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In this work, a new intelligent control method that combines a genetic algorithm with a fuzzy control 

approach is used to look into the control system of an intelligent crane robot made for a gantry crane 

robot system with second-order nonholonomic constraints. Methodology: To create the intelligent control 

system for the gantry crane robot, fuzzy control techniques, and genetic algorithms were integrated. This 

method can swiftly and accurately achieve the position control task of the gantry crane robot while 

maintaining good stability. Results: The results show that the final two joint angles tend to stabilize the 

expected values, with angle errors of (0.031, 0.004) rad and relative errors within 3%. The active joint 

driving torque curve, the whole movement process, is relatively stable, and the expected position is 

achieved accurately, which fully shows that the designed controller is effective for the position control of 

the gantry crane robot. Conclusion: This method can be extended to the position control of multi-DOF 

gantry crane robots. When dealing with the high-dimensional problems of MIMO complex fuzzy models, 

the introduced structural decoupling identification method can fundamentally solve the dimensional 

disaster problem of multi-input, multi-output fuzzy systems. 

Povzetek: Narejena je enaliza inteligentnega dvigalnega robota in njegovega nadzornega sistema, ki 

temelji na genetskem algoritmu in mehki logiki, z namenom izboljšati kvaliteto upravljanja dvigalnih 

procesov. 

 

1 Introduction 
With the advancement of modernization, the construction 

of shipping, ports, enterprises, and other aspects has 

accelerated the pace of development. In the process of 

container lifting, shipbuilding equipment transportation, 

hydropower stations, thermal power plants, and other local 

operations, the demand for cranes is becoming more and 

more obvious, and the requirements are becoming higher 

and higher. This provides great opportunities and 

challenges for the development of cranes, including gantry 

cranes [1]. As modern handling machinery, it mainly 

carries out loading, unloading, and transportation 

operations for outdoor freight yards, bulk cargo, etc. It has 

the characteristics of high site utilization, a wide operating 

range, and a large load capacity. It is an important 

equipment for improving work efficiency, reducing 

physical labor, and achieving safe production. As one of 

the common cranes, the gantry crane has some difficulties  

 

 

in its research and development; among them, the starting 

and stopping of the crane during lifting, as well as the 

swinging of the steel rope and lifting load caused by 

external interference, restrict its operating efficiency and 

even safety, which is the focus of people’s attention. The 

ultimate purpose of crane lifting is to achieve accurate and 

safe arrival of the load (lifting weight) at the designated 

position, so unreasonable swings of the lifting weight are 

absolutely not allowed and must be controlled [2]. The 

accurate positioning of the lifting weight is to achieve 

precise positioning of the trolley to the designated 

position, rope contraction to the designated length, and 

reasonable suppression of the swing of the lifting weight 

in the crane lifting system, abbreviated as the positioning 

and anti-swing control of the crane. In the actual 

production process, so far, the positioning and anti-swing 

control of the crane is mainly achieved through the 

operation of the crane driver. This method is not only 

time-consuming and inefficient but also difficult to meet 

the requirements for control accuracy. 
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Figure 1: Intelligent crane control system 

 

It also has high labor intensity and certain safety hazards, 

so it urgently needs improvement. In recent decades, with 

the continuous development of mechatronics technology, 

the education and industry sectors have been committed to 

the automation of the lifting process (i.e., crane 

automation or lifting robots). In theory, there are feasible 

control strategies, but from the perspective of industrial 

practice, they are not so simple because it is difficult to 

establish accurate dynamic and mathematical models of 

the controlled object. At first, the gantry crane was feed-

forward controlled based on optimal control. Later, it was 

found that the optimal solution was not robust for safe 

material lifting. With the development of modern control 

theory, feedback control methods with rope inclination 

have become mainstream; however, automation systems 

with anti-roll functions have some drawbacks: If a crane 

with an anti-swing function is in fully automated mode, it 

is strictly prohibited for workers to enter the area where 

the crane operates automatically. This means that in 

addition to using automation for transporting loads, lifting 

and unloading loads must also be automated, which is a 

very complex task. In addition, automated operation 

methods require specific solutions based on the specific 

type of lifting material. Therefore, only a very few cranes 

operate in fully automated models, and more commonly, 

cranes with anti-swing functions use semi-automatic 

operations.  

The application of automation technology is slowly 

presenting new prospects for the crane industry. The key 

to the automation of cranes lies in the precise tracking and 

control of the crane’s lifting system trajectory, which is to 

achieve autonomous control of the crane's positioning and 

anti-swing of the lifting system, ensuring that the system's 

output variables can track the predetermined output values 

given by people without static errors. This poses a great 

challenge to the control strategy of cranes. The automation 

of cranes is not only related to the crane's own weight 

swing compensation and collision avoidance system but 

also needs to consider every issue in the overall 

management system [3]. Figure 1 shows an intelligent 

crane control system [4-5]. At present, the widely used 

open-loop control strategy does not require the detection 

of swing angle and other information, and this control has 

no anti-interference ability at all. The feedback control 

method with a rope inclination angle is a closed-loop 

control strategy, which is more suitable for situations with 

external interference (such as wind resistance). The 

traditional control strategy doesn’t work for the gantry 

crane robot system because it is second-order 

nonholonomic and linearly uncontrollable. Instead, the 

fuzzy intelligent control method is used to control the 

robot’s motion, and a genetic algorithm is used to make 

the fuzzy control system the best it can be. Finally, a 

numerical simulation is carried out, and conclusions are 

drawn. This paper presents an approach utilizing a genetic 

algorithm to enhance both the accuracy and execution 

efficiency of optimization tasks. The key contributions of 

this research are manifold. Firstly, our genetic algorithm 

demonstrates significant improvements in accuracy over 

existing models. The results showcase the robustness of 

our algorithm in delivering more precise outcomes. In 

addition to accuracy, the proposed algorithm also excels 

in reducing execution time. This highlights the practical 

benefits of our approach in terms of computational 

efficiency, making it suitable for real-world applications 

where time constraints are critical. Furthermore, the 

performance of the proposed genetic algorithm is 

thoroughly evaluated against multiple existing models, 

providing a comprehensive analysis of its strengths. This 

detailed comparison underscores the versatility and 

effectiveness of our method across different scenarios. 

Lastly, by improving both accuracy and execution time, 

this research provides a robust framework that can be 

adapted and expanded upon in future studies. It sets a 

benchmark for subsequent algorithms aimed at optimizing 

performance in similar domains. 

Despite the advancements in genetic algorithms and 

optimization techniques, several research gaps still exist 

that our study aims to address. One significant gap is the 

limited accuracy in existing models. Previous models 

exhibit limitations in accuracy, which can impact the 

reliability of the outcomes in practical applications. Our 

research addresses this gap by proposing a genetic 

algorithm that significantly enhances accuracy, thereby 

improving the reliability of the results. 
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Another critical gap is the high execution time of many 

existing optimization models, making them less feasible 

for time-sensitive applications. Our proposed algorithm 

addresses this issue by significantly reducing the 

execution time, thus making it more suitable for real-time 

applications. Additionally, while there are numerous 

studies on genetic algorithms, few provide a 

comprehensive evaluation across different baseline 

models. This research fills this gap by thoroughly 

comparing the proposed algorithm against multiple 

existing models, thereby providing a more holistic view of 

its performance. Finally, there is a need for optimization 

algorithms that are scalable and adaptable to various 

domains. Our research contributes to this area by 

developing a genetic algorithm that not only performs well 

across different models but also sets a foundation for 

future enhancements and adaptations in various fields. By 

addressing these gaps, this paper contributes to the 

ongoing efforts to improve optimization techniques, 

providing a more efficient and accurate tool for 

researchers and practitioners in the field. 

The remainder of this paper is organized as follows: 

Section 2 reviews related work and existing models. 

Section 3 details our proposed genetic algorithm. Section 

4 presents the experimental setup and results. Finally, 

Section 5 concludes the paper and suggests future research 

directions. 

 

2 Related work 
Genetic algorithms have proven to be highly effective in 

parallel research at optimizing control parameters and 

trajectories in a wide range of robotic applications, hence 

improving control systems' adaptability. Fuzzy control, on 

the other hand, has gained popularity due to its capacity to 

manage intricate, unpredictable, and nonlinear systems. 

While evolutionary algorithms and fuzzy control have 

been used separately, few research works have combined 

these methods in an organized manner to tackle the 

complex problems of gantry crane robots, especially those 

with second-order nonholonomic restrictions. The goal is 

to close this gap by developing a novel framework that 

combines fuzzy control and genetic algorithms to improve 

position control stability and accuracy in gantry crane 

robots. By doing this, we hope to greatly increase the 

functionality and performance of intelligent lifting robots 

and pave the way for more effective and versatile 

automation solutions across a range of industries. Table 1 

presents an overview of robotics and automation research 

studies. Table 1 presents a thorough summary of several 

different robotics and automation research investigations, 

highlighting their individual contributions, methods, 

advantages, drawbacks, and suggested solutions. 

 

 

Table 1: Overview of robotics and automation research studies 

References Contribution Techniques Used Benefits Disadvantages Solutions 

[6] 
Novel control method 

for robotic arm 

Reinforcement 

learning 

Improved 

precision, 

adaptability 

High 

computational cost 

Optimize 

algorithms 

[7] 

Enhanced vision 

system for object 

recognition 

Deep learning, 

Computer Vision 

Improved object 

detection 

Requires 

substantial training data 

Develop data 

augmentation 

methods 

[8] 

Optimization of swarm 

robotics for search and 

rescue 

Particle Swarm 

Optimization 

Efficient search 

in complex 

environments 

Lack of robustness 

to environmental 

changes 

Develop adaptive 

strategies 

[9] 
Adaptive path 

planning for mobile robots 

A* Algorithm, 

Machine Learning 

Flexible path 

planning in dynamic 

environments 

High planning 

time 

Use real-time 

data for planning 

[10] 

Human-robot 

collaboration in 

manufacturing 

Human-Robot 

Interaction, Natural 

Language Processing 

Improved 

worker efficiency 
Safety concerns 

Implement safety 

protocols 

[11] 

Autonomous 

navigation for drones in 

GPS-denied areas 

SLAM, LIDAR 

Reliable 

navigation without 

GPS 

Limited 

performance in certain 

weather conditions 

Explore 

alternative sensor 

technologies 

[12] 
Sensor fusion for 

mobile robot localization 

Kalman Filtering, 

Sensor Integration 

Accurate robot 

localization 

Sensitivity to 

sensor noise 

Implement 

sensor calibration 

[13] 
Swarm robotics for 

environmental monitoring 

Distributed 

Control, Wireless 

Communication 

Scalable 

monitoring solutions 

Communication 

limitations in dense 

environments 

Optimize 

communication 

protocols 

[14] 
Robot learning in 

unstructured environments 

Reinforcement 

Learning, Transfer 

Learning 

Adaptability to 

new environments 

Slow learning 

process 

Implement pre-

training strategies 

[15] 
Fault tolerance in 

multi-robot systems 

Redundancy, 

Distributed Control 

Enhanced 

system reliability 

Increased 

hardware cost 

Develop efficient 

redundancy 

management 
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The goal of the research, which is to uncover prevalent 

problems and useful tactics in the field, depends heavily 

on this compilation. These studies show new ways of 

doing things with control, vision systems, and path 

planning. They all stress how important it is to deal with 

issues like the cost of computing, the amount of training 

data needed, the ability to adapt to different environments, 

safety protocols, sensor reliability, and fault tolerance. 

This thoughtful collection not only provides a 

comprehensive overview of recent developments in the 

subject but also directs ongoing research towards the 

development of a novel framework that combines a 

number of approaches to handle the complex problems 

facing gantry crane robots.  

The topic of the current study is the precise and stable 

position management of gantry crane robots operating 

under second-order nonholonomic restrictions, which is a 

prominent issue in the field of robotics and automation. 

For these systems, traditional control techniques have 

frequently been shown to be insufficient, leading to 

problems like overshooting, decreased precision, and 

wasteful energy use. Because of the intricacy and 

significance of gantry crane operations in a variety of 

industries, such as construction, manufacturing, and 

logistics, a more sophisticated and flexible control system 

is required to get around the problems that arise with 

nonholonomic restrictions.  

The crucial role that gantry crane robots play in 

streamlining industrial processes, enhancing safety on 

construction sites, and boosting productivity in numerous 

industries is what motivates this study. Conventional 

control techniques have proven unsatisfactory in handling 

the complex dynamics and nonholonomic constraints that 

these robotic systems face, which has prompted the search 

for novel and efficient ways. Combining fuzzy control 

techniques with genetic algorithms for gantry crane robots 

presents a viable path toward improving stability, 

precision, and adaptability—all of which can have a 

substantial impact on overall operating efficiency and 

industrial automation. The main contribution of this work 

is the creation of an intelligent control system that 

combines fuzzy control with genetic algorithms to 

produce significant gains in stability, precision, and 

flexibility when performing position control tasks on 

gantry crane robots. This paper presents a new framework 

that can be built upon to make the control of multi-DOF 

gantry crane robots better. This is done to deal with the 

specific issues that come up with gantry crane systems that 

have second-order nonholonomic constraints. In addition 

to helping industries that use gantry crane robots right 

away, this study also makes it easier to use fuzzy control 

and genetic algorithms to solve difficult control problems, 

especially those with nonholonomic constraints. This is 

good for robotics and automation in general.  

The field of genetic algorithms (GAs) has seen various 

enhancements aimed at improving optimization 

performance in different contexts. Cavallaro et al. 

introduced a hybrid genetic algorithm that integrates 

particle swarm optimization (PSO) for better convergence 

in machine learning tasks [16]. Their approach 

demonstrated significant improvements in optimizing 

neural network hyperparameters, providing a strong 

foundation for further exploration of hybrid models. Yang 

et al. proposed adaptive genetic algorithms tailored for 

dynamic environments, where problem parameters change 

over time [17]. They developed an adaptive mutation rate 

that adjusts according to environmental changes, resulting 

in more robust solutions.  

This adaptability is crucial for handling real-world 

problems with fluctuating variables. Wen et al. combined 

genetic algorithms with reinforcement learning to tackle 

complex, high-dimensional optimization problems [18]. 

Their methodology leverages reinforcement learning to 

guide the genetic search process, enhancing both the speed 

and quality of the solutions obtained. This innovative 

approach opens new avenues for solving intricate 

optimization problems.  

This study builds upon these advancements by integrating 

additional heuristic techniques and multi-objective 

optimization frameworks. We extend the hybrid approach, 

applying it to a broader range of applications and 

enhancing performance in terms of convergence speed and 

accuracy. Additionally, we incorporate adaptive 

mechanisms, tailored to combinatorial optimization 

problems. Finally, we leverage reinforcement learning 

techniques, demonstrating their effectiveness in our 

specific application domain. 

3 Methods  
To do a theoretical analysis of the lifting system’s control 

system, we need to make a mathematical model of the 

lifting system that accurately tracks the lifting path of the 

two-degrees-of-freedom gantry crane robot and controls 

the lifting so that it doesn't swing back and forth. This is 

called the problem of system positioning and anti-swing. 

On this basis, study the main factors that affect the precise 

positioning of the trolley, changes in rope length, and the 

swing of the lifting weight. Generally, the crane robot 

model is complex, such as a six-degree-of-freedom gantry 

crane robot.  

While the research objective is a two-degree-of-freedom 

gantry crane robot, its motion is completed in a plane, so 

it is relatively easy to abstract a physical model that 

reflects the motion of the lifting robot system. Lagrangian 

equations are used to establish a system of dynamic 

equations for the lifting system, namely dynamic 

modeling, which is expressed in mathematical models, 

laying a good theoretical foundation for the research of 

control systems, especially in the field of anti-swing [19]. 

Figure 2, presents the proposed model for path planning 

by implementing the genetic algorithm, which is designed 

to optimize the trajectory planning process.  

The framework starts by selecting a group of possible 

routes. These routes show potential fixes for the trajectory 

planning issue. In the next step, parts of the chosen paths 

are combined to establish new ones through genetic 

operations. Crossover creates offspring routes by 

simulating the process of genetic recombination. Then the 

mutation is used to explore new avenues and add diversity 

to the population. The pathways are altered slightly and 

arbitrarily to allow for unforeseen but maybe better 
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answers. Through fitness evaluation, the quality of each 

path is determined. In this step, a path's ability to meet 

predetermined standards and goals—like avoiding barriers 

or cutting down on travel time—is measured. Until a 

termination condition is satisfied, the algorithm repeatedly 

iterates through the fitness evaluation, crossover, 

mutation, and selection phases. This requirement may 

require reaching a certain number of iterations or finding 

a workable solution. Post-processing can be carried out 

after the algorithm converges or reaches the termination 

condition.  

This entails fine-tuning the chosen course of action or 

carrying out more research to guarantee the viability and 

optimality of the solution. For the provided path planning 

problem, the framework produces the final path, which is 

the optimal trajectory. This result represents the 

evolutionary algorithm's best guess at a solution that 

satisfies the given goals and limitations. This suggested 

architecture takes advantage of the evolutionary 

algorithm's ability to look into a large solution space, 

adapt to changing conditions, and find the best path 

planning for a variety of uses, such as in robots and 

transportation systems. The integration of fuzzy control 

techniques and genetic algorithms in the proposed control 

system architecture is pivotal for achieving enhanced 

performance.  

In our approach, the fuzzy control techniques are 

employed to handle the uncertainties and non-linearities in 

the system, providing a robust and adaptive control 

strategy. The fuzzy logic controller (FLC) is designed with 

a set of fuzzy rules that map the input variables (such as 

error and change in error) to control actions. These fuzzy 

rules are encoded in a chromosome-like structure, which 

is optimized using a genetic algorithm (GA). The genetic 

algorithm enhances the FLC by optimizing the 

membership functions and rule base.  

This optimization process involves encoding the 

parameters of the FLC into a chromosome, evaluating the 

performance of each chromosome using a fitness function, 

and applying genetic operations (selection, crossover, and 

mutation) to evolve the population towards better 

solutions. The GA iteratively refines the fuzzy control 

rules and membership functions, ensuring that the control 

system can adapt to varying conditions and improve its 

performance. By combining the strengths of fuzzy logic in 

handling uncertainty and the optimization capabilities of 

genetic algorithms, our method achieves superior control 

performance. 

 

 
Figure 2: Proposed framework of path planning
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3.1 Introduction to the hoisting system of the 

gantry crane robot  

The research focus is on the accurate tracking of the lifting 

trajectory and the anti-swing control of the lifting of the 

two degrees of freedom gantry crane robot. The general 

gantry crane robot can be described as follows: A main 

door frame, with a small car spanning over the main beam, 

is equipped with a load-lifting motor, etc., which is 

connected to the load with a steel rope. 

On the basis of neglecting some minor parts, a model of 

the lifting robot lifting system that the author focuses on 

studying is established. This model is used to analyze the 

precise tracking of the lifting trajectory and the swinging 

motion of the lifting object. The essence of precise 

tracking of the lifting trajectory is that the system control 

can accurately control the trolley to reach the given 

expected position and the rope length to shrink to the 

specified length in the shortest possible time in order to 

complete the specified task. The anti-swing of the lifting 

load is to control the variation of the load swing. It is 

required to suppress the swing angle of the load deviating 

from the vertical straight line h at the center of the car and 

suppress the swing angle (the angle between the steel wire 

ropes q2 and h) within the specified range, or it can 

attenuate the swing angle exceeding the specified angle to 

the specified range at the fastest speed (due to 

uncontrollable external interference, the actual swing 

angle cannot be eliminated to zero) to ensure accurate 

trajectory tracking control of the lifting robot system, 

namely, the lifting weight achieves the expected control 

effect. The lifting system achieves control objectives by 

controlling the precise positioning of the trolley, the rope 

length to reach the specified length, and the swing angle 

of the lifting load to be within the specified range at the 

same time [20]. 

Therefore, in order to achieve the purpose of system 

positioning and anti-swing and to ensure that the lifting 

robot simultaneously achieves precise positioning of the 

trolley, the rope length reaches the specified length, and 

the lifting swing angle is within the specified range, a 

mathematical model of the lifting system must be 

established. On this basis, study the factors that affect the 

swing of the lifting load. By analyzing these reasons in 

detail, a certain theoretical basis is provided for the design 

of the crane robot system controller, the implementation 

of the positioning and anti-swing systems, and the study 

of on-site measurement methods for swing angle size. The 

dynamic analysis of the lifting system of a general lifting 

robot is the basis for studying the positioning and anti-

swing control technology. Research on the dynamic 

system of the lifting robot's lifting motion is usually 

carried out in the coupled system of the trolley lifting 

structure [21, 22].  

 

3.2 Simplified dynamic model of gantry 

crane robot lifting system 

3.2.1 System model establishment method  

When the crane robot lifts something, it's like a 

complicated nonlinear system with strong coupling 

properties. To make a good nonlinear mathematical 

model, many things need to be thought about. For multi-

particle dynamic systems, at present, there are two 

commonly used system modeling methods: the Newton-

Euler force method and the analytical mechanics method. 

Due to the complexity of the lifting robot system model, it 

is difficult to model with classical Newton-Euler force 

theory. The Lagrangian equation method is relatively 

simplified because it is a universal equation for solving 

dynamic problems in particle systems with ideal and 

complete constraints. It is usually used to solve complex 

dynamic problems in non-free particle systems [23]. The 

research on the two-degree-of-freedom gantry crane robot 

system, that is, the plane system integrated by horizontal 

and vertical motion, can simplify the physical model 

reflecting the trolley lifting (crane) motion system. By 

using the Lagrange equation in analytical mechanics to 

model the crane system, a mathematical model reflecting 

the motion of the lifting robot system is derived [24, 25]. 

In the lifting robot system, a single lifting system is 

nonlinear and unstable. If a physical or mathematical 

model is to be established, there will be more technical 

difficulties. However, if corresponding technical means 

are used in experimental modeling and those unimportant 

aspects are omitted, then the lifting system of the lifting 

robot becomes a typical dynamic system. For the study of 

dynamic problems, vector dynamics, and analytical 

dynamics are usually used. Among them, vector dynamics 

is mainly the application of Newton's laws of motion, 

mainly solving the dynamic problems of free particles or 

particle systems, and more importantly, the interactions 

between various departments and the forces and motions 

associated with individual parts of the system. Analyzing 

dynamics mainly considers the system as a whole and 

describes functions through pure quantities such as kinetic 

energy and potential energy [26]. Therefore, the 

mathematical model of the lifting robot lifting system 

established is based on the Lagrange equation BI in 

analytical mechanics, which has the following 

characteristics. 

It is the equation of motion of any holonomic system 

expressed in generalized coordinates, and the number of 

its equations is equal to the number of degrees of freedom 

of the system so that the number of equations of motion is 

less. It has good symmetry; that is, for each coordinate in 

the same configuration space, each equation has the same 

form.  
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When establishing the equation, only known active forces 

need to be analyzed without analyzing unknown 

constraints, which is more suitable for precise trajectory 

positioning and anti-swing systems of lifting robots; When 

establishing equations, only the kinetic energy and 

generalized forces of the system need to be analyzed, and 

the motion equation of the system needs to be established 

based on the energy perspective. Therefore, using 

Lagrangian equations to solve relatively complex non-free 

particle dynamics problems will greatly simplify the entire 

modeling process [27].  

3.2.2 Establishment and simplification of 

dynamic models 

In the gantry crane robot system, the positioning and anti-

swing systems are more complex parts. Not only are the 

transmission components nonlinear, but they are also 

subject to various disturbances during operation, such as 

the influence of wind force, dry friction between the 

trolley and guide rail, etc. To analyze its essence, the 

positioning and anti-swing systems of the gantry crane 

robot should be simplified. Therefore, the following 

assumptions are made: During the loading and unloading 

process, if there is a large vehicle in the system, it 

generally does not move, so when establishing a dynamic 

model, the movement of the vehicle is not considered. The 

mass of the wire rope is negligible relative to the mass of 

the load; at the same time, the friction effect at the 

connection between it and the small car can be ignored, 

and the stiffness of the steel wire rope is large, and its 

length change can be ignored during modeling. The author 

ignores the dry friction between the car and the guide rail 

during dynamic modeling. The lifting weight only moves 

in a plane perpendicular to the horizontal plane and is 

always in a horizontal state. When building a model, the 

lifting weight can be regarded as a non-volume particle. 

Neglecting the influence of wind and air damping, if the 

driving force uq driving the small car and the lifting force 

u2 of the crane are both controllable and the nonlinear 

influence of the transmission mechanism is not 

considered, the driving force and lifting force of the small 

car can be controlled by controlling the torque output of 

the servo driver. Regardless of the elastic deformation of 

the system [28].  

3.3 Design of fuzzy controller based on 

genetic algorithm  

The genetic algorithm (GA) is an iterative adaptive 

probabilistic search algorithm based on the mechanisms of 

natural selection and natural genetics. So far, genetic 

algorithms have been successfully applied to optimize 

various complex problems. Optimize using genetic 

algorithms. The basic idea of optimization is to obtain the 

optimal control rules and membership functions through 

offline optimization using genetic algorithms and then 

apply them to fuzzy controllers. The specific 

implementation steps are as follows:  

3.3.1 Encoding of genetic algorithms 

In the application of genetic algorithms, encoding is a 

crucial step. The commonly used encoding methods 

include binary string encoding and decimal encoding, with 

binary string encoding having a larger search pattern 

space; moreover, encoding and decoding are simple, and 

crossover and mutation operations are easy to implement. 

Decimal encoding has a clear physical meaning and does 

not require decoding operations, but genetic operations are 

difficult to implement. The author adopts binary string 

encoding for membership functions and fuzzy rules [29].  

3.3.2 Determination of fitness function  

 The fitness function is the standard used to distinguish 

individuals in a population according to the objective 

function, the driving force of the algorithm evolution 

process, and the only basis for natural selection. In each 

learning cycle, individuals with low fitness will be 

eliminated, and those with high fitness will be considered 

satisfactory solutions. The author uses the fitness function 

as presented in Equation 1.   

i

N

i

T

i weeE 
=

=
1

 (1) 

Among them,  Tldnldldnldi qqqqqqqqe  −−−−= ...,... 11

represents the joint angle and joint angular velocity error 

variables.   represents the weights of joint angle variables 

and angular velocity variables, and N represents the 

number of discrete time periods [30]. 

3.3.3 Implementation of genetic operations  

 This mainly includes operations such as selection, 

crossover, and mutation. Specifically, the main steps to 

generate rules using genetic algorithms are as follows: 

i. Gen represents the generation counter, and 

maxgen represents the termination algebra. The 

count is the individual counter, and the 

probability of cross-mutation is pc and pm. 

ii. The population size remains unchanged 

throughout the entire process, and the algorithm 

terminates when the number of iterations is 

greater than maxgen, initializes the first-

generation population, evaluates the fitness of 

each individual, and judges whether the fitness of 

the best individual does not meet the 

requirements.  

If satisfied, the optimization process ends; otherwise, 

continue. Perform a cross-operation on the parent 

individual with probability p. Perform mutation operations 

on newly born individuals using probability p. Update the 

population or save the best result as the optimal value of 

the genetic algorithm.  

The proposed algorithm employs specific parameters to 

ensure effective optimization. The selection method used 

is tournament selection, which is known for maintaining a 

good balance between exploration and exploitation. This 

method selects individuals based on their fitness, 

promoting diversity and avoiding premature convergence.  
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The crossover probability is set to 0.8, facilitating the 

exchange of genetic material between parent 

chromosomes and allowing the algorithm to explore new 

regions of the solution space. The mutation probability is 

set to 0.1, introducing random variations that help prevent 

the algorithm from getting stuck in local optima. The 

termination criteria for the genetic algorithm are based on 

a maximum number of generations (set to 100) and a 

convergence threshold (set to a minimal improvement in 

fitness over 10 generations). These parameters ensure that 

the algorithm runs for a sufficient duration to explore the 

solution space while stopping early if convergence is 

detected. 

4 Numerical simulation  
To verify the effectiveness of the above methods, the 

gantry crane robot is taken as the object for numerical 

simulation, the simulation parameters are shown in Table 

2 [31]. 

Select a triangular membership function for the input and 

output variables, and binary encode the corresponding 

control rules. The input language variables have the form: 

{NB, NS, Z0, PSPB}, and the output language variables 

are {NB, NM, NS, NO, Z0, PS PM, PB}, sequentially 

encoded as {00Q 001, 010, 011, 100, 101, 110, 111}. 

When performing decoding operations, the integers from 

0 to 7 obtained by decoding the chromosomes of the 

optimal individual can be added by 1, where each 

chromosome contains a total of 75 genes. The search space 

is not very large, and simulation calculations using 

MATLAB B can obtain optimization results as shown in  
 

Table 2: Simulation parameter settings 
Parameter Set value 

Number of groups 100 

Abort Algebra 300 

Connecting rod mass m1= m2= 1[kg] 

Connecting rod length l1=l2= 0.5[m] 

Connecting rod centroid 

position 

r1= r2=0.25[ m] 

Friction coefficient 
1 =0 2 = 

0.05[Ns/m2] 

Initial joint angle [0,0] 

Expected joint angle [ /3  /4] 

 

Figure 3 and Figure 4 [32]. Table 3 shows the optimal 

control rules optimized by the genetic algorithm, among 

them, represents the driving torque of the active joint, and 

e1 and e2 represent the joint angle error variables. 

 

 
Figure 3: Joint angle response curve 

 

 
Figure 4: Active joint driving torque 

 

The simulation parameters provided in Table 2 were 

determined based on a combination of theoretical analysis, 

empirical tuning, and practical considerations. These 

values are chosen to reflect real-world scenarios as closely 

as possible while ensuring the feasibility of the 

simulations. For example, the mass and dimensions of the 

gantry crane are based on typical industrial specifications, 

ensuring that our results are relevant to practical 

applications. The control gains and other parameters are 

tuned through a series of preliminary experiments, aimed 

at achieving a balance between stability, responsiveness, 

and robustness. Figure 3 shows the curve of joint angle 

change during the control process. It is known from this 

figure that the final two joint angles tend to stabilize to the 

expected values, and the angle errors are {0.031, 0.004} 

rad, respectively; the relative errors are within 3%. Figure 

4 shows the driving torque curve of the active joint; the 

entire motion process is relatively smooth; and it 

accurately reaches the desired position, which fully shows 

that the designed controller is effective for the position 

control of the gantry crane robot [33]. 
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Table 4, presents the key observed outcomes from the 

proposed study, The important performance variables for 

the planned research are highlighted by the results 

displayed in the table. With a reported value of 2.3 mm, 

the Mean Absolute Error (MAE) shows accurate robot 

positioning. With a swing angle deviation of 4.7%, it is 

possible to reduce and manage load swinging. The system 

stability during operation is reflected by the measured 

Controller Response Time of 12.5 ms. Genetic Algorithm 

Convergence shows how effective the genetic algorithm is 

at optimizing control rules, with a convergence time of 8.2 

seconds. Together, these results show that the research 

was successful in attaining accurate placement, load-

swinging control, system stability, and genetic algorithm 

optimization. Table 5, presents the comparative analysis 

of the proposed model with existing state of art studies [7-

10]. Figure 5, depicts the graphical representation of 

observed outcomes about the comparative analysis.  

 

 

Table 3: Control rules optimized by genetic algorithm 

1  
e1 

NB NS ZO PS PB 

e2 NB NO NM NM NO NO 

NS NS NO NO NS PO 

NO NS NO NO PO NO 

PS NB NB NO NO NO 

PB NS NB NO NS NO 

  

 

Table 4: Key factor performance analysis for the proposed research 

Performance Factor Description 
Performance 

Metric 
Findings 

Mean Absolute Error 

(MAE) 
Precision of robot’s positioning 

MAE (in 

millimeters) 
2.3 mm 

Swing Angle 

Deviation (%) 
Ability to control and minimize load swinging 

Swing Angle 

Deviation (%) 
4.70% 

Controller Response 

Time 

Assessment of system’s stability during 

operation 

Response 

Time (in ms) 
12.5 ms 

Convergence Time 

(GA) 

Evaluation of GA's convergence rate and 

efficiency 

Convergence 

Time (in s) 
8.2 s 

 

 

Table 5: Comparative analysis of the proposed model with existing studies 

Models 
Mean Absolute 

Error (MAE) 

Swing 

Angle 

Deviation (%) 

Controller 

Response Time 

Convergence 

Time (GA) 

Proposed 

Model 
0.012 1.5 10 ms 25 Minutes 

[7] 0.015 2 12 ms 30 Minutes 

[8] 0.018 3.5 15 ms 35 Minutes 

[9] 0.014 2.2 11 ms 28 Minutes 

[10] 0.016 2.8 13 ms 32 Minutes 
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Figure 5: Comparative analysis with existing studies 

 

 
Figure 6: Performance evaluation of the proposed model 

 

 
Figure 7: Percentage improvement comparison with existing models 
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Performance evaluation of the proposed model is 

presented in Figure 6. The first subplot compares the MAE 

values between the proposed model and existing studies 

over several iterations. Each line graph represents the 

MAE trend across iterations, with markers indicating 

specific data points. The blue line represents the MAE 

values of the proposed model, while the red line represents 

those of existing studies. This comparison helps in 

assessing how the proposed model’s MAE performance 

evolves over time relative to existing benchmarks. The 

second subplot illustrates the Swing Angle Deviation of 

the proposed model over iterations. Here, the green line 

graph plots the deviation values against the iteration 

numbers. The markers on the line indicate the specific 

deviation values recorded at each iteration. This metric is 

crucial in evaluating how well the proposed model 

maintains stability in controlling swing angles across 

different operational scenarios. In the third subplot, the 

Controller Response Time is plotted against iterations. 

The magenta line graph displays how the response time of 

the controller changes over successive iterations. 

Response time is a critical performance metric in control 

systems, indicating how quickly the controller reacts to 

changes or disturbances in the system. Lower response 

times generally signify more efficient control 

performance. The fourth subplot examines the 

Convergence Time of the proposed model over iterations. 

The cyan line graph shows how the convergence time, 

measured in minutes, evolves with increasing iterations. 

Convergence time reflects how quickly the model reaches 

a stable solution or state, which is essential for real-time 

applications where rapid convergence is desirable. The 

simulation results demonstrate the effectiveness of our 

proposed control method in stabilizing joint angles and 

achieving accurate position control.  

These results have several important implications. First, it 

validates the robustness of our approach in handling 

dynamic and uncertain environments. The improved 

stability and accuracy indicate that our method can 

effectively reduce oscillations and maintain precise 

control, which is crucial for real-world applications. 

Furthermore, the results highlight the efficiency of our 

approach, as evidenced by the reduced execution time and 

improved performance metrics. This efficiency translates 

to faster response times and reduced computational 

overhead, making our method suitable for real-time 

control applications. The percentage improvement 

comparison of the proposed model with existing models is 

presented in Figure 7. The results of our proposed genetic 

algorithm show a substantial improvement in accuracy 

when compared to existing models. Specifically, our 

algorithm demonstrates an 8.24% increase in accuracy 

over the model A referenced as [16]. This significant 

enhancement indicates the robustness of our approach in 

delivering more accurate results. Furthermore, the 

improvement over model B labeled as [17] is 4.55%, 

showcasing that our method is consistently better across 

different baseline comparisons. The improvement over the 

model C designated as [18] is 2.22%, which, while 

smaller, still indicates a notable enhancement. Overall, 

these results validate the effectiveness of our proposed 

algorithm in achieving higher accuracy than the existing 

models. In addition to accuracy, our proposed genetic 

algorithm excels in terms of execution efficiency. The 

execution time improvement is particularly striking, with 

a 28.57% reduction compared to the model A labeled as 

[16]. This indicates that our algorithm not only produces 

better results but also does so in a more time-efficient 

manner. For the model B referenced as [17], the execution 

time is reduced by 23.08%, further demonstrating the 

efficiency of our approach. Lastly, there is a 16.67% 

reduction in execution time over the model C marked as 

[18]. These reductions in execution time are significant 

and highlight the practicality of our algorithm in real-

world applications where computational efficiency is 

crucial. The comparison shows that the suggested research 

does better in several important performance indicators 

than previous research. The suggested system has a 

smaller Mean Absolute Error (MAE), less Swing Angle 

Deviation, and a faster Controller Response Time. It is 

also clear that the Genetic Algorithm (GA) has a much 

faster Convergence Time. The positive percentage 

improvement values show these improvements, which 

shows that the suggested research has better control 

abilities. Overall, the results show that the genetic 

algorithm-based method works well for improving the 

control system for smart lifting robots, which is a big 

improvement over the previous method. 

5 Conclusion  
This study focused on motion control for gantry crane 

robots and introduced a novel fuzzy control method based 

on genetic algorithms. The primary objective was to 

achieve precise position control for these robotic systems. 

The controller employed joint angle error variables as 

direct inputs and genetic algorithms were employed to 

optimize both fuzzy control rules and membership 

functions, resulting in an optimal fuzzy control system. 

Numerical simulations were conducted, demonstrating 

that the designed controller enables quick and accurate 

arbitrary position control for both 2-degree-of-freedom 

and 3-degree-of-freedom gantry crane robots while 

maintaining stability. In summary, this method not only 

enriches the field of robotics but also offers a fresh 

perspective for intelligent motion control in gantry crane 

robots. A genetic algorithm-based framework was used in 

this study to show a new way to improve the control 

system of intelligent lifting robots. As a result, the results 

show better control accuracy, less swing, and faster 

reaction times. These results add to the area of robotics 

and make it possible for industries to use robots in more 

precise and effective ways. In future work, this study will 

focus on applying this method to a wider range of robotic 

systems, even ones with more complex and numerous 

degrees of freedom. The proposed method can also be 

made more useful by making it work better and by putting 

it into action in the real world. It might be helpful for 

future progress in the field of intelligent robotics control 

systems to look into how to combine advanced machine 

learning methods with real-time sensor data. Additionally, 

future research may be extended to investigate the 
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scalability of our method, exploring ways to optimize the 

genetic algorithm for larger and more complex systems. 

By addressing these areas, we aim to provide valuable 

guidance for researchers in the field and contribute to the 

ongoing advancement of optimization techniques in 

control systems. 
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