
https://doi.org/10.31449/inf.v49i1.5664 Informatica 49 (2025) 207–220 207

Malicious iOS Apps Detection Through Multi-Criteria Decision-

Making Approach

Arpita Jadhav Bhatt1*, Neetu Sardana2

Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information

Technology, India

E-mail: arpitajadhav@gmail.com, neetu.sardana@jiit.ac.in
*Corresponding author

Keywords: multi-criteria decision making (MCDM), ensemble learning, analytic hierarchy process, iOS app, privacy

leaks

Received: September 2, 2024

In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by

installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for

user’s privacy, have increased. Information on smartphones is perhaps, more personal than compared to

data stored on desktops or computers, making it an easy target for intruders. After Android, the most

prevalently used mobile operating system is Apple’s iOS. Both Android and iOS follow permission-based

access control to protect user’s privacy. However, the users are unaware whether the app is breaching the

user’s privacy. To combat this problem, in the paper we propose a hybrid approach to detect malicious

iOS apps based on its permissions. In the first phase, weights have been assigned to app permissions using

multi-criteria decision-making (MCDM) approach namely Analytic Hierarchy Process (AHP), and in the

second phase machine learning& ensemble learning techniques have been employed to train the classifiers

for detecting malicious apps. To test the efficacy of the proposed method dataset comprising 1150 apps

from 12 app categories has been used. The results demonstrate the proposed approach improves the

efficacy of detecting malicious iOS apps for majority of categories.

Povzetek: Raziskava predlaga hibridni pristop za zaznavanje zlonamernih iOS aplikacij z uporabo

analitičnega hierarhičnega procesa za dodelitev uteži dovoljenjem aplikacij in strojnega učenja za

klasifikacijo, kar izboljša zaznavanje.

1 Introduction
Apple’s iOS (iPhone Operating System) is one of the most

widely used mobile operating systems after its counterfeit

Android. Apple manufactures and distributes different

types of iOS devices such as iPad, iPod touch, iPhone,

Apple Watch, Apple TV, etc. Apple has a huge customer

base because it provides a lot of unique features such as

multitasking, multi-touch gestures, internal

accelerometers, voice assistant Siri, etc.(Wikipedia).

Apple also offers a platform for its developers to publish

and distribute their applications also called apps through

its online store ‘App Store’. This online store is also a

repository of billions of apps from which iOS users can

download apps from different categories (Apple Inc.).

With the presence of 1.96 million apps, the App Store is

the world’s second-largest online store than its counterpart

Android which has 2.87 million apps on its official store

Play Store. Such a fast-growing platform motivates

developers, IT industries, marketing firms, and

organizations to develop feature-rich apps. It also allures

the customers or users to download these apps.

With the upsurge of smart devices, the number of apps,

and the number of smartphone users, smartphones and

smart devices have also become a device for storing a

large amount of user’s personal data (Erickson et al.). This

includes personal information such as address book, photo

gallery, email IDs, passwords, calendar events, etc.

Additionally, a smartphone always generates contextual

data via its sensors. Such crucial information of users is

undoubtedly more personal when compared with the data,

which is stored on personal computers because

smartphones stay with individuals throughout the day and

generate a lot of contextual data by sensors. These sensors

are not present on personal computers; therefore, it can be

inferred that smartphones contain a lot of user’s personal

data which makes them a valuable resource for the

developers of malicious apps who might intend to develop

privacy-infringing apps and access user’s data.

To preserve the privacy of its users both Apple

and Android follow a permission-based access control

policy (Krupp). The policy ensures that the app will notify

its users about all the permissions and resources the app

will use during its run-time. Android follows an install-

time and run-time permission policy in which the users are

aware of the permissions the app will acquire during its

usage during app installation. Whereas, Apple follows a

run-time permission policy in which the users are

informed about app permissions during app usage (Khan

et al.). Additionally, Apple provides privacy controls

through its inbuilt ‘setting app’, through which they can

explicitly define the permission for every app which has

been installed (Krupp). Additionally, Apple follows a

strict code signing process in which the apps that have

mailto:arpitajadhav@gmail.com
mailto:neetu.sardana@jiit.ac.in

208 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

been submitted by the developers on the App Store are

critically examined before they are published. However,

past attacks on iOS devices via privacy-infringing apps

have demonstrated these methods adopted by Apple are

inadequate to preserve the privacy of the users.

 A lot of research work has been conducted to highlight

the privacy breach by apps. Research conducted by Wired

has identified that thousands of iOS and Android apps leak

data from the cloud. The apps leaked lots of user's personal

data such as medical information, phone number, device

identifiers, passwords, etc.(WIRED). A similar kind of

research conducted by Oxford researchers identified that a

lot of third-party apps are sharing data with Facebook and

Google. A total of 959,000 apps were analyzed. The study

identified that 88% of these apps were transferring data to

Alphabet which is Google’s parent company, while

Twitter, Facebook, Microsoft, and Amazon received 34%,

43%, and 18% of user's data respectively (Millman). To

name a few the data collected by these companies included

age, location, gender, etc. A report by Pt security

highlighted the threats by the third-party mobile apps

which included insecure data storage by apps, Escalated

privileges taken by the app, side-loaded software, client-

side vulnerabilities, etc.(Ptsecurity.com).

 The issue of privacy leaks by apps also increases

because of the issues in the current permission model

adopted by Apple. The users do not have fine-grained

access control over the data which is shared by the app in

use. Smartphones do offer coarse-grained privacy as well

as security controls where the users can either deny or

allow permission for an explicit resource by an app.

However, the problem with this approach is that once a

user grants permission to the app he/she does not have any

control over restricting the app from sharing the data. For

example, once a user grants location permission to an app,

the user cannot restrict the app from accessing a particular

location. Likewise, once a user grants permission to access

the address book, the user cannot restrict the app from

accessing a specific contact. Since the users do not have

the option to specify the accuracy of the sensors while

accessing location, device accelerometer, and locally

shared data, thus the apps must restrict their access.

However, developers of malicious apps intentionally

create over-privileged apps. Users are allured by the

features of apps and thus grant permissions to the friendly-

looking apps. However, the users never know if the app is

using their data locally or sharing it with third-party

domains without their consent. To eradicate this, problem

we present a privacy detection model that uses app

permissions during static analysis. The model first extracts

user permission using the concept of reverse engineering

and constructs a Boolean value permission

matrix P_mxn where m represents the number of apps

under analysis and n represents no. of permissions. Here a

total of 1150 iOS apps from 12 app categories are tested

for 10 different user permissions. Machine learning and

ensemble-based techniques are employed to train the

classifiers and determine malicious iOS apps. Apps are

reverse-engineered from 12 different categories. In order

to improve the precision of classifiers, the correlation of

permissions for each category has been computed using

Analytic Hierarchy Process (AHP). Later, the weighing

factors obtained from AHP for each permission category-

wise have been used to construct a weighted permission

matrix P[mxn] to train the classifiers. The motivation for

using a weighted permission matrix is that every

permission has a different weight for a category. Apple

provides a set of predefined app categories on the App

Store which helps the developer to choose the best

category before uploading the app. The category also

defines the necessary features that the app provides the

users during its usage. For example, the category

navigation specifies that the apps belonging to the

navigation category will fetch the user’s location to guide

them and navigate them. Likewise, an app belonging to

the photo and video category will require access to the

user’s photo gallery and camera to serve its intended

purpose. Apple provides a limited set of permissions,

which require explicit approval during app usage. The

problem of privacy leaks exists because it is very difficult

to determine a benign app, an over-privileged app, or a

malicious app with this limited permission set. Even the

operating system cannot determine the intention of an app

during its run-time. In other words, it is very difficult to

identify malicious iOS apps as there exists a thin boundary

line to identify how well a permission is correlated to a

category. Using our approach, we identify the most

significant permissions within a category using AHP

approach that helps in identifying the malicious iOS apps.

To address the challenges in the existing model for

handling privacy breaches, we use the AHP technique to

find the correlation of permission for a category to detect

privacy violations by apps. For example, the permission

of a user’s location is an essential feature for an app

belonging to the ‘navigation’ category because it functions

after it receives the user’s approval to access the GPS

location. The same permission might have a different

weight for the ‘books’ category as the prime purpose of

this category is to provide stories, comics, graphic novels,

and interactive content for which location permission may

not be mandatory permission. Based on the

aforementioned facts and guidelines provided by Apple

we propose a heuristic approach to determine privacy

leaks by iOS apps.

The foremost contributions of the paper have been listed

below.

• A novel hybrid approach that integrates MCDM

approach, AHP with Machine learning & ensemble

learning techniques has been proposed to detect

malicious iOS apps.

Malicious iOS Apps Detection Through Multi-Criteria Decision… Informatica 49 (2025) 207–220 209

Table 1: Summary of research works on detecting privacy breach

• The proposed approach has been evaluated on 1150

apps belonging to twelve category iOS apps. Each app

possesses ten permissions.

• The proposed approach improves the malware

detection accuracy best case value of 14%.

The rest of the paper is organized as follows. Section 2

describes the related work on machine learning and

ensemble techniques used to detect malicious apps. The

section also describes the techniques that have been used

in this paper. Section 3 describes our proposed heuristic

approach of multicriteria decision-making approach using

AHP. Section 4 describes the experimental results and

analysis. The paper is concluded in Section 5.

2 Machine learning, ensembling

techniques to detect privacy leaks

based on app permissions
Machine learning and ensembling learning techniques

have been employed by many researchers to detect

privacy violations by apps. Ping et al. have developed an

ensemble classifier ‘Enclamald’ to identify the contrasting

permission patterns to illustrate the important difference

between malicious apps the benign ones based on

permission usage(Xiong et al.). Liu et al. have proposed a

two-layered permission-based detection model for

Android apps. In their work, they considered both

requested permission and used permission by apps to

detect malicious apps using machine learning techniques

(Liu and Liu). Congyi et al. used an implementation of

ensemble learning- XGBoost method to detect malicious

Android apps based on permission usage(Congyi and

Guangshun). Alba et al. used feature selection and

ensembling techniques to classify

Android malware(Coronado-De-Alba et al.). Idrees et al.

proposed a model PIndoid, permissions, and intent-based

framework, to detect malicious Android apps. It uses a

combination of permissions and intents integrated with the

ensemble method to improve the malware detection

accuracy(Idrees et al.). Abdirashid et al. proposed a model

to detect unknown malware by using a permission-based

approach to enhance the accuracy as well as

efficacy(Sahal et al.). The authors have improved the

feature selection technique by incorporating weighing

method TF-IDFCF, based on the class frequency of the

app features. Jin et al. developed a malware detection

system SigPID capable of coping with malware and its

variants(Sun et al.). The authors have used three levels of

pruning to mine app permission and identify the most

significant permission capable of distinguishing malware

apps from benign ones. Wang et al. have applied different

ranking algorithms to classify malicious Android apps

based on different ranking techniques namely principal

component analysis(PCA) and sequential forward

selection (SFS) to detect risky app permissions along with

their subsets(Wang et al.). The authors have used a data

set of 310926 benign and 4868 malicious apps and

employed several machine learning classifiers. Jing Y et

al. developed an automated risk assessment framework

RiskMon which utilizes machine learning models to rank

and assess the risks by Android apps(Jing et al.). The

highlight of the tool was that it continuously monitors the

behaviour of Android apps by combining the expectations

of app users with their run-time behaviour. Run time

behaviour of 20 iOS mobile health care iOS apps was

analyzed by Adhikari R et al.to determine their strengths

and weaknesses by assigning a safe score and risk score to

them based on their run time analysis(Adhikari et al.).

Authors Objective Technique/Method Data Set

Abdirashid et al.

(Sahal et al.)

Develop permission-

based malware detection

model

Utilize feature selection

techniques

1000 samples of apk files

Jin et al. (Sun et

al.)

Develop malware

detection system SigPID

Identify the most significant

app permission to classify

malware apps

310926 benign Android apps, 5494

malicious Android apps

Wang et al.

(Wang et al.).

Explore the permission-

induced risk to classify

Android apps

Ranking of permissions,

identification of malicious

apps using PCA and SFS

310,926 benign and 4868 malicious apps

Jing et al. (Jing et

al.)

Develop a risk

assessment framework

Computes a risk assessment

baseline by monitoring the run

time behaviour of apps

14 Android apps

Adhikari et al.

(Adhikari et al.)

Analyze run time

behaviour of health care

apps

Computation of safe score and

risk score of iOS apps during

their usage

20 iOS apps

Kang et al.(Kang

et al.)

Malware detection using

static analysis

Permission-based analysis of

malware

51,179 benign Android apps and

4,554 malware Android apps

Huang et

al.(Huang et al.)

Detect malicious

Android apps based on

their permissions

Grouping of permissions to

Boolean vector and then

training in machine learning

classifiers

124,769 benign Android apps and 480

Malicious Android apps

210 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

Table 1 details the summary of research works on

detecting privacy breaches.

However, the limitation of the above approaches

is the differentiation of benign apps from malicious apps

if they all request a similar set of app permissions. Since

in Android, a large set of app permissions (approximately

320+) is already available, hence application of feature

selection techniques, machine learning techniques, and

reverse engineering is easy. However, in the case of the

iOS platform a limited set of 10-13 permissions is

available which varies with the iOS version. Hence,

distinguishing a benign app from a malicious app is very

difficult because there exists a thin boundary between a

malicious and a benign app.

As most of the work has been done for the

Android platform, in this paper we propose the detection

of malicious apps for the iOS platform using AHP and

MCDM approach to detect malicious iOS with a minimal

permission set. We have also employed several

ensembling techniques. The machine learning classifiers

that were used for evaluating the proposed method are

listed below(Mesevage), (Abaker and Saeed; Chehal et

al.), (Harahsheh and Chen).

(i) Naïve Bayes (NB): It is a Bayesian classification

method and is based on Bayes' Theorem. The

Bayesian classification method builds a probabilistic

classifier that is based on modelling the underlying

features for different classes. The classification

technique predicts class member probability that a

given sample/tuple belongs to a particular class. The

advantages of using this technique are that it needs

less training data, is highly scalable, and can be used

for both multi-class as well as binary classification

problems(Mesevage).

(ii) Decision Tree (DT): It constructs a tree structure in

a top-down recursive manner based on the divide and

conquer manner. The decision tree is a tree structure

where the internal node represents a test on an

attribute every branch represents the output of the test

and the leaf nodes depict the class distribution and are

easy to interpret(Chehal et al.).

(iii) Random Forest (RF): Random Forest generates

many classification trees. Every tree gives a

classification and the forest selects the classification

that has the most votes [15].

(iv) Neural Network (NN): The basic unit of a neural

network is neurons, which take inputs, perform

mathematical computations with them, and generate

output. Every input is multiplied by a weight, and then

all weighted inputs are added together with a bias

function, and then the sum is passed through an

activation function(Zhou).

(v) Support Vector Machine (SVM): It is a

fast machine learning algorithm used for

solving multiclass classification problems

for larger data sets. It can work with high-

dimensional data comprising thousands of features

and attributes. The algorithm can be used in text

classification problems with high-dimensional spaces

[15].

The ensembling approaches that have been employed are

bagging using J48 (decision tree) and boosting.

(vi) Bagging (Bg): The technique is based on creating

multiple subsets from the original dataset. The

instances from the dataset are selected with

replacements. Then a base model also called a weak

model is created for each of the subsets. The models

are run in parallel and they work independently of

each other. The final predictions are computed by

combining the predictions from all models(Idrees et

al.).

(vii) Boosting (Bo): In boosting a subset is created from

the original dataset and instances are given equal

weights initially. The base model is constructed on

the previously created subset and is utilized to make

predictions for the complete dataset. Errors are

determined to employ real and anticipated values.

Higher weights are allocated for the perceptions that

are incorrectly anticipated. A strong learner is defined

using the weighted mean of weak learners(Idrees et

al.).

The following section describes the proposed approach to

determine malicious iOS apps using a multi-criteria

decision-making approach.

3 Classifying iOS Apps using

proposed hybrid approach
Figure 1 shows the proposed framework to classify iOS

apps using machine learning and ensemble techniques

based on ranked permissions. Permissions are ranked

using AHP. In the proposed method, the apps are installed

from the AppStore, and their features are fetched (here

features refer to the app permissions such as location,

camera, photo gallery, etc.). We have considered ten

features for twelve categories of iOS apps. Each app has a

set of features in the form of a permission vector.

Generally, permission for each feature is either present or

absent corresponding to an app, and the features if present

are considered to be equally important. In reality, the

features of each category app have different weights.

Based on this belief, we have ranked the permission set of

each category of apps. On the basis of permission usage

across the category, we have applied correlation

coefficient and ranked permissions across the category.

For example, an app belonging to the Social Networking

category can have app permissions like photo, camera,

location, internet, etc. whereas a simple flashlight app

from the utilities category may require only camera

permission. Thus, the ranking of permission for camera

would be entirely different in social networking and utility

category.

The proposed method has two phases. In the first phase,

the app features are assigned weights based on the app

category. In the second phase, the classification

algorithms are applied for the identification of malicious

iOS apps.

Malicious iOS Apps Detection Through Multi-Criteria Decision… Informatica 49 (2025) 207–220 211

Assigning weights to app permissions

To rank the permissions of an app we are using the AHP,

a MCDM approach. Step 1 is to identify the AHP

Hierarchy. In this step, first, the goal is defined. In this

work, the goal is to classify an iOS app as Malign or

benign. Second, the criteria are identified. Here, the

criterion is the apps category.

Figure 1: Framework to classify iOS App using machine learning and ensemble technique based on ranked

permissions

 Figure 2: The Hierarchy of iOS Apps for AHP

Twelve mobile app categories have been considered. The

categories are Books, Navigation, Games, Education,

Health & Fitness, Lifestyle, Music, Utilities, Photo &

Video, Sports, Social Networking, and Finance(Bhatt et

al.). Third, the sub-criterion is defined if present. Here, the

sub-criterion is the feature set of each category app for

which permissions are present.AHP has been used to

identify important features of each category app. The

bottom level consists of the various alternatives. In our

problem, 1150 apps belonging to twelve categories are the

varied alternatives. The AHP hierarchy for ranking

permissions of each category app is shown in Figure 1.

In step 2, pair-wise comparisons among features

are performed to create a judgement matrix. We consider

the ten feature sets of all apps belonging to each category.

The features set consists of photos, internet, notification,

map, location, contacts, calendar, cellular data, iAd, and

camera. The Pearson correlation coefficient is utilized to

find the feature importance for a particular category app.

Then we used the Pearson correlation coefficient to

perform a pair-wise comparison among features to find the

relative importance of each pair and are given values in

the range of 1 to 9. Table 2 has been used for the creation

of a judgement matrix that provides the relative ranking

that signifies the intensity of importance among the

considered feature pair. The order of the judgement matrix

depends upon the number of elements that the level of

comparison. Since we are comparing the 10 feature pairs

so for each category, the matrix of dimension 10*10 is

formed. As the judgement matrices are formed, the

eigenvectors and maximum eigenvalue (λmax) for each

matrix are computed. Later consistency index (CI) and

consistency ratio (CR) are calculated as shown in

Algorithm 1. RI is a random consistency index given by

Saaty for n varying from 1 to 10 (Refer Table 3). The

acceptable value of CR is less than 0.1. If the CR value

exceeds 0.1, it represents inconsistencies and the result is

meaningless. Thus, the entire process requires re-

evaluations(Saaty).

212 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

Table 2: Criteria for comparison

Intensity of Importance Definition

1 Equal importance

3 Weak importance of 𝐶𝑖 over 𝐶𝑗

5 Essential or strong importance

7 Demonstrated importance

9 Absolute importance

2,4,6,8 Intermediate

Reciprocals If 𝐶𝑖 has one of the above judgements assigned to it when compared with

𝐶𝑗 has the reciprocal value when compared with 𝐶𝑖

Table 3: RI values

Algorithm 1 : Ranking permission of varied category Apps using AHP

Size 1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Step1: Define AHP hierarchy. (Refer Figure 2)

1. Goal: To identify an iOS app is benign or malicious

2. Criteria: Twelve iOS App Categories

3. SubCriteria: Feature vectors of each category app.

4. Alternatives: 1150 apps belonging to different categories.

Step 2: Pairwise comparison is performed to find relative ranking among features of each category apps. (Refer

Table 1)

Step 3: Compute Judgement Matrix (M) of dimension 10*10 for each category apps. (Illustrated in Table 5)

Step 4: Calculate Mn, normalized judgement matrix which can be obtained by dividing each element with the

column sum.

Step 5: Find the average of all the row elements of Mnto get eigenvectors WT having dimension 10*1 that are

considered as the weights of each feature if the matrix is consistent.

Step 6: Check the consistency of the matrix, M.

a. The maximum eigen value (λmax) for each matrix is calculated.

𝜆𝑚𝑎𝑥 =
1

n
∑

ith entry in MW𝑇

ith entry in WT

n⋅

i̇=1

b. The consistency index (CI) of each matrix of order 10 is calculated

𝐶𝐼 =
(𝜆𝑚𝑎𝑥−𝑛)

(𝑛−1)
Here n =10 (number of app features)

c. Compute consistency ratio (CR)

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 𝐻𝑒𝑟𝑒, 𝑅𝐼 = 1.49

Malicious iOS Apps Detection Through Multi-Criteria Decision… Informatica 49 (2025) 207–220 213

The judgement matrix is found to be consistent if the value

of CR is less than 0.1. The weights of features are fetched.

Apply classification algorithms to identify the benign and

malign iOS apps

The feature weights computed by applying AHP are used

for each category of apps and are used to train the

classifiers. Five machine learning and two ensemble

learning techniques are applied for the identification of

malign and benign apps. The machine learning techniques

that are considered are Naïve Bayes, Neural Network,

Random Forest, Decision Tree, and SVM.

The ensemble learning techniques are applied as

the feature set in some of the categories is found to be

skewed. The techniques used are bagging and boosting

where J48 is used as a baseline technique.

4 Experimental results and analysis
This section presents the experimental setup and results of

the proposed model on 12 categories of iOS 1150 apps.

4.1 Experimental setup

The proposed permission weighting approach is evaluated

on twelve categories of iOS apps. The categories are

Books (Bks), Education (Edu), Finance (Fin), Games

(Gam), Health & Fitness(H&F), Lifestyle (LS), Music

(Mus), Navigation (Nav), Photo&Video(P&V), Social

Networking (SN), Sports (Sp) and Utilities (Util). There

are a total of 1150 iOS apps that have been considered. The

apps are fetched from the App Store. Table 5 shows the

distribution of apps in each category that has been

considered.

Table 4: Category wise apps distribution
Category Apps Count

Books 126

Education 141

Finance 91

Games 201

Health & Fitness 81

Lifestyle 101

Music 91

Navigation 46

Photo & Video 61

Social Networking 91

Sports 46

Utilities 86

Total 1150

Each category app defines the important features that it

serves to the users. The features set consists of photos,

internet, notification, map, location, contacts, calendar,

cellular, iAd, and camera. The permission log of these

features has been extracted. Each app has its own set of

feature vectors, for example, App1 of the Books category

has feature vector fv= (1,0,0,1,0,1,0,0,0,0) which depict

that this app has three features: photos, map, and contacts.

The different features of apps are generally given equal

importance. Here photos, map, and contacts are given

equal importance. It has been noticed that certain features

of apps are more important than other features. Based on

this belief, this paper prioritizes the features of an app

using the AHP, MCDM technique to classify the app as

malicious or benign.

The proposed method undergoes two phases to detect

malicious iOS apps: In the first phase the features of each

category of iOS apps are ranked using AHP and in the

second phase machine learning as well as ensemble

learning methods are applied to ranked features. Finally,

the performance of both approaches is evaluated using

precision defined by equation 1. Here, precision is a metric

used to evaluate the model’s positive classifications which

are actually positive. It is defined as a ratio of true positive

(TP) predictions and total number of predicted positives

which includes both false positives (FP) as well as true

positives. Precision improves when false positives

decrease.

Precision =
TP

TP + FP
 (1)

4.2 Experimental results

This section presents the results obtained from our

experimental study. During the first phase, the features of

varied category apps were ranked using AHP. The

feature's importance has been computed using the

correlation coefficient. The results of which are given in

Table 4 and have been taken from our previous work on

the detection of malicious iOS apps using static and

dynamic analysis approaches (Bhatt et al.). The work is an

extension of previous work by including ensembling and

multi-criteria decision-making approach. The correlation

values are used for pair-wise feature comparison. The

judgement matrix has been computed for each category

app using pairwise feature comparison. Figures 3a-3l

represent the Judgement Matrix corresponding to each

category of apps.

Table 5: Features Importance in each category apps
Bks Edu Fin Gam

iAd Notifi. Notifi. iAd
Photos MapKit Location Notifi.
Internet Cellular MapKit Cellular
Notifi. Location Camera Calendar
Contacts Camera Contacts Photos
MapKit Calendar Cellular Location
Calendar Contacts Photos Internet
Cellular Internet Calendar Camera
Location Photos iAd MapKit
Camera iAd Internet Contacts

H&F LS P&V SN
MapKit Notifi. Notifi. Notifi.

Notifi. MapKit Camera Cellular

Contacts Cellular iAd Camera

iAd Contacts MapKit Calendar

Calendar Location Calendar Location

Camera iAd Cellular iAd

Photos Calendar Internet Contacts

Cellular Photos Location MapKit

Location Camera Photos Photos

Internet Internet Contacts Internet

214 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

Spo Util Mus Nav

Cellular MapKit Cellular Cellular

Calendar Cellular Notifi. Calendar

MapKit Calendar MapKit Notifi.

Notifi. Camera Calendar Internet

Camera Location Internet Photos

Photos Internet Location iAd

Contacts Photos Photos MapKit

Location Contacts Camera Camera

Internet Notifi. iAd Contacts

iAd iAd Contacts Location

Figure 3 a: Judgement Matrix for Apps from (Books

(Bks) category

Figure 3 b: Judgement Matrix for Apps from Education

(Edu) category

Figure 3 c: Judgement Matrix for Apps from Games

(Gam) category

Figure 3 d: Judgement Matrix for Apps from Health &

Fitness (H&F) category

Figure 3 e:Judgement Matrix for Apps from Music (Mus)

category

Malicious iOS Apps Detection Through Multi-Criteria Decision… Informatica 49 (2025) 207–220 215

Figure 3 f:Judgement Matrix for Apps from Navigation

(Nav) category

Figure 3 g: Judgement Matrix for Apps from Social

Networking (SN) category

Figure 3 h: Judgement Matrix for Apps from Finance

(Fin)category

Figure 3 i: Judgement Matrix for Apps from Photo &

Video (P&V) category

Figure 3 j: Judgement Matrix for Apps from Sports

(Spo)category

Figure 3 k: Judgement Matrix for Apps from Utilities

(Util)category

216 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

Figure 3 l: Judgement Matrix for Apps from Lifestyle

(LS) category

The procedure given in Algorithm 1 has been followed and

the final weights of the ten features for all the twelve

category Apps are shown in Table 6. Table 7 shows the

Consistency Index (CI) and inconsistency ratio (CR)

values obtained for each iOS category app. A CR value

below 0.1 suggests that the comparisons made are

consistent and that the judgments used in the AHP process

are reliable. In our analysis, it can be clearly observed from

the tables 6 & 7 that the CR values obtained were

consistently below this threshold for all category iOS apps,

which means that the pairwise comparisons of the

permissions were logical and coherent.

Table 6: Final weights of all features for twelve category apps

appsFeatures Weights (Bks) Features Weights (Edu) Features Weights (Gam) Features Weights (H&F)

N 0.260416 N 0.22869837 N 0.258617391 N 0.373378406

iA 0.1536197 M 0.25874097 iA 0.217896213 M 0.239753234

Ce 0.1118894 Ce 0.13251323 Ce 0.196327424 Ce 0.127111058

Cl 0.1130392 Co 0.11850109 P 0.108141669 Co 0.070634637

M 0.0972874 I 0.1023565 Cl 0.080053713 I 0.054553629

I 0.0941756 L 0.0464333 L 0.034984294 L 0.03462572

L 0.0570132 Cl 0.03384061 I 0.025581562 Cl 0.030962473

Ca 0.0387621 P 0.02371545 Ca 0.030363325 P 0.025841841

P 0.0395886 iA 0.03329195 M 0.025065278 iA 0.023556455

Co 0.0342088 Ca 0.02190853 Co 0.02296913 Ca 0.019582547

Features Weights (Mus) Features Weights (Nav) Features Weights (SN) Features Weights (Spo)

N 0.3164822 Ca 0.32905485 N 0.243144501 Ce 0.226412065

Ce 0.2583536 Ce 0.2360261 Ce 0.230117625 Cl 0.193037193

L 0.1466667 Cl 0.14566162 L 0.098318076 N 0.130405534

M 0.0571527 Co 0.07414116 Cl 0.158169247 M 0.114890071

Co 0.0561844 I 0.06437649 Ca 0.110922948 Ca 0.089492707

Cl 0.0476753 L 0.03690112 Co 0.040755572 P 0.070530109

P 0.0505276 M 0.04092982 iA 0.03808108 I 0.058589306

iA 0.0271474 P 0.03279818 P 0.032758226 Co 0.043199994

Ca 0.0210871 N 0.0221352 M 0.028127397 L 0.039473318

I 0.018723 iA 0.01797546 I 0.019605329 iA 0.033969703

Features Weights (Fin) Features Weights (Util) Features Weights (P&V) Features Weights (LS)

N 0.2430282 N 0.24600855 I 0.239110134 N 0.286591226

M 0.200416 iA 0.14601401 N 0.169841704 Ce 0.198462154

Ce 0.151552 Ce 0.15944265 Ca 0.154772531 L 0.141693949

Co 0.1195261 Cl 0.10371867 iA 0.119366316 Co 0.079178536

I 0.0901974 M 0.08086139 Cl 0.081263199 M 0.064995197

L 0.0727182 I 0.07471276 M 0.074714065 Cl 0.056637209

Cl 0.0504631 L 0.055601 Ce 0.047334716 iA 0.061643922

P 0.0312343 Ca 0.04967195 co 0.040725409 P 0.064021004

iA 0.0256206 P 0.04642525 L 0.037987177 Ca 0.025483038

Ca 0.015244

Co 0.03791838 P 0.03488475 I 0.021293766

Malicious iOS Apps Detection Through Multi-Criteria Decision… Informatica 49 (2025) 207–220 217

Table 7: Consistency Index (CI) and inconsistency ratio (CR) values

Sno Category CI CR

1 Books 0.14527 0.097497

2 Education 0.146455 0.098292

3 Finance 0.136704 0.091747

4 Games 0.145712 0.097794

5 Health & Fitness 0.135315 0.090816

6 Lifestyle 0.144084 0.096701

7 Music 0.14871 0.099806

8 Navigation 0.143824 0.096526

9 Photo & Video 0.1444 0.096913

10 Social Networking 0.142957 0.095944

11 Sports 0.135897 0.091206

12 Utilities 0.147348 0.098891

A detailed illustration of AHP steps has been omitted for

the sake of the length of the paper. The results of this

evaluation were analyzed to find whether the inclusion of

AHP in prioritizing and determining the weights of

features improves the accuracy of iOS app classification or

not. We have used the cross-validation technique in the

Weka toolkit to measure the efficiency of the models.

Generally, whenever an inadequate amount of data

instances is available, cross-validation method is preferred

to accomplish an unbiased approximation of the model

performance. In the k-fold cross-validation technique, the

dataset is divided into k subsets, each of equal size. The

model is constructed ‘k’ times, each time using (k−1) sets

of data instances for training the classifier and leaving out

one subset as a ‘test set’ for predictions. We considered

five machine-learning techniques and two ensemble-based

techniques for classification. The machine learning

classifiers that are used for evaluating the proposed

method are Decision Tree (DT), Random Forest (RF),

Naïve Bayes (NB), Neural Network (NN), and Support

Vector Machine (SVM) and the considered ensemble

approaches are bagging using J48(Bg) and Boosting (Bo).

We compared the proposed AHP-based weighing

approach with actual permission-based classification

approaches.

The summary of the precision values for different

classifiers has been depicted in Table 8 and Table 9. The

tables also depict the comparison of precision values

before/after applying the AHP technique for various

classifiers. The results depicted in Table 8 and Table 9

demonstrate that the proposed AHP-based approach

achieved an improved average accuracy in all the category

apps. The improved average accuracy attained for

classification algorithms Random Forest, Support Vector

Machine, Naïve Bayes, Neural Network, and Decision tree

is 77.83%, 78.61%, 77.99%, 75.21%, and 78.21%

respectively. It has been observed that Random Forest and

SVM-based AHP classifier (SVMAHP), performs better in

8 categories out of 12 categories apps, and Naïve Bayes-

based AHP (NBAHP) and Neural Network-based AHP

(NBAHP) classifier performs better in 9 categories out of 12

categories apps. Integration of machine learning with AHP

has shown the best performance for Health & fitness

category apps as the improvement can be clearly observed

in the case of three classifiers SVMAHP, NBAHP, and NNAHP

as 9.8%, 9.1%, and 8.3%. The proposed hybrid model has

also shown good results for the apps belonging to the

categories: Navigation and Photo & Video. The results

reveal the improvement of 4.4%, 2.2%, and 2.9% in

SVMAHP, NBAHP, and NNAHP classifiers for the Navigation

category and 1.9%, 3.3% and 4.9% in RFAHP, SVMAHP

and NBAHP for Photo & Video category. The average

accuracy attained in ensemble techniques, Boosting and

Bagging using J48 is 80.01% and 77.22%. The ensemble

learning technique, boosting integrated with AHP

performed the best as it has shown better accuracy in all

the 12 categories of apps. The highest improvement

attained is 14% for Health and Fitness Apps. Figure 4

shows the improved precision scores for 12 iOS apps

categories using the proposed hybrid approach.

Table 8: Summary of Results Precision Values (in Percentage)
Category RF RFAHP SVM SVMAHP NB NBAHP NN NNAHP DT DTAHP

Books 76.1 76 75.3 76.3 76.8 75.9 71.8 75.3 79.9 79.9

Education 76.5 75.7 76.5 69 75.7 74.3 78.6 70.7 78.6 77.9

Finance 62.2 61.6 63.9 63.9 67.9 73.3 66 61.3 71 67.2

Games 85.1 86 86.2 85.7 84.1 84.6 84.2 84.5 83.5 82.5

Health & Fitness 83.7 82.5 74.9 84.7 71.7 80.8 77.9 86.2 84.1 78.5

Lifestyle 79.1 80 82.9 76 74.9 74.9 75.8 74.8 82.9 81.9

Music 97.8 98.9 98.9 98.9 95.6 95.6 95.6 95.6 98.6 98.6

218 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

Navigation 67.2 67.2 71.6 76 76 78.7 60.4 63.3 67.2 67.2

Photo & Video 75.9 77.8 68 71.3 67.3 72.2 77.4 77.4 74.1 74.1

Social Networking 79.7 81 82 81.9 75.2 74.2 76.5 76.5 78.5 81.3

Sports 66.1 67.9 74.7 74.7 69.9 69.9 58.4 58.4 70.8 74.8

Utilities 77.6 79.4 83.1 84.9 80.8 81.5 78.5 78.5 71.1 77.1

Average 77.25 77.83 78.17 78.61 76.33 77.99 75.09 75.21 78.36 78.42

Table9: Evaluation of weighing based approach using machine learning classification algorithm

S No Category Bo BoAHP Bg BgAHP

1 Books(B) 78.5 79.3 79.2 76

2 Education(E) 70 73 76.4 78.6

3 Finance(F) 73.5 73.6 67.2 66.9

4 Games(G) 84 84 84.7 83.5

5 Health & Fitness (HF) 70 83.9 80 84.3

6 Lifestyle(L) 72.9 72.9 78.9 76.8

7 Music(M) 97.8 98.9 98.9 98.9

8 Navigation(N) 78.7 78.7 55.6 53.8

9 Photo & Video (PV) 77.8 79.6 70.4 70.4

10 Social Networking (SN) 79.6 79.7 82 82

11 Sports(S) 72.2 72.2 75.2 75.2

12 Utilities(U) 85.4 85.4 80.8 80.2

 Average 78.37 80.1 77.44 77.22

Figure 4: Improved precision using proposed hybrid approach for 12 iOS category apps

Based on the above results from Table 8 and Table 9 it can

be concluded that the proposed approach of using a multi-

criteria decision-making approach using AHP improves

the detection rate of malicious apps. Up to 9.8% in

machine learning techniques and 14% in ensemble

learning techniques.

5 Conclusion
The paper proposes an AHP-based weighting approach

integrated with machine learning and ensemble learning

techniques to detect iOS malicious apps. The proposed

method initially extracts the app permissions using static

analysis for 12 categories to compute a permission matrix

comprising the number of apps and presence/absence of

features. Then correlation of permissions for every

category is computed using Pearson Correlation. Later, the

AHP technique is applied to determine the weights of all

permissions based on their correlation with respect to the

category and in order to compute a weighted permission

matrix. The proposed method has been compared with

traditional permission-based classification methods.

Empirical results depict that the proposed approach

-10

-5

0

5

10

15

Imp(RFAHP) Imp(SVMAHP) Imp(NBAHP) Imp(DTAHP) Imp(BoAHP) Imp(BgAHP)

Malicious iOS Apps Detection Through Multi-Criteria Decision… Informatica 49 (2025) 207–220 219

improves the detection rate for all 12 categories of iOS

apps. In the future, we plan to conduct a sensitivity

analysis to test the robustness of the AHP-derived weights.

We will also explore different privacy settings for iOS

apps namely track, link, and not-link, and investigate

which privacy settings are better predictors for

determining malicious or benign apps based on app

permissions.

References
[1] Abaker, Ali A., and Fakhreldeen A. Saeed. “A

Comparative Analysis of Machine Learning

Algorithms to Build a Predictive Model for

Detecting Diabetes Complications.” Informatica

(Slovenia), 45(1), 117–25, 2021.

doi:10.31449/inf.v45i1.3111.

[2] Adhikari, Rajindra, et al. “Security and Privacy

Issues Related to the Use of Mobile Health Apps.”

25th Australasian Conference on Information

Systems (ACIS 2014), 2014.

[3] Apple Inc. App Store Downloads on iTunes.

https://apps.apple.com/in/genre/ios/id36. Accessed 6

Apr. 2021.

[4] Bhatt, Arpita Jadhav, et al. “iABC: Towards a

Hybrid Framework for Analyzing and Classifying

Behaviour of iOS Applications Using Static and

Dynamic Analysis.” Journal of Information Security

and Applications, 41, 144–58, 2018.

doi:10.1016/j.jisa.2018.07.005.

[5] Chehal, Dimple, et al. “Predicting the Usefulness of

E-Commerce Products’ Reviews Using Machine

Learning Techniques.” Informatica

(Slovenia),47(2),275–84, 2023.

doi:10.31449/inf.v47i2.4155.

[6] Congyi, Deng, and Shi Guangshun. “Method for

Detecting Android Malware Based on Ensemble

Learning.” ACM International Conference

Proceeding Series, 8–31, 2020.

doi:10.1145/3409073.3409084.

[7] Coronado-De-Alba, Lilian D., et al. “Feature

Selection and Ensemble of Classifiers for Android

Malware Detection.” 2016 8th IEEE Latin-American

Conference on Communications, LATINCOM 2016,

128, 2–7, 2016.

doi:10.1109/LATINCOM.2016.7811605.

[8] Erickson, Jeremy, et al. AndroidLeaks: Detecting

Privacy Leaks In Android Applications., 1–17, 2011.

http://www.cs.ucdavis.edu/research/tech-

reports/2011/CSE-2011-10.pdf.

[9] Harahsheh, Khawlah, and Chung Hao Chen. “A

Survey of Using Machine Learning in IoT Security

and the Challenges Faced by Researchers.”

Informatica (Slovenia), 47(6), 1–54, 2023.

doi:10.31449/inf.v47i6.4635.

[10] Huang, Chun Ying, et al. “Performance Evaluation

on Permission-Based Detection for Android

Malware.” Advances in Intelligent Systems and

Applications,2, 111–20, 2013. doi:10.1007/978-3-

642-35473-1_12.

[11] Idrees, Fauzia, et al. “PIndroid: A Novel Android

Malware Detection System Using Ensemble

Learning Methods.” Computers and Security, 68,

36–46, 2017. doi:10.1016/j.cose.2017.03.011.

[12] Jing, Yiming, et al. “RiskMon : Continuous and

Automated Risk Assessment of Mobile

Applications.” Proceedings of the 4th ACM

Conference on Data and Application Security and

Privacy - CODASPY ’14, 99–110, 2014.

doi:10.1145/2557547.2557549.

[13] Kang, Hyunjae, et al. “Detecting and Classifying

Android Malware Using Static Analysis along with

Creator Information.” International Journal of

Distributed Sensor Networks, 11(6), Hindawi

Publishing Corporation, 479174,2015.

[14] Khan, Jalaluddin, et al. “Survey on Mobile User’s

Data Privacy Threats and Defense Mechanisms.”

Procedia Computer Science, 56(1), Elsevier Masson

SAS, 376–83,2015.

doi:10.1016/j.procs.2015.07.223.

[15] Krupp, Brian. “Enhancing Security And Privacy For

Mobile Systems.” Doctoral Dissertation, Department

of Electrical and Computer Engineering, Cleveland

State University, 148, 2015.

[16] Liu, Xing, and Jiqiang Liu. “A Two-Layered

Permission-Based Android Malware Detection

Scheme.” Proceedings - 2nd IEEE International

Conference on Mobile Cloud Computing, Services,

and Engineering, MobileCloud 2014, 128, IEEE,

142–48, 2014. doi:10.1109/MobileCloud.2014.22.

[17] Mesevage, Tobias Geisler. Machine Learning

Classifiers - The Algorithms & How They Work.

https://monkeylearn.com/blog/what-is-a-classifier/.

Accessed 28 May 2021.

[18] Millman, Rene. Oxford Researchers Expose

Personal Data Harvesting in Third-Party Facebook

and Google Apps.

https://www.itpro.co.uk/privacy/32190/oxford-

researchers-expose-personal-data-harvesting-in-

third-party-facebook-and-google. Accessed 7 Apr.

2021.

[19] Ptsecurity.com. “Vulnerability and Threats in

Mobile Applications.” Ptsecurity.Com, 2019.

[20] Saaty, Thomas L. “Decision Making with the

Analytic Hierarchy Process.” Int. J. Services

Sciences, 1(1), 2008.

[21] Sahal, Abdirashid Ahmed, et al. “Mining and

Detection of Android Malware Based on

Permissions.” 3rd International Conference on

Computer Science and Engineering (UBMK 2018),

IEEE, 264–68, 2018.

doi:10.1109/UBMK.2018.8566510.

[22] Sun, Lichao, et al. “Significant Permission

Identification for Machine-Learning-Based Android

Malware Detection.” IEEE Transactions on

Industrial Informatics, 14(7), 3216–25, 2018.

doi:10.1109/tii.2017.2789219.

[23] Wang, Wei, et al. “Exploring Permission-Induced

Risk in Android Applications for Malicious

Application Detection.” IEEE Transactions on

Information Forensics and Security, 9(11),1869–82,

2014. doi:10.1109/TIFS.2014.2353996.

220 Informatica 49 (2025) 207–220 A.J. Bhatt et al.

[24] Wikipedia. iOS. https://en.wikipedia.org/wiki/IOS.

Accessed 6 Apr. 2021.

[25] WIRED. Thousands of Android and iOS Apps Leak

Data From the Cloud.

https://www.wired.com/story/ios-android-leaky-

apps-cloud/. Accessed 7 Apr. 2021.

[26] Xiong, Ping, et al. “Android Malware Detection with

Contrasting Permission Patterns.” China

Communications, 11(8), China Institute of

Communications, 1–14, 2014.

doi:10.1109/CC.2014.6911083.

[27] Zhou, Victor. Machine Learning for Beginners: An

Introduction to Neural Networks .

https://towardsdatascience.com/machine-learning-

for-beginners-an-introduction-to-neural-networks-

d49f22d238f9. Accessed 28 May 2021.

