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In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by 

installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for 

user’s privacy, have increased. Information on smartphones is perhaps, more personal than compared to 

data stored on desktops or computers, making it an easy target for intruders. After Android, the most 

prevalently used mobile operating system is Apple’s iOS. Both Android and iOS follow permission-based 

access control to protect user’s privacy. However, the users are unaware whether the app is breaching the 

user’s privacy. To combat this problem, in the paper we propose a hybrid approach to detect malicious 

iOS apps based on its permissions. In the first phase, weights have been assigned to app permissions using 

multi-criteria decision-making (MCDM) approach namely Analytic Hierarchy Process (AHP), and in the 

second phase machine learning& ensemble learning techniques have been employed to train the classifiers 

for detecting malicious apps. To test the efficacy of the proposed method dataset comprising 1150 apps 

from 12 app categories has been used. The results demonstrate the proposed approach improves the 

efficacy of detecting malicious iOS apps for majority of categories. 

Povzetek: Raziskava predlaga hibridni pristop za zaznavanje zlonamernih iOS aplikacij z uporabo 

analitičnega hierarhičnega procesa za dodelitev uteži dovoljenjem aplikacij in strojnega učenja za 

klasifikacijo, kar izboljša zaznavanje. 

 

1 Introduction 
Apple’s iOS (iPhone Operating System) is one of the most 

widely used mobile operating systems after its counterfeit 

Android. Apple manufactures and distributes different 

types of iOS devices such as iPad, iPod touch, iPhone, 

Apple Watch, Apple TV, etc. Apple has a huge customer 

base because it provides a lot of unique features such as 

multitasking, multi-touch gestures, internal 

accelerometers, voice assistant Siri, etc.(Wikipedia). 

Apple also offers a platform for its developers to publish 

and distribute their applications also called apps through 

its online store ‘App Store’. This online store is also a 

repository of billions of apps from which iOS users can 

download apps from different categories (Apple Inc.). 

With the presence of 1.96 million apps, the App Store is 

the world’s second-largest online store than its counterpart 

Android which has 2.87 million apps on its official store 

Play Store. Such a fast-growing platform motivates 

developers, IT industries, marketing firms, and 

organizations to develop feature-rich apps. It also allures 

the customers or users to download these apps.  

With the upsurge of smart devices, the number of apps, 

and the number of smartphone users, smartphones and 

smart devices have also become a device for storing a 

large amount of user’s personal data (Erickson et al.). This 

includes personal information such as address book, photo  

 

gallery, email IDs, passwords, calendar events, etc. 

Additionally, a smartphone always generates contextual 

data via its sensors. Such crucial information of users is  

undoubtedly more personal when compared with the data, 

which is stored on personal computers because 

smartphones stay with individuals throughout the day and 

generate a lot of contextual data by sensors. These sensors 

are not present on personal computers; therefore, it can be 

inferred that smartphones contain a lot of user’s personal 

data which makes them a valuable resource for the 

developers of malicious apps who might intend to develop 

privacy-infringing apps and access user’s data. 

To preserve the privacy of its users both Apple 

and Android follow a permission-based access control 

policy (Krupp). The policy ensures that the app will notify 

its users about all the permissions and resources the app 

will use during its run-time. Android follows an install-

time and run-time permission policy in which the users are 

aware of the permissions the app will acquire during its 

usage during app installation. Whereas, Apple follows a 

run-time permission policy in which the users are 

informed about app permissions during app usage (Khan 

et al.). Additionally, Apple provides privacy controls 

through its inbuilt ‘setting app’, through which they can 

explicitly define the permission for every app which has 

been installed (Krupp). Additionally, Apple follows a 

strict code signing process in which the apps that have 
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been submitted by the developers on the App Store are 

critically examined before they are published. However, 

past attacks on iOS devices via privacy-infringing apps 

have demonstrated these methods adopted by Apple are 

inadequate to preserve the privacy of the users.  

    A lot of research work has been conducted to highlight 

the privacy breach by apps. Research conducted by Wired 

has identified that thousands of iOS and Android apps leak 

data from the cloud. The apps leaked lots of user's personal 

data such as medical information, phone number, device 

identifiers, passwords, etc.(WIRED).  A similar kind of 

research conducted by Oxford researchers identified that a 

lot of third-party apps are sharing data with Facebook and 

Google. A total of 959,000 apps were analyzed.  The study 

identified that 88% of these apps were transferring data to 

Alphabet which is Google’s parent company, while 

Twitter, Facebook, Microsoft, and Amazon received 34%, 

43%, and 18% of user's data respectively (Millman). To 

name a few the data collected by these companies included 

age, location, gender, etc. A report by Pt security 

highlighted the threats by the third-party mobile apps 

which included insecure data storage by apps, Escalated 

privileges taken by the app, side-loaded software, client-

side vulnerabilities,  etc.(Ptsecurity.com).  

    The issue of privacy leaks by apps also increases 

because of the issues in the current permission model 

adopted by Apple. The users do not have fine-grained 

access control over the data which is shared by the app in 

use. Smartphones do offer coarse-grained privacy as well 

as security controls where the users can either deny or 

allow permission for an explicit resource by an app. 

However, the problem with this approach is that once a 

user grants permission to the app he/she does not have any 

control over restricting the app from sharing the data. For 

example, once a user grants location permission to an app, 

the user cannot restrict the app from accessing a particular 

location. Likewise, once a user grants permission to access 

the address book, the user cannot restrict the app from 

accessing a specific contact. Since the users do not have 

the option to specify the accuracy of the sensors while 

accessing location, device accelerometer, and locally 

shared data, thus the apps must restrict their access. 

However, developers of malicious apps intentionally 

create over-privileged apps. Users are allured by the 

features of apps and thus grant permissions to the friendly-

looking apps. However, the users never know if the app is 

using their data locally or sharing it with third-party 

domains without their consent. To eradicate this, problem 

we present a privacy detection model that uses app 

permissions during static analysis. The model first extracts 

user permission using the concept of reverse engineering 

and constructs a Boolean value permission 

matrix P_mxn  where m represents the number of apps 

under analysis and n represents no. of permissions. Here a 

total of 1150 iOS apps from 12 app categories are tested 

for 10 different user permissions. Machine learning and 

ensemble-based techniques are employed to train the 

classifiers and determine malicious iOS apps. Apps are 

reverse-engineered from 12 different categories. In order 

to improve the precision of classifiers, the correlation of 

permissions for each category has been computed using 

Analytic Hierarchy Process (AHP). Later, the weighing 

factors obtained from AHP for each permission category-

wise have been used to construct a weighted permission 

matrix P[mxn] to train the classifiers. The motivation for 

using a weighted permission matrix is that every 

permission has a different weight for a category.  Apple 

provides a set of predefined app categories on the App 

Store which helps the developer to choose the best 

category before uploading the app.  The category also 

defines the necessary features that the app provides the 

users during its usage. For example, the category 

navigation specifies that the apps belonging to the 

navigation category will fetch the user’s location to guide 

them and navigate them. Likewise, an app belonging to 

the photo and video category will require access to the 

user’s photo gallery and camera to serve its intended 

purpose.  Apple provides a limited set of permissions, 

which require explicit approval during app usage. The 

problem of privacy leaks exists because it is very difficult 

to determine a benign app, an over-privileged app, or a 

malicious app with this limited permission set. Even the 

operating system cannot determine the intention of an app 

during its run-time. In other words, it is very difficult to 

identify malicious iOS apps as there exists a thin boundary 

line to identify how well a permission is correlated to a 

category. Using our approach, we identify the most 

significant permissions within a category using AHP 

approach that helps in identifying the malicious iOS apps. 

To address the challenges in the existing model for 

handling privacy breaches, we use the AHP technique to 

find the correlation of permission for a category to detect 

privacy violations by apps. For example, the permission 

of a user’s location is an essential feature for an app 

belonging to the ‘navigation’ category because it functions 

after it receives the user’s approval to access the GPS 

location. The same permission might have a different 

weight for the ‘books’ category as the prime purpose of 

this category is to provide stories, comics, graphic novels, 

and interactive content for which location permission may 

not be mandatory permission. Based on the 

aforementioned facts and guidelines provided by Apple 

we propose a heuristic approach to determine privacy 

leaks by iOS apps.  

The foremost contributions of the paper have been listed 

below. 

• A novel hybrid approach that integrates MCDM 

approach, AHP with Machine learning & ensemble 

learning techniques has been proposed to detect 

malicious iOS apps. 
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Table 1: Summary of research works on detecting privacy breach

• The proposed approach has been evaluated on 1150 

apps belonging to twelve category iOS apps. Each app 

possesses ten permissions.   

• The proposed approach improves the malware 

detection accuracy best case value of 14%. 

The rest of the paper is organized as follows. Section 2 

describes the related work on machine learning and 

ensemble techniques used to detect malicious apps. The 

section also describes the techniques that have been used 

in this paper. Section 3 describes our proposed heuristic 

approach of multicriteria decision-making approach using 

AHP. Section 4 describes the experimental results and 

analysis. The paper is concluded in Section 5. 

 

2 Machine learning, ensembling 

techniques to detect privacy leaks 

based on app permissions 
Machine learning and ensembling learning techniques 

have been employed by many researchers to detect 

privacy violations by apps. Ping et al. have developed an 

ensemble classifier ‘Enclamald’ to identify the contrasting 

permission patterns to illustrate the important difference 

between malicious apps the benign ones based on 

permission usage(Xiong et al.). Liu et al. have proposed a 

two-layered permission-based detection model for 

Android apps. In their work, they considered both 

requested permission and used permission by apps to 

detect malicious apps using machine learning techniques 

(Liu and Liu). Congyi et al. used an implementation of 

ensemble learning- XGBoost method to detect malicious 

Android apps based on permission usage(Congyi and 

Guangshun). Alba et al. used feature selection and 

ensembling techniques to classify  

 

 

Android malware(Coronado-De-Alba et al.). Idrees et al. 

proposed a model PIndoid, permissions, and intent-based 

framework, to detect malicious Android apps. It uses a 

combination of permissions and intents integrated with the 

ensemble method to improve the malware detection 

accuracy(Idrees et al.). Abdirashid et al. proposed a model 

to detect unknown malware by using a permission-based 

approach to enhance the accuracy as well as 

efficacy(Sahal et al.). The authors have improved the 

feature selection technique by incorporating weighing 

method TF-IDFCF, based on the class frequency of the 

app features. Jin et al. developed a malware detection 

system SigPID capable of coping with malware and its 

variants(Sun et al.). The authors have used three levels of 

pruning to mine app permission and identify the most 

significant permission capable of distinguishing malware 

apps from benign ones. Wang et al. have applied different 

ranking algorithms to classify malicious Android apps 

based on different ranking techniques namely principal 

component analysis(PCA) and sequential forward 

selection (SFS) to detect risky app permissions along with 

their subsets(Wang et al.). The authors have used a data 

set of 310926 benign and 4868 malicious apps and 

employed several machine learning classifiers. Jing Y et 

al. developed an automated risk assessment framework 

RiskMon which utilizes machine learning models to rank 

and assess the risks by Android apps(Jing et al.). The 

highlight of the tool was that it continuously monitors the 

behaviour of Android apps by combining the expectations 

of app users with their run-time behaviour. Run time 

behaviour of 20 iOS mobile health care iOS apps was 

analyzed by Adhikari R et al.to determine their strengths 

and weaknesses by assigning a safe score and risk score to 

them based on their run time analysis(Adhikari et al.). 

Authors Objective  Technique/Method Data Set 

Abdirashid et al. 

(Sahal et al.) 

Develop permission-

based malware detection 

model 

Utilize feature selection 

techniques  

1000 samples of apk files  

 

Jin et al. (Sun et 

al.) 

 

Develop malware 

detection system SigPID 

Identify the most significant 

app permission to classify 

malware apps 

310926 benign Android apps, 5494 

malicious Android apps  

 

Wang et al. 

(Wang et al.). 

Explore the permission-

induced risk to classify 

Android apps  

Ranking of permissions, 

identification of malicious 

apps using PCA and SFS 

310,926 benign and 4868 malicious apps  

 

Jing et al. (Jing et 

al.) 

Develop a risk 

assessment framework 

Computes a risk assessment 

baseline by monitoring the run 

time behaviour of apps 

14 Android apps  

 

Adhikari et al. 

(Adhikari et al.) 

Analyze run time 

behaviour of health care 

apps 

Computation of safe score and 

risk score of iOS apps during 

their usage 

20 iOS apps 

Kang et al.(Kang 

et al.) 

Malware detection using 

static analysis 

Permission-based analysis of 

malware 

51,179 benign Android apps and  

4,554 malware Android apps  

Huang et 

al.(Huang et al.) 

Detect malicious 

Android apps based on 

their permissions 

Grouping of permissions to 

Boolean vector and then 

training in machine learning 

classifiers  

124,769 benign Android apps and 480  

Malicious Android apps  
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Table 1 details the summary of research works on 

detecting privacy breaches. 

 

However, the limitation of the above approaches 

is the differentiation of benign apps from malicious apps 

if they all request a similar set of app permissions. Since 

in Android, a large set of app permissions (approximately 

320+) is already available, hence application of feature 

selection techniques, machine learning techniques, and 

reverse engineering is easy. However, in the case of the 

iOS platform a limited set of 10-13 permissions is 

available which varies with the iOS version. Hence, 

distinguishing a benign app from a malicious app is very 

difficult because there exists a thin boundary between a 

malicious and a benign app.  

As most of the work has been done for the 

Android platform, in this paper we propose the detection 

of malicious apps for the iOS platform using AHP and 

MCDM approach to detect malicious iOS with a minimal 

permission set. We have also employed several 

ensembling techniques. The machine learning classifiers 

that were used for evaluating the proposed method are 

listed below(Mesevage), (Abaker and Saeed; Chehal et 

al.), (Harahsheh and Chen). 

(i) Naïve Bayes (NB): It is a Bayesian classification 

method and is based on Bayes' Theorem. The 

Bayesian classification method builds a probabilistic 

classifier that is based on modelling the underlying 

features for different classes. The classification 

technique predicts class member probability that a 

given sample/tuple belongs to a particular class. The 

advantages of using this technique are that it needs 

less training data, is highly scalable, and can be used 

for both multi-class as well as binary classification 

problems(Mesevage). 

(ii) Decision Tree (DT): It constructs a tree structure in 

a top-down recursive manner based on the divide and 

conquer manner. The decision tree is a tree structure 

where the internal node represents a test on an 

attribute every branch represents the output of the test 

and the leaf nodes depict the class distribution and are 

easy to interpret(Chehal et al.). 

(iii) Random Forest (RF): Random Forest generates 

many classification trees. Every tree gives a 

classification and the forest selects the classification 

that has the most votes [15]. 

(iv) Neural Network (NN): The basic unit of a neural 

network is neurons, which take inputs, perform 

mathematical computations with them, and generate 

output. Every input is multiplied by a weight, and then 

all weighted inputs are added together with a bias 

function, and then the sum is passed through an 

activation function(Zhou).  

(v) Support Vector Machine (SVM): It is a 

fast machine learning algorithm used for 

solving multiclass classification problems 

for larger data sets. It can work with high-

dimensional data comprising thousands of features 

and attributes. The algorithm can be used in text 

classification problems with high-dimensional spaces 

[15]. 

The ensembling approaches that have been employed are 

bagging using J48 (decision tree) and boosting.  

 

(vi) Bagging (Bg): The technique is based on creating 

multiple subsets from the original dataset. The 

instances from the dataset are selected with 

replacements. Then a base model also called a weak 

model is created for each of the subsets. The models 

are run in parallel and they work independently of 

each other. The final predictions are computed by 

combining the predictions from all models(Idrees et 

al.).  

(vii) Boosting (Bo): In boosting a subset is created from 

the original dataset and instances are given equal 

weights initially. The base model is constructed on 

the previously created subset and is utilized to make 

predictions for the complete dataset. Errors are 

determined to employ real and anticipated values. 

Higher weights are allocated for the perceptions that 

are incorrectly anticipated. A strong learner is defined 

using the weighted mean of weak learners(Idrees et 

al.).  

 

The following section describes the proposed approach to 

determine malicious iOS apps using a multi-criteria 

decision-making approach. 

 

3 Classifying iOS Apps using 

proposed hybrid approach 
Figure 1 shows the proposed framework to classify iOS 

apps using machine learning and ensemble techniques 

based on ranked permissions. Permissions are ranked 

using AHP. In the proposed method, the apps are installed 

from the AppStore, and their features are fetched (here 

features refer to the app permissions such as location, 

camera, photo gallery, etc.). We have considered ten 

features for twelve categories of iOS apps. Each app has a 

set of features in the form of a permission vector. 

Generally, permission for each feature is either present or 

absent corresponding to an app, and the features if present 

are considered to be equally important. In reality, the 

features of each category app have different weights. 

Based on this belief, we have ranked the permission set of 

each category of apps. On the basis of permission usage 

across the category, we have applied correlation 

coefficient and ranked permissions across the category. 

For example, an app belonging to the Social Networking 

category can have app permissions like photo, camera, 

location, internet, etc. whereas a simple flashlight app 

from the utilities category may require only camera 

permission. Thus, the ranking of permission for camera 

would be entirely different in social networking and utility 

category. 

The proposed method has two phases. In the first phase, 

the app features are assigned weights based on the app 

category. In the second phase, the classification 

algorithms are applied for the identification of malicious 

iOS apps.   
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Assigning weights to app permissions 

To rank the permissions of an app we are using the AHP, 

a MCDM approach. Step 1 is to identify the AHP 

Hierarchy. In this step, first, the goal is defined. In this 

work, the goal is to classify an iOS app as Malign or 

benign. Second, the criteria are identified. Here, the 

criterion is the apps category. 

 

Figure 1: Framework to classify iOS App using machine learning and ensemble technique based on ranked 

permissions 

 
 

 Figure 2: The Hierarchy of iOS Apps for AHP 

Twelve mobile app categories have been considered. The 

categories are Books, Navigation, Games, Education, 

Health & Fitness, Lifestyle, Music, Utilities, Photo & 

Video, Sports, Social Networking, and Finance(Bhatt et 

al.). Third, the sub-criterion is defined if present. Here, the 

sub-criterion is the feature set of each category app for 

which permissions are present.AHP has been used to 

identify important features of each category app. The 

bottom level consists of the various alternatives. In our 

problem, 1150 apps belonging to twelve categories are the 

varied alternatives. The AHP hierarchy for ranking 

permissions of each category app is shown in Figure 1. 

In step 2, pair-wise comparisons among features 

are performed to create a judgement matrix. We consider 

the ten feature sets of all apps belonging to each category. 

The features set consists of photos, internet, notification, 

map, location, contacts, calendar, cellular data, iAd, and 

camera. The Pearson correlation coefficient is utilized to 

find the feature importance for a particular category app. 

Then we used the Pearson correlation coefficient to 

perform a pair-wise comparison among features to find the 

relative importance of each pair and are given values in 

the range of 1 to 9. Table 2 has been used for the creation 

of a judgement matrix that provides the relative ranking 

that signifies the intensity of importance among the 

considered feature pair. The order of the judgement matrix 

depends upon the number of elements that the level of 

comparison. Since we are comparing the 10 feature pairs 

so for each category, the matrix of dimension 10*10 is 

formed. As the judgement matrices are formed, the 

eigenvectors and maximum eigenvalue (λmax) for each 

matrix are computed. Later consistency index (CI) and 

consistency ratio (CR) are calculated as shown in 

Algorithm 1. RI is a random consistency index given by 

Saaty for n varying from 1 to 10 (Refer Table 3). The 

acceptable value of CR is less than 0.1. If the CR value 

exceeds 0.1, it represents inconsistencies and the result is 

meaningless. Thus, the entire process requires re-

evaluations(Saaty).
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Table 2: Criteria for comparison 

Intensity of Importance Definition 

1 Equal importance 

3 Weak importance of 𝐶𝑖  over 𝐶𝑗   

5 Essential or strong importance 

7 Demonstrated importance 

9 Absolute importance 

2,4,6,8 Intermediate 

Reciprocals If 𝐶𝑖 has one of the above judgements assigned to it when compared with 

𝐶𝑗 has the reciprocal value when compared with 𝐶𝑖 

 

Table 3: RI values 

 

 

 

 

Algorithm 1 : Ranking permission of varied category Apps using AHP 

 

 

 

 

 

  

Size 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

Step1: Define AHP hierarchy. (Refer Figure 2) 

1. Goal: To identify an iOS app is benign or malicious 

2. Criteria: Twelve iOS App Categories 

3. SubCriteria: Feature vectors of each category app. 

4. Alternatives: 1150 apps belonging to different categories.  

Step 2: Pairwise comparison is performed to find relative ranking among features of each category apps. (Refer 

Table 1) 

Step 3: Compute Judgement Matrix (M) of dimension 10*10 for each category apps. (Illustrated in Table 5) 

Step 4: Calculate Mn, normalized judgement matrix which can be obtained by dividing each element with the 

column sum. 

Step 5: Find the average of all the row elements of Mnto get eigenvectors WT having dimension 10*1 that are 

considered as the weights of each feature if the matrix is consistent.  

Step 6: Check the consistency of the matrix, M.  

a. The maximum eigen value (λmax) for each matrix is calculated. 

𝜆𝑚𝑎𝑥 =  
1

n
∑

ith entry in MW𝑇

ith entry in WT

n⋅

i̇=1

 

b. The consistency index (CI) of each matrix of order 10 is calculated 

𝐶𝐼 =
(𝜆𝑚𝑎𝑥−𝑛)

(𝑛−1)
Here n =10 (number of app features) 

c. Compute consistency ratio (CR)  

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 𝐻𝑒𝑟𝑒, 𝑅𝐼 = 1.49 
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The judgement matrix is found to be consistent if the value 

of CR is less than 0.1. The weights of features are fetched.  

 

Apply classification algorithms to identify the benign and 

malign iOS apps    

 

The feature weights computed by applying AHP are used 

for each category of apps and are used to train the 

classifiers. Five machine learning and two ensemble 

learning techniques are applied for the identification of 

malign and benign apps. The machine learning techniques 

that are considered are Naïve Bayes, Neural Network, 

Random Forest, Decision Tree, and SVM.  

The ensemble learning techniques are applied as 

the feature set in some of the categories is found to be 

skewed. The techniques used are bagging and boosting 

where J48 is used as a baseline technique. 

4 Experimental results and analysis 
This section presents the experimental setup and results of 

the proposed model on 12 categories of iOS 1150 apps. 

4.1 Experimental setup 

The proposed permission weighting approach is evaluated 

on twelve categories of iOS apps. The categories are 

Books (Bks), Education (Edu), Finance (Fin), Games 

(Gam), Health & Fitness(H&F), Lifestyle (LS), Music 

(Mus), Navigation (Nav), Photo&Video(P&V), Social 

Networking (SN), Sports (Sp) and Utilities (Util). There 

are a total of 1150 iOS apps that have been considered. The 

apps are fetched from the App Store.  Table 5 shows the 

distribution of apps in each category that has been 

considered.  

 

Table 4: Category wise apps distribution 
Category Apps Count 

Books 126 

Education 141 

Finance 91 

Games 201 

Health & Fitness 81 

Lifestyle 101 

Music 91 

Navigation 46 

Photo & Video 61 

Social Networking 91 

Sports 46 

Utilities 86 

Total 1150 

 

Each category app defines the important features that it 

serves to the users. The features set consists of photos, 

internet, notification, map, location, contacts, calendar, 

cellular, iAd, and camera. The permission log of these 

features has been extracted. Each app has its own set of 

feature vectors, for example, App1 of the Books category 

has feature vector fv= (1,0,0,1,0,1,0,0,0,0) which depict 

that this app has three features: photos, map, and contacts. 

The different features of apps are generally given equal 

importance. Here photos, map, and contacts are given 

equal importance. It has been noticed that certain features 

of apps are more important than other features. Based on 

this belief, this paper prioritizes the features of an app 

using the AHP, MCDM technique to classify the app as 

malicious or benign.  

The proposed method undergoes two phases to detect 

malicious iOS apps: In the first phase the features of each 

category of iOS apps are ranked using AHP and in the 

second phase machine learning as well as ensemble 

learning methods are applied to ranked features. Finally, 

the performance of both approaches is evaluated using 

precision defined by equation 1. Here, precision is a metric 

used to evaluate the model’s positive classifications which 

are actually positive. It is defined as a ratio of true positive 

(TP) predictions and total number of predicted positives 

which includes both false positives (FP) as well as true 

positives. Precision improves when false positives 

decrease. 

Precision =
TP

TP + FP
                                       (1) 

4.2 Experimental results 

This section presents the results obtained from our 

experimental study. During the first phase, the features of 

varied category apps were ranked using AHP. The 

feature's importance has been computed using the 

correlation coefficient. The results of which are given in 

Table 4 and have been taken from our previous work on 

the detection of malicious iOS apps using static and 

dynamic analysis approaches (Bhatt et al.). The work is an 

extension of previous work by including ensembling and 

multi-criteria decision-making approach. The correlation 

values are used for pair-wise feature comparison. The 

judgement matrix has been computed for each category 

app using pairwise feature comparison. Figures 3a-3l 

represent the Judgement Matrix corresponding to each 

category of apps.      

 

Table 5: Features Importance in each category apps 
Bks Edu Fin Gam 

iAd Notifi. Notifi. iAd 
Photos MapKit Location Notifi. 
Internet Cellular MapKit Cellular 
Notifi. Location Camera Calendar 
Contacts Camera Contacts Photos 
MapKit Calendar Cellular Location 
Calendar Contacts Photos Internet 
Cellular Internet Calendar Camera 
Location Photos iAd MapKit 
Camera iAd Internet Contacts 

H&F LS P&V SN 
MapKit Notifi. Notifi. Notifi. 

Notifi. MapKit Camera Cellular 

Contacts Cellular iAd Camera 

iAd Contacts MapKit Calendar 

Calendar Location Calendar Location 

Camera iAd Cellular iAd 

Photos Calendar Internet Contacts 

Cellular Photos Location MapKit 

Location Camera Photos Photos 

Internet Internet Contacts Internet 
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Spo Util Mus Nav 

Cellular MapKit Cellular Cellular 

Calendar Cellular Notifi. Calendar 

MapKit Calendar MapKit Notifi. 

Notifi. Camera Calendar Internet 

Camera Location Internet Photos 

Photos Internet Location iAd 

Contacts Photos Photos MapKit 

Location Contacts Camera Camera 

Internet Notifi. iAd Contacts 

iAd iAd Contacts Location 

 

 
Figure 3 a: Judgement Matrix for Apps from (Books 

(Bks) category 
 

 
Figure 3 b: Judgement Matrix for Apps from Education 

(Edu) category 

 

 
Figure 3 c: Judgement Matrix for Apps from Games 

(Gam) category 

 

 
Figure 3 d: Judgement Matrix for Apps from Health & 

Fitness (H&F) category 

 
Figure 3 e:Judgement Matrix for Apps from Music (Mus) 

category 
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Figure 3 f:Judgement Matrix for Apps from Navigation 

(Nav) category 

 
Figure 3 g: Judgement Matrix for Apps from Social 

Networking (SN) category 

 

 
Figure 3 h: Judgement Matrix for Apps from Finance 

(Fin)category 

 

 
Figure 3 i: Judgement Matrix for Apps from Photo & 

Video (P&V) category 

 

 
Figure 3 j: Judgement Matrix for Apps from Sports 

(Spo)category 

 
Figure 3 k: Judgement Matrix for Apps from Utilities 

(Util)category 
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Figure 3 l: Judgement Matrix for Apps from Lifestyle 

(LS) category 

The procedure given in Algorithm 1 has been followed and 

the final weights of the ten features for all the twelve 

category Apps are shown in Table 6. Table 7 shows the 

Consistency Index (CI) and inconsistency ratio (CR) 

values obtained for each iOS category app. A CR value 

below 0.1 suggests that the comparisons made are 

consistent and that the judgments used in the AHP process 

are reliable. In our analysis, it can be clearly observed from 

the tables 6 & 7 that the CR values obtained were 

consistently below this threshold for all category iOS apps, 

which means that the pairwise comparisons of the 

permissions were logical and coherent.

 

Table 6: Final weights of all features for twelve category apps 

 

 

 

 

 

appsFeatures Weights (Bks) Features Weights (Edu) Features Weights (Gam) Features Weights (H&F) 

N 0.260416 N 0.22869837 N 0.258617391 N 0.373378406 

iA 0.1536197 M 0.25874097 iA 0.217896213 M 0.239753234 

Ce 0.1118894 Ce 0.13251323 Ce 0.196327424 Ce 0.127111058 

Cl 0.1130392 Co 0.11850109 P 0.108141669 Co 0.070634637 

M 0.0972874 I 0.1023565 Cl 0.080053713 I 0.054553629 

I 0.0941756 L 0.0464333 L 0.034984294 L 0.03462572 

L 0.0570132 Cl 0.03384061 I 0.025581562 Cl 0.030962473 

Ca 0.0387621 P 0.02371545 Ca 0.030363325 P 0.025841841 

P 0.0395886 iA 0.03329195 M 0.025065278 iA 0.023556455 

Co 0.0342088 Ca 0.02190853 Co 0.02296913 Ca 0.019582547 

Features Weights (Mus) Features Weights (Nav) Features Weights (SN) Features Weights (Spo) 

N 0.3164822 Ca 0.32905485 N 0.243144501 Ce 0.226412065 

Ce 0.2583536 Ce 0.2360261 Ce 0.230117625 Cl 0.193037193 

L 0.1466667 Cl 0.14566162 L 0.098318076 N 0.130405534 

M 0.0571527 Co 0.07414116 Cl 0.158169247 M 0.114890071 

Co 0.0561844 I 0.06437649 Ca 0.110922948 Ca 0.089492707 

Cl 0.0476753 L 0.03690112 Co 0.040755572 P 0.070530109 

P 0.0505276 M 0.04092982 iA 0.03808108 I 0.058589306 

iA 0.0271474 P 0.03279818 P 0.032758226 Co 0.043199994 

Ca 0.0210871 N 0.0221352 M 0.028127397 L 0.039473318 

I 0.018723 iA 0.01797546 I 0.019605329 iA 0.033969703 

Features Weights (Fin) Features Weights (Util) Features Weights (P&V) Features Weights (LS) 

N 0.2430282 N 0.24600855 I 0.239110134 N 0.286591226 

M 0.200416 iA 0.14601401 N 0.169841704 Ce 0.198462154 

Ce 0.151552 Ce 0.15944265 Ca 0.154772531 L 0.141693949 

Co 0.1195261 Cl 0.10371867 iA 0.119366316 Co 0.079178536 

I 0.0901974 M 0.08086139 Cl 0.081263199 M 0.064995197 

L 0.0727182 I 0.07471276 M 0.074714065 Cl 0.056637209 

Cl 0.0504631 L 0.055601 Ce 0.047334716 iA 0.061643922 

P 0.0312343 Ca 0.04967195 co 0.040725409 P 0.064021004 

iA 0.0256206 P 0.04642525 L 0.037987177 Ca 0.025483038 

Ca 0.015244 

 

Co 0.03791838 P 0.03488475 I 0.021293766 
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Table 7: Consistency Index (CI) and inconsistency ratio (CR) values 

Sno Category CI CR 

1 Books          0.14527 0.097497 

2 Education 0.146455 0.098292 

3 Finance 0.136704 0.091747 

4  Games 0.145712 0.097794 

5 Health & Fitness 0.135315 0.090816 

6 Lifestyle 0.144084 0.096701 

7 Music 0.14871 0.099806 

8 Navigation 0.143824 0.096526 

9 Photo & Video 0.1444 0.096913 

10 Social Networking 0.142957 0.095944 

11 Sports  0.135897 0.091206 

12 Utilities 0.147348 0.098891 

A detailed illustration of AHP steps has been omitted for 

the sake of the length of the paper. The results of this 

evaluation were analyzed to find whether the inclusion of 

AHP in prioritizing and determining the weights of 

features improves the accuracy of iOS app classification or 

not. We have used the cross-validation technique in the 

Weka toolkit to measure the efficiency of the models. 

Generally, whenever an inadequate amount of data 

instances is available, cross-validation method is preferred 

to accomplish an unbiased approximation of the model 

performance. In the k-fold cross-validation technique, the 

dataset is divided into k subsets, each of equal size. The 

model is constructed ‘k’ times, each time using (k−1) sets 

of data instances for training the classifier and leaving out 

one subset as a ‘test set’ for predictions. We considered 

five machine-learning techniques and two ensemble-based 

techniques for classification. The machine learning 

classifiers that are used for evaluating the proposed 

method are Decision Tree (DT), Random Forest (RF), 

Naïve Bayes (NB), Neural Network (NN), and Support 

Vector Machine (SVM) and the considered ensemble 

approaches are bagging using J48(Bg) and Boosting (Bo). 

We compared the proposed AHP-based weighing 

approach with actual permission-based classification 

approaches.  

The summary of the precision values for different 

classifiers has been depicted in Table 8 and Table 9. The 

tables also depict the comparison of precision values 

before/after applying the AHP technique for various 

classifiers. The results depicted in Table 8 and Table 9 

demonstrate that the proposed AHP-based approach 

achieved an improved average accuracy in all the category 

apps. The improved average accuracy attained for 

classification algorithms Random Forest, Support Vector 

Machine, Naïve Bayes, Neural Network, and Decision tree 

is 77.83%, 78.61%, 77.99%, 75.21%, and 78.21% 

respectively. It has been observed that Random Forest and 

SVM-based AHP classifier (SVMAHP), performs better in 

8 categories out of 12 categories apps, and Naïve Bayes-

based AHP (NBAHP) and Neural Network-based AHP 

(NBAHP) classifier performs better in 9 categories out of 12 

categories apps. Integration of machine learning with AHP 

has shown the best performance for Health & fitness 

category apps as the improvement can be clearly observed 

in the case of three classifiers SVMAHP, NBAHP, and NNAHP 

as 9.8%, 9.1%, and 8.3%. The proposed hybrid model has 

also shown good results for the apps belonging to the 

categories: Navigation and Photo & Video. The results 

reveal the improvement of 4.4%, 2.2%, and 2.9% in 

SVMAHP, NBAHP, and NNAHP classifiers for the Navigation 

category and 1.9%, 3.3% and 4.9% in RFAHP, SVMAHP 

and NBAHP for Photo & Video category. The average 

accuracy attained in ensemble techniques, Boosting and 

Bagging using J48 is 80.01% and 77.22%. The ensemble 

learning technique, boosting integrated with AHP 

performed the best as it has shown better accuracy in all 

the 12 categories of apps. The highest improvement 

attained is 14% for Health and Fitness Apps. Figure 4 

shows the improved precision scores for 12 iOS apps 

categories using the proposed hybrid approach. 

 

 

 

 

 

Table 8: Summary of Results Precision Values (in Percentage) 
Category RF RFAHP SVM SVMAHP NB NBAHP NN NNAHP DT DTAHP 

Books 76.1 76 75.3 76.3 76.8 75.9 71.8 75.3 79.9 79.9 

Education 76.5 75.7 76.5 69 75.7 74.3 78.6 70.7 78.6 77.9 

Finance 62.2 61.6 63.9 63.9 67.9 73.3 66 61.3 71 67.2 

Games 85.1 86 86.2 85.7 84.1 84.6 84.2 84.5 83.5 82.5 

Health & Fitness 83.7 82.5 74.9 84.7 71.7 80.8 77.9 86.2 84.1 78.5 

Lifestyle 79.1 80 82.9 76 74.9 74.9 75.8 74.8 82.9 81.9 

Music 97.8 98.9 98.9 98.9 95.6 95.6 95.6 95.6 98.6 98.6 
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Navigation 67.2 67.2 71.6 76 76 78.7 60.4 63.3 67.2 67.2 

Photo & Video 75.9 77.8 68 71.3 67.3 72.2 77.4 77.4 74.1 74.1 

Social Networking 79.7 81 82 81.9 75.2 74.2 76.5 76.5 78.5 81.3 

Sports 66.1 67.9 74.7 74.7 69.9 69.9 58.4 58.4 70.8 74.8 

Utilities 77.6 79.4 83.1 84.9 80.8 81.5 78.5 78.5 71.1 77.1 

Average 77.25 77.83 78.17 78.61 76.33 77.99 75.09 75.21 78.36 78.42 

 

Table9: Evaluation of weighing based approach using machine learning classification algorithm 

S No Category Bo BoAHP Bg BgAHP 

1 Books(B) 78.5 79.3 79.2 76 

2 Education(E) 70 73 76.4 78.6 

3 Finance(F) 73.5 73.6 67.2 66.9 

4 Games(G) 84 84 84.7 83.5 

5 Health & Fitness (HF) 70 83.9 80 84.3 

6 Lifestyle(L) 72.9 72.9 78.9 76.8 

7 Music(M) 97.8 98.9 98.9 98.9 

8 Navigation(N) 78.7 78.7 55.6 53.8 

9 Photo & Video (PV) 77.8 79.6 70.4 70.4 

10 Social Networking (SN) 79.6 79.7 82 82 

11 Sports(S) 72.2 72.2 75.2 75.2 

12 Utilities(U) 85.4 85.4 80.8 80.2 

 Average 78.37 80.1 77.44 77.22 

 
 

Figure 4: Improved precision using proposed hybrid approach for 12 iOS category apps 

 

 

Based on the above results from Table 8 and Table 9 it can 

be concluded that the proposed approach of using a multi-

criteria decision-making approach using AHP improves 

the detection rate of malicious apps. Up to 9.8% in 

machine learning techniques and 14% in ensemble 

learning techniques.  

5 Conclusion 
The paper proposes an AHP-based weighting approach 

integrated with machine learning and ensemble learning 

techniques to detect iOS malicious apps. The proposed 

method initially extracts the app permissions using static 

analysis for 12 categories to compute a permission matrix 

comprising the number of apps and presence/absence of 

features. Then correlation of permissions for every 

category is computed using Pearson Correlation. Later, the 

AHP technique is applied to determine the weights of all 

permissions based on their correlation with respect to the 

category and in order to compute a weighted permission 

matrix. The proposed method has been compared with 

traditional permission-based classification methods. 

Empirical results depict that the proposed approach 
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improves the detection rate for all 12 categories of iOS 

apps. In the future, we plan to conduct a sensitivity 

analysis to test the robustness of the AHP-derived weights. 

We will also explore different privacy settings for iOS 

apps namely track, link, and not-link, and investigate 

which privacy settings are better predictors for 

determining malicious or benign apps based on app 

permissions. 
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