particle mutation, (2) 

random parameter mutation, (3) sorting mutation, and (4) 

dynamic sorting mutation. Operators and frameworks 

cross combined, so there are sixteen mutation techniques: 

{1A,1B, …,3D,4D}. We assume that the mutation rate 

value, mr, is 0.3 and there are n particles. 

2.1 Hybrid swarm-based and mutation 

technique 

In general, the procedure for initializing a swarm-

based algorithm is parameter initialization, searching for 

each particle, determining the 𝐺𝑏𝑒𝑠𝑡, and updating each 

particle. This procedure will be repeated until the stopping 

criteria are met. The main methodology of this research is 

to modify optimization methods with a mutation process, 

so a hybrid is needed that can be implemented in all 

optimization methods. The algorithm used in this study 

(Figure. 1) is to add mutations after the algorithm process 

of the optimization method and then update the value for 

the best solution value or Gbest in swarm-based. 

2.2 Full injection gaussian random 

mutation operator 

This operator is a mutation operator by utilizing the 

Gaussian distribution to generate random numbers. The 

mean and standard deviation values are obtained from all 

particle values in each dimension. The resulting random 

number will be used to update the new particle with 

several dimensions of the objective function as shown in 

Figure. 2. For example, there are 5 dimensions in an 

objective function. Each particle that has a mutation will 

generate a random number of 5 dimensions.  

 

2.3 N-point gaussian random mutation 

operator 

In the 𝑛-point gaussian random mutation operator, the 

randomization process is not carried out at all positions in 

the particle. The first step is to determine the 𝑛 number of 

particle positions carried out to mutation process. The 

second step is generating other 𝑛 random value. The 

resulting random values will replace the particle values at 

these positions. So that the mutation results are obtained 

which experience slight changes, because not all the 

particles are mutated. As an illustration, the value of 𝑛 is 

determined to be 3, then there will be 3 positions that are 

mutated. We need to generate 3 random values as shown 

in Figure. 3 and then carry out the mutation process at 3 

predetermined points. The mutation process is carried out 

by changing the values of the 3 positions with the values 

generated by random value generation as shown in Figure. 

4. 

2.4 Arithmetic random mutation operator 

The mutation process in arithmetic random mutation is 

carried out by involving several arithmetic operators 

including addition operators, subtraction operators, and 

multiplication operators. The multiplication operator is 

used for two conditions, namely the multiplication of 

positive values and the multiplication of negative values. 

The first step is to generate a random value (𝑟1) round 

value between 1 and 4. The first random value is used to 

determine the next selected operator process. Then the 

process continues to generate a second random value (𝑟𝟐) 

with decimals. The second random value is used as the 

value on which the selected operator operates. If the value 

1 appears, then the operator used is addition. If value 2 

appears, then the operator used is subtraction. If the value 

3 appears, then the operator used is the multiplication of 

positive values. If the value 4 appears, then the operator 

used is negative multiplication. The simulation of this 

operator can be seen in Figure. 5, when the value of 𝑟1 =
3 or selected operator is multiplication, and the value of 

𝑟2 = 3.2 as the coefficient value, the updated particle 

value is obtained from the addition of the particle value 

with the coefficient value. 

 

  
Figure 3: N random generated values 

 

 

Figure 2:  Full injection gaussian random mutation 

illustration 

 

Figure 6: Even Odd Random Injection Mutation 

Illustration 
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Figure 4: N-Point gaussian random mutation illustration 

 
Figure 5: Arithmetic random operator mutation 

illustration 

2.5 Even odd random injection mutation 

operator 

The even odd random injection mutation determines the 

mutation process based on a binary random value as 

shown in Fig. 6. If the binary value is 0, then the mutation 

operator randomizes the value at an even position. 

Meanwhile, if the value 1 appears, then the mutation 

operator randomizes the value at the odd gene position [6]. 

Randomizing the values at these positions is done 

randomly as shown in Fig. 6. The key distinction of the B, 

C, and D mutation operators lies in their partial 

modification of vector values, specifically targeting odd or 

even indices. These operators involve sampling random 

values and assigning them to specific dimensions within 

the decision vector. The range of each dimension within 

the vector is determined by the minimum and maximum 

values specified in the range dimension of each objective 

function. 

2.6 Random picker mutation framework 

The random picker mutation framework begins 

with computing the 𝑛𝑀𝑢𝑡 value by multiplying 

𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 and 𝑚𝑟. The variable 𝑛𝑀𝑢𝑡 is used to 

determine the number of particles that carried out to 

mutation process. The particles that carried out to 

mutation process are determined randomly. The detailed 

this framework can be seen in Algorithm 1. 

Algorithm 1: Random Picker Mutation Framework 

// mr is mutation rate   

// particles is all particle in entire swarm 

// nParticles is size swarm 

nMut  floor (nParticles ∗ mr) 

for i  1 to nMut : 

      mutIndex  random index (particles) ; 

      newParticle  mutation operator (particles[mutIndex]); 

      newFitness  objective function (newParticle) ; 

      particles [mutIndex]  newParticle ; 

      fitness [mutIndex]  newFitness ; 

end for  

2.7 Random parameter mutation 

framework 

The random parameter mutation framework 

focuses on determining which particles will undergo 

mutation. We assume that there are 𝑛 particles. The 

random values, 𝑟𝑎𝑛𝑑𝑖 , where 𝑖 = 1, 2, 3, … , 𝑛, are 

generated and assigned each value into each particle. Each 

random value, 𝑟𝑎𝑛𝑑𝑖 , will be compared to mutation rate, 

𝑚𝑟. If the random value, 𝑟𝑎𝑛𝑑𝑖  less than mutation rate, 

𝑚𝑟 so the 𝑖-th particle will be carried out the mutation 

process. The new particle and fitness values resulting from 

the mutation will replace the previous values. The entire 

steps of algorithms can be seen in Algorithm 2. 

Algorithm 2: Framework Random Parameter Mutation 

 // mr is mutation rate   

// particles is all particle in entire swarm 

// nParticles is size swarm 

for i  1 to nParticles : 

      if rand < mr  : 

             newParticle   mutation operator (particles [i]) ; 

             newFitness  objective function (newParticle) ; 

             particles [i]  newParticle ;  

             fitness [i]  newFitness ; 

       end if 

end for 

2.8 Sorting mutation framework 

The Sorting Mutation Framework (Algorithm 3) 

works the mutation process by sorting descending 

particles based on their fitness values. Particles with the 

worst fitness value will be subject to mutation. The 𝑛𝑀𝑢𝑡 

variable controls the number of the worst particle 

mutations carried 𝑜𝑢𝑡𝑀𝑢𝑡 variable, which is obtained 

from the total number of 𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 multiplied by the 

mutation parameter 𝑚𝑟. The mutated particles will replace 

the old particles. 

Algorithm 3: Framework Sorting Mutation 

// mr is mutation rate   

// particles is all particle in entire swarm 

// nParticles is size swarm 

// fitness is return value from objective function 

nMut  floor (nParticles ∗ mr) ; 

worst  sorting desc index by (fitness) ; 

for i  1 to nMut : 

      newParticle  mutation operator (particles[worst[i]) ; 

      newFitness  objective function (newParticle) ; 

      particles [worst[i]]  newParticle ; 

      fitness [worst[i]]  newFitness ; 



Optimizing Swarm Intelligence: A Comprehensive Analysis of… Informatica 49 (2025) 145–154 149 

end for  

2.9 Dynamic sorting mutation framework 

The basis of this framework is a sorting mutation 

framework with dynamic mutation arrangements. The 

difference is that in this framework, parameters adjust the 

number of dynamically mutated particles. Setting the 

number of mutation particles will continue to increase as 

the number of iterations increases. In Algorithm 4, there is 

a dynamic 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑀𝑢𝑡, the control parameter for 

dynamic mutations. 

 
Algorithm 4: Framework Dynamic Sorting Mutation 

// mr is mutation rate   

// particles is all particle in entire swarm 

// nPop is size swarm 

// fitness is return value from objective function 

// maxIter is maximum iteration 

dinamicMut  ceil (( mr/maxIter) ∗ iter) ; 

nMut  floor (nParticles ∗ dinamicMut) ; 

worst  sorting desc index by (fitness) ; 

for i  1 to nMut : 

      newParticle  mutation operator (particles[worst[i]) ; 

      newFitness  objective function (newParticle) ; 

      particles [worst[i]]  newParticle ; 

      fitness [worst[i]]  newFitness ; 

end for  

 

2.10 Objective function 

The objective function used in this study is divided 

into two groups. The first group is a function that has a 

single optimal result or is often called unimodal. The 

second group is a multimodal function. In the unimodal 

group the objective functions used are the De Jong, and 

Rosenbrock functions and the other group functions are 

Rastrigin, Griewank, and Ackley. The equation used for 

the De Jong function can be seen in Eq. (1), the 

Rosenbrock function uses Eq. (2), the Rastrigin, Griwank, 

Ackley functions use Eq. (3)-(5). 

 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1                                                              (1) 

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (1 + 𝑥𝑖)2]𝑛−1

𝑖=1                        (2) 

𝑓(𝑥) = 10𝑛 + ∑ [𝑥𝑖
2 − 10 cos (2𝜋𝑥𝑖)]𝑛

𝑖=1                             (3) 

𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1                            (4) 

𝑓(𝑥) = −𝑎 . exp (−𝑏 . √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

exp (
1

𝑛
∑ cos (𝑐. 𝑥𝑖

𝑛
𝑖=1 )) + 𝑎 + exp (1)                                  (5) 

 

3 Result and discussion 
In this study the optimization method or algorithm 

used is PSO, GOA and ACO. Mutation modification will 

have 16 modifications from 4 types of frameworks and 4 

types of mutation operators that will be added to each 

method. To make it easier to read, the method given the 

mutation modification will be affixed with the letter 'M' 

which indicates modified followed by the code number 

which indicates the mutation. There are 6 types of 

benchmark functions used: Rosenbrock, De Jong, 

Rastrigin, Greiwangk, and Ackley with 4 different 

dimensions (2, 5, 10, and 30). Because the initial 

initialization uses random values, to get the best results, 

the test is carried out ten times for one test scenario. The 

initialization of parameter values of SI algorithm can be 

seen in Table 1. These values are fixed so that can measure 

the effectiveness of research contributions without being 

influenced by other parameters. 

 This section will be subdivided into three 

analyses to ensure a comprehensive evaluation. The first 

analysis examines the method that exhibits the most 

significant impact when mutations are introduced. The 

subsequent analysis investigates the effects of objective 

function types, specifically unimodal and multimodal 

functions. Lastly, an analysis is conducted to determine 

the framework and mutation operators that exert the most 

substantial influence. The impact calculation is performed 

using Equation 6. This equation quantifies the difference 

between the fitness value of the baseline method, denoted 

as G(x), and the fitness value of the modified method, 

denoted as G(x)'. The difference is divided by the fitness 

value of the baseline method and then multiplied by 100 

to amplify the impact. 

 

𝐼 =  
𝐺(𝑥)−𝐺(𝑥)′

𝐺(𝑋)
                (6) 

 Table 1. Setup parameters of SI 

Method Parameter 

PSO 𝑐1 = 1; 𝑐2 = 2 

ACO 𝑎𝑙𝑝ℎ𝑎 = 1;  𝑏𝑒𝑡𝑎 = 3;  𝑟ℎ𝑜 = 0.1 

CSO 
𝑠𝑚𝑝 = 10;  𝑚𝑟 = 0.2;  𝑠𝑝𝑐 = 𝑇𝑟𝑢𝑒;  
𝑐𝑑𝑐 = 1;  𝑠𝑟𝑑 = 0.01; 𝑐1 = 0.5 

GOA 
𝑐𝑚𝑖𝑛 = 0.1; 𝑐𝑚𝑎𝑥 = 1;  
𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 1;  𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 1.5 

ABC 𝑏𝑒𝑒𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = 8; 𝑛𝑢𝑚𝑠𝑜𝑢𝑟𝑐𝑒𝑓𝑜𝑜𝑑 = 2;  

 

 

Figure 7:  Accumulated total impact value. 
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3.1 Objective function analysis 

To analyze the impact of mutations on the 

fundamental methods, it is imperative to conduct a 

comprehensive comparison of mutation effects across all 

benchmark functions. Figure 7 illustrates the outcomes of 

all mutation modifications applied to the basic method, 

with the dotted line denoting the baseline method (having 

a y-axis value of zero). A positive value signifies that the 

modified method outperforms the basic method, while a 

negative value indicates inferior performance. The results 

of testing the basic method are presented in Figure 7, 

where a larger positive value denotes a more pronounced 

impact. Notably, among all the basic methods tested, the 

ACO method exhibits the most substantial impact, as 

evidenced by the prevalence of modified methods with 

values above zero. It is worth mentioning that the addition 

of mutation modifications exerts varying effects on the 

ACO method. 

In addition to leveraging the difference in mean 

values, a paired T-Test is employed for a statistical 

assessment to ascertain whether the modification of the 

basic method yields significant positive changes. Each 

method modification result is paired with the method 

result without modification. With an alpha value of 0.05 

and a t-table value of 2.9803, the T-Test results were 

obtained for all method results, as illustrated in Fig. 8. 

From these results, the modification that exhibited the 

most positive effect was observed in the ABC method with 

the M-1D modification. Among the basic methods, the 

one that underwent the most successful modifications was 

the 9th method.  

The overall summary of mutation results obtained 

4 results as shown in Table 2. The first result is ACO with 

the M-1C modification gets the best score with a value of 

19,70. The second result obtained is the value of the 

biggest negative impact on CSO. The third result is that 

only ACO has a positive value from the calculation of the 

average impact. The final result obtained from all 

experiments is that the most successful mutation 

modification is in the ACO method with 15 modifications 

(out of a total of 16 modifications). 

Mutation Impact Analysis of Dimension and Function 

Problem 

To conduct an impact analysis on the introduction 

of mutations to the dimensions and types of problem 

functions in this section, the benchmark functions and 

dimensions will be initially classified. The dimensions of 

the problem will be categorized into two types: low 

dimensions (2 and 5 dimensions) and high dimensions (10 

and 30 dimensions). Similarly, the types of functions will 

be distinguished between unimodal functions 

(Rosenbrock and De Jong) and multimodal functions 

(Rastrigin, Griewank, and Ackley).  

The best fitness results from 10 trials are 

summarized, including the best value or minimum value, 

worst value, average, and total, as depicted in Appendix A 

for unimodal functions and Appendix B for multimodal 

functions. Following the grouping based on the problem 

function, the best value results will be further categorized 

based on the dimensions employed. 

Out of the 16 modifications applied to all basic 

methods and across 10 trials for each test, all basic 

methods exhibit the best results among the mutation 

modifications used. The ACO method, with its mutation 

modification, demonstrates the most significant positive 

Table 2: Summary of the impact of mutations on 

basic methods 

Method Best Worst Average 
Positive 

Totals 

ABC 12,69 -24,15 -5,95 5 

ACO 19,70 -0,68 9,24 15 

CSO -5,37 -62,56 -28,13 0 

GOA 11,57 -41,96 -14,95 1 

PSO 0,73 -10,15 -4,27 2 

 

 
Fig. 8.  T-Test Results 
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Figure 9: Number of positive impacts by cluster operator and framework mutation modification 
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impact, securing the best value across all groupings. The 

GOA method, with its mutation modification, achieves the 

highest result, with an impact value of 3,484 on high-

dimensional unimodal functions. ACO emerges as the 

method with the most substantial impact, boasting an 

average modification value of 16 mutations with positive 

results across all dimensions and problem function types, 

totaling 0.55. 

The ABC and CSO methods yield favorable results 

in dimensions 10 and 30 (high dimensions) for both 

unimodal and multimodal functions. On the other hand, 

PSO and GOA methods exhibit less favorable outcomes 

with the addition of mutations. PSO only demonstrates 

improved results on high dimensions with multimodal 

function mutations. Conversely, mutations applied to 

GOA show no positive effects and even exacerbate the 

performance of the basic GOA method, resulting in an 

average negative impact of mutations. 

3.2 Framework and operator modification 

analysis 

The impact of mutation modifications can be assessed 

through an analysis of the summary of impact values for 

the 5 basic methods, 4 dimensions, and 5 objective 

functions—essentially, the average impact value derived 

from 100 iterations. The summarized value encompasses 

the total sum, average, best, worst, and total modifications 

that yield positive values (n positive), as depicted in Table 

7. Modification 2B stands out as the modification with the 

highest number of positive results, achieving success in 69 

out of the 100 conducted tests. Conversely, the smallest 

sum and average values are produced by 2D 

modifications. 

To analyze the influence of different frameworks and 

operators, the results from Table 7 are organized by 

framework and mutation operator. Figure 10 presents a 

graph illustrating the groupings of frameworks and 

operators based on the sum of positive results. The blue 

line represents the results from Table 7, while the yellow 

line represents the average value of the grouped operators 

(left picture) and frameworks (right picture). 

From Figure 10, it becomes apparent that the grouping 

of frameworks has a more pronounced influence than that 

of the operators. In the grouping of operators, the average 

values appear consistent, whereas in the grouping of 

frameworks, the results exhibit variation. Modification of 

framework number 2 emerges with the best results, 

indicating that this modification has the most significant 

effect. Similarly, an analysis of modifications influencing 

the average impact value reveals that modifications with 

Framework 2 yield the best results based on Figure 10. 

The graphical pattern observed aligns with that depicted 

in Figure 9, which is based on operator modifications. 

 

The study reveals that mutation modifications have a 

substantial positive impact on the Ant Colony 

Optimization (ACO) method, with 15 out of 16 

modifications showing improved results. Notably, the 

ACO with the M-1C modification achieved the highest 

score of 19.70. Additionally, the Artificial Bee Colony 

(ABC) method with the M-1D modification exhibited 

significant positive effects. Among the tested frameworks, 

Framework number 2 emerged as the most effective, 

yielding the best results across various dimensions and 

objective functions. In high-dimensional unimodal 

functions, the Grasshopper Optimization Algorithm 

(GOA) with its mutation modification achieved the 

highest result. Both ABC and Cat Swarm Optimization 

(CSO) methods performed well in high dimensions (10 

and 30) for both unimodal and multimodal functions, 

while the Particle Swarm Optimization (PSO) method 

showed improvement only in high dimensions with 

multimodal functions. Conversely, mutations generally 

worsened the performance of GOA, resulting in an 

average negative impact. The analysis also indicates that 

the grouping of frameworks has a more pronounced 

influence on performance than the grouping of operators, 

with Modification 2B standing out for its high number of 

positive results in 69 out of 100 tests. These findings 

highlight the enhanced optimization performance 

achieved through specific mutation modifications, 

emphasizing the importance of selecting appropriate 

frameworks and mutation techniques. The results provide 

valuable insights for optimizing swarm intelligence 

algorithms, suggesting that ACO and ABC methods are 

particularly suitable for problems requiring enhanced 

exploration, while GOA may require further refinement 

 

Figure 10: Number of positive impacts by cluster operator and framework mutation modification 
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for targeted applications in high-dimensional unimodal 

functions. 

4 Conclusion 
Based on the results obtained from all conducted trials 

in this study, it is deduced that mutation modification 

exerts the most substantial impact on optimization 

methods characterized by low complexity. Among these, 

the ACO, ABC, and PSO methods exhibit superior values 

compared to CSO and GOA. The application of T-Test 

analysis reveals that the ABC method demonstrates the 

most favorable effect in response to mutations. 

A secondary conclusion drawn is that mutation 

modification exerts the most notable influence on 

multimodal problem functions and those with high 

dimensions. This is substantiated by the observation that 

mutation modification impedes the optimization methods 

from converging rapidly, thereby leading to more optimal 

results. In summary, this study affirms that the mutation 

modification yielding the most significant impact is the 

2nd framework modification (Algorithm 2), also known as 

Random Parameter Mutation. 

 

5 Future work 
Expanding upon the insights gained from this study, 

several promising avenues for future research in 

optimizing swarm intelligence algorithms emerge. A 

pivotal direction involves advancing mutation techniques 

to fine-tune their efficacy within swarm intelligence 

frameworks. This could entail exploring adaptive 

mutation strategies that dynamically adjust mutation rates 

based on algorithmic performance feedback or hybrid 

approaches that integrate multiple mutation operators 

tailored to specific problem characteristics. Such 

endeavors aim to deepen the algorithms' capacity for 

efficient exploration and exploitation in complex 

optimization landscapes, thereby enhancing their 

robustness and adaptability. 

Another critical area for exploration lies in extending 

the study to encompass multi-objective optimization 

scenarios. Investigating how mutation modifications 

influence the trade-offs between conflicting objectives in 

multi-dimensional optimization problems could pave the 

way for developing versatile multi-objective swarm 

intelligence algorithms. These algorithms would be 

capable of handling diverse decision-making challenges 

across domains such as engineering design, finance 

portfolio optimization, and logistics planning. 

 

Furthermore, future research could focus on 

validating and refining optimized swarm intelligence 

algorithms through rigorous applications in real-world 

settings. By testing these algorithms against practical 

datasets and scenarios in sectors like healthcare resource 

allocation, industrial process optimization, and urban 

planning, researchers can assess their scalability, 

robustness, and applicability under real-world constraints 

and uncertainties. 

 

Advancements could also involve exploring novel 

algorithmic enhancements beyond mutation. This includes 

investigating adaptive parameter tuning mechanisms that 

autonomously adjust algorithmic parameters in response 

to environmental changes or problem-specific dynamics. 

Additionally, the integration of advanced initialization 

techniques and meta-heuristic adaptations could further 

accelerate convergence rates and improve solution quality 

across diverse optimization tasks. 

Comparative studies across mutation techniques and 

other state-of-the-art optimization algorithms present 

another promising avenue. Conducting comprehensive 

comparative analyses could elucidate the comparative 

advantages and limitations of swarm intelligence 

approaches relative to evolutionary strategies, gradient-

based methods, and machine learning-driven 

optimizations in various complex optimization scenarios. 

Moreover, theoretical investigations into the 

underlying mechanisms and mathematical foundations of 

mutation-based swarm intelligence optimizations could 

provide deeper insights into algorithmic behaviors and 

performance landscapes. These theoretical insights would 

not only enhance algorithm design principles but also 

contribute to advancing the theoretical foundations of 

meta-heuristic optimization methodologies. 

Lastly, expanding the scope of benchmark functions 

and problem dimensions used in experimental validations 

would bolster the generalizability and robustness of 

findings. This expansion would encompass more intricate 

optimization landscapes and problem complexities, 

ensuring the thorough validation of mutation-driven 

enhancements in swarm intelligence algorithms across 

diverse and challenging optimization environments. 

By pursuing these multifaceted research directions, 

future studies can significantly advance the field of swarm 

intelligence optimization. This advancement promises to 

elevate the practical applicability and effectiveness of 

swarm intelligence algorithms in tackling real-world 

optimization challenges across various scientific and 

industrial domains. 
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APPENDIX A. Result of unimodal objective function 
 

    Rosenbrock De Jong 

    2-D 5-D 10-D 30-D 2-D 5-D 10-D 30-D 

ABC 

Mean -2,88 -0,86 0,48 0,33 -1,89 -1,16 -0,65 0,39 

Sum -46,11 -13,80 7,62 5,26 -30,19 -18,53 -10,44 6,29 

Worst -13,43 -5,23 0,06 -0,47 -8,59 -12,56 -4,71 -0,05 

Best 0,61 0,84 0,97 0,99 0,77 1,00 0,98 1,00 

ACO 

Mean 0,20 0,85 0,53 0,55 0,68 0,37 0,60 0,52 

Sum 3,14 13,65 8,53 8,79 10,83 5,93 9,66 8,24 

Worst -1,96 0,55 -0,08 -0,03 -0,47 -0,13 0,09 0,04 

Best 0,98 0,98 0,97 0,99 1,00 1,00 1,00 1,00 

CSO 

Mean -21,22 -0,96 -0,06 -0,11 0,03 -4,06 -0,02 0,23 

Sum -339,45 -15,32 -0,89 -1,75 0,43 -64,96 -0,26 3,66 

Worst -52,09 -5,66 -0,87 -0,46 -2,77 -6,98 -0,64 0,05 

Best -0,23 0,27 0,85 0,27 0,88 -0,63 0,32 0,34 

GOA 

Mean 0,29 -0,01 -0,26 -8,50 -1,17 -0,57 0,01 -0,01 

Sum 4,66 -0,22 -4,23 -135,93 -18,78 -9,06 0,15 -0,23 

Worst 0,00 -0,23 -0,52 -37,61 -4,42 -2,09 -0,67 -0,13 

Best 0,63 0,16 0,02 13,30 0,93 0,66 0,48 0,15 

PSO 

Mean 0,59 -0,89 0,03 0,10 0,09 -0,39 0,17 -0,02 

Sum 9,43 -14,24 0,41 1,66 1,49 -6,17 2,65 -0,36 

Worst -0,14 -2,35 -0,80 -0,31 -2,19 -1,88 -0,60 -0,15 

Best 1,00 0,05 0,84 0,49 0,99 0,46 0,63 0,32 

 
 

APPENDIX B. Result of multimodal objective function 
 

  
Rastrigin Griewangk Ackley 

2-D 5-D 10-D 30-D 2-D 5-D 10-D 30-D 2-D 5-D 10-D 30-D 

ABC 

Mean 0,03 0,01 0,28 0,19 -1,26 -0,05 0,16 0,28 -0,23 0,43 0,19 0,25 

Sum 0,54 0,19 4,45 3,04 -20,08 -0,79 2,64 4,56 -3,71 6,83 3,08 3,95 

Worst -1,09 -0,81 -0,20 -0,29 -3,61 -1,43 -0,32 -0,15 -1,39 -0,05 -0,05 -0,01 

Best 0,99 1,00 0,94 0,92 0,75 0,78 0,96 1,00 0,93 0,94 0,86 0,99 

ACO 

Mean 0,16 0,38 0,37 0,33 0,16 0,38 0,37 0,33 0,61 0,37 0,40 0,36 

Sum 2,57 6,06 5,84 5,31 2,57 6,06 5,84 5,31 9,68 5,93 6,39 5,76 

Worst -2,05 -0,31 0,00 0,00 -2,05 -0,31 0,00 0,00 -0,01 -0,13 0,00 0,00 

Best 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

CSO 

Mean -0,23 -0,37 0,11 -0,01 0,32 -0,19 0,06 0,08 -1,31 -0,48 0,03 0,01 

Sum -3,75 -5,84 1,76 -0,12 5,10 -3,05 1,02 1,20 -20,99 -7,61 0,49 0,21 

Worst -5,26 -1,06 -0,08 -0,10 -0,51 -1,33 -0,39 -0,15 -6,31 -1,10 -0,08 -0,02 

Best 0,88 0,50 0,44 0,13 0,96 0,55 0,38 0,33 0,61 0,65 0,13 0,06 

GOA 

Mean -0,26 0,06 0,06 -0,11 -2,29 0,10 0,05 -0,10 -2,29 0,10 0,05 -0,10 

Sum -4,19 0,93 0,93 -1,70 -36,63 1,57 0,87 -1,61 -36,63 1,57 0,87 -1,61 

Worst -2,41 -0,32 -0,07 -0,21 -3,30 -0,33 -0,17 -0,37 -3,30 -0,33 -0,17 -0,37 

Best 0,99 0,47 0,34 0,06 -0,62 0,47 0,28 0,17 -0,62 0,47 0,28 0,17 

PSO 

Mean 0,25 0,21 0,16 0,06 -1,78 0,03 -0,39 -0,01 -2,31 -0,09 0,07 -0,03 

Sum 4,07 3,39 2,63 0,92 -28,52 0,53 -6,29 -0,20 -37,03 -1,50 1,06 -0,56 

Worst -0,38 -0,04 -0,01 -0,02 -3,96 -0,47 -1,14 -0,26 -4,33 -0,32 -0,02 -0,07 

Best 0,86 0,55 0,28 0,15 -0,23 0,54 0,36 0,29 0,64 0,20 0,16 0,01 

 

 


