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This paper introduces a novel optimization problem termed the Fixed Charged Transshipment Problem 

(FCTP), which incorporates fixed charges for selected routes. A new formulation for this problem is 

presented, aiming to address the combinatorial nature of the challenge. The study further introduces a 

Modified Emperor Penguin Optimizer (EPO) algorithm designed to enhance the solution approach. To 

evaluate the performance of the Modified EPO, a comparative analysis is conducted against the classical 

EPO and Particle Swarm Optimization (PSO) algorithms. 19 problems, including various multi-modal 

test optimization functions, serve as the testing ground. Results demonstrate the efficacy of the Modified 

EPO, establishing its superiority over the classical EPO and PSO. Additionally, a heuristic procedure is 

proposed for solving the combinatorial aspect of the FCTP. This heuristic is hybridized with both the 

Modified EPO and PSO algorithms. 30 FCTP problems are generated using a code available at 

https://github.com/MZakaraia/EPO_Transshipment/. Taguchi's orthogonal arrays are employed to 

optimize parameter levels for both algorithms. The study concludes with the comparison of the Modified 

Hybrid EPO and Hybrid PSO in solving the 30 generated FCTP problems. Remarkably, the Modified 

Hybrid EPO algorithm outperforms the Hybrid PSO, showing its effectiveness in addressing the Fixed 

Charged Transshipment Problem in terms of means and robustness. 

Povzetek: Članek predstavlja spremenjeni algoritem cesarskega pingvina za reševanje problema s 

fiksnimi stroški prenosa, ki kaže premoč nad klasičnimi metodami z robustnostjo in učinkovitostjo rešitev.

1 Introduction  

The fixed charged transshipment problem is a well-known 

optimization problem in the field of logistics and supply 

chain management. It involves determining the optimal 

flow of goods through a network, considering fixed costs 

associated with transshipments between various nodes. 

Solving the FCTP efficiently is crucial for optimizing 

supply chain operations, reducing costs, and enhancing 

overall system performance. In recent years, nature-

inspired optimization algorithms have gained popularity 

as effective tools for solving complex optimization 

problems. One such algorithm is the Emperor Penguin 

Optimizer (EPO), which is inspired by the behavior and 

social interactions of emperor penguins in their natural 

habitat. The EPO algorithm is known for its ability to 

effectively handle continuous and discrete optimization 

problems. This paper presents a modified version of the 

Emperor Penguin Optimizer algorithm tailored 

specifically for addressing the Fixed-Charged 

Transshipment Problem. The main objective of this study 

is to investigate the effectiveness and efficiency of the 

modified EPO algorithm in finding high-quality solutions 

for the FCTP. So, the contribution of this can be 

summarized as follows: 

• Proposing a new formulation for the fixed 

charged transshipment problem by considering 

fixed costs for the routes. 

• Adapting a new modification of the population-

based metaheuristic EPO algorithm for solving 

FTCP. 

• Generating a dataset of 30 problems for FTCP to 

validate the proposed EPO algorithm for solving 

FTCP. 

The remainder of this paper is organized as follows: 

Section 2 provides a literature review of related studies on 

transshipment problems. Section 3 presents the 

mathematical formulation of the Fixed Charge 

Transshipment Problem with a discussion that shows the 

novelty of the proposed formulation. Section 4 describes 

the EPO algorithm in detail, while Section 5 introduces the 

modified EPO and presents comparative results. Section 6 

outlines the adapted EPO for solving FCTP. In this 

Section the computational complexity of the proposed 

EPO is presented. The experimental design is 

implemented to optimize the parameters of the EPO and 

adopted particle swarm optimization algorithm for solving 

the problem. The computational results for 30 generated 

problems are performed to compare between the hybrid 
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EPO and PSO for solving the FCTP. Finally, Section 7 

concludes the paper with a summary of the findings, 

highlighting the advantages and potential applications of 

the proposed algorithm for solving the Fixed Charge 

Transshipment Problem. 

2 Literature review 
This section provides a literature review of prior research 

on the transshipment problem, offering a comprehensive 

overview of existing work and highlighting the motivation 

behind the current study. Herer and Tzur [1] investigated 

the strategy of transshipments in a dynamic, deterministic 

demand environment over a finite planning horizon. Their 

study considered a system of two locations replenished by 

a single supplier, incorporating various costs and deriving 

structural properties of optimal policies, leading to the 

development of an efficient polynomial time algorithm for 

obtaining the optimal strategy and motivating the adoption 

of transshipments in replenishment strategies. Reyes [2] 

used the Shapley value concept from cooperative game 

theory to solve the transshipment problem and 

demonstrated its efficacy through a numerical example. 

Herer et al. [3] examined a supply chain with multiple 

retailers and a supplier, where they established optimal 

replenishment and transshipment policies to minimize 

long-run average costs. Through a sample-path-based 

optimization procedure, they calculated order-up-to 

quantities using a linear programming/network flow 

framework. 

Belgasmi et al. [4] examined a multi-location 

inventory system with centrally coordinated inventory 

choices, allowing lateral transshipments within the same 

echelon to reduce costs and improve service level. They 

proposed a multi-objective model to optimize cost, fill 

rate, and transshipment lead times. They utilized an 

evolutionary multi-objective optimization approach to 

approximate the optimal trade-offs between these 

conflicting objectives. Sharma and Jana [5] developed a 

transshipment planning model for the petroleum refinery 

industry, aiming to minimize costs, maximize production, 

and meet storage and demand requirements. They 

employed a fuzzy goal programming (FGP) model with 

integrated genetic algorithms (GA) to handle imprecision 

and provide flexible solutions. A case example showcased 

the effectiveness of this integrated technique in optimizing 

transshipment operations. Khurana and Arora [6] 

extended the standard transshipment model to include 

inequality constraints.  Their algorithm transformed the 

problem into an equivalent transportation problem to 

obtain the optimal solution. They discussed balanced and 

unbalanced transshipment problems, emphasizing the 

algorithm's applicability in addressing distribution 

problems with mixed constraints and paradoxical 

situations. Özdemir et al.  [7] investigated the coordination 

of stocking locations considering lateral transshipments 

and supply capacity in the transshipment model. They 

formulated the capacitated supply scenario as a network 

flow problem within a stochastic optimization framework. 

They found that system behavior depends on production 

capacity and highlighted the importance of capacity 

flexibility or transshipment flexibility for maintaining 

desired service levels in a production-inventory system.  

Khurana, et al. [8] developed an algorithm to solve a 

transshipment problem with the objective of minimizing 

transportation duration. They transformed the problem 

into an equivalent transportation problem and obtained the 

optimal solution. Their algorithm is easy to understand 

and apply, making it suitable for addressing various 

products distribution problems. In addition, balanced and 

unbalanced time minimization scenarios were discussed 

with numerical examples. Kumar, et al.  [9] addressed the 

challenges of uncertainty in transshipment problems by 

representing parameters as intuitionistic fuzzy numbers. 

Their proposed method is based on ambiguity and 

vagueness indices to derive a fuzzy optimal solution 

without the need for an initial basic feasible solution. The 

technique demonstrated computational efficiency and 

applicability to a wide range of transshipment problems, 

supported by numerical illustrations. Garg et al. [10] 

investigated a fuzzy fractional two-stage transshipment 

problem, using the ratio of costs divided by benefits as the 

objective function. They employed the extension principle 

and Charnes-Cooper transformation method to find the 

fuzzy objective value. The proposed formulation and 

solution method demonstrated superior efficiency 

compared to the existing literature. 

Table 1 shows the literature review summary. To the 

best of our knowledge, the fixed-charge transshipment 

problem, which extends the fixed-charge transportation 

problem by including transshipment nodes, has not yet 

been investigated. Therefore, this paper presents a new 

model for the transshipment problem that incorporates 

both fixed costs and transportation costs. 

 

Table 1: Literature review summary 

Author Problem Approach 

Herer and 

Tzur [1] 

Dynamic 

transshipment 

problem 

Heuristic 

approach 

Reyes [2] Classical 

transshipment 

problem 

Game theory 

approach 

Herer et al. 

[3] 

Multi-location 

transshipment 

problem 

Linear 

programming and 

network follow 

Belgasmi et 

al. [4] 

Multi-objective 

multi-location 

transshipment 

problem 

Strength Pareto 

evolutionary 

algorithm 

Sharma and 

Jana [5] 

Transshipment 

management 

problem 

Fuzzy goal 

programming and 

genetic algorithm 

Khurana 

and Arora 

[6] 

Unbalanced 

transshipment 

problem with 

mixed constraints 

Liner 

Programming 

Özdemir et 

al.  [7] 

Multi-location 

transshipment 

problem with 

Random search, 

Simulation 

applications, and 
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capacitated 

production 

sample average 

approximate 

Khurana, et 

al. [8] 

Time minimizing 

transshipment 

problem 

Heuristic 

approach 

Kumar, et 

al.  [9] 

Fuzzy 

transshipment 

problem 

Heuristic 

approach 

Garg et al. 

[10] 

Fractional two-

stage 

transshipment 

problem under 

uncertainty 

Charnes–Cooper 

transformation 

method, linear 

programming 

 

Given the combinatorial complexity of the problem, 

the classical approaches listed in Table 1, primarily those 

mentioned, are not well-suited to solving the fixed-charge 

transshipment problem. Consequently, this paper adopts 

one of the latest population-based metaheuristics, namely 

the Emperor Penguin Optimizer Algorithm, to address this 

challenge. 

3 Mathematical formulation 
Fixed Charge Transshipment Problem is a combinatorial 

optimization problem in which a set of products or goods 

is transported from source nodes to destination nodes 

through a network of intermediate transshipment nodes. In 

this problem, there is a fixed cost associated with using 

each transshipment node, and a variable cost for 

transporting each unit of product between the nodes. The 

FCTP can be mathematically modeled as follows: 

Notations: 

𝑖 Set of sources 

𝑗 Set of destinations 

𝑘 Set of transshipment nodes 

𝑓𝑘 Fixed cost associated with transshipment node 

𝑘 

𝑐𝑖𝑗  Unit cost of transporting a product from source 

𝑖 to destination 𝑗 via transshipment node 𝑘 

𝑥𝑖𝑗  Amount of product transported from source 

𝑖 to destination 𝑗 directly (without 

transshipment) 

𝑠𝑖 The available quantity produced by source 𝑖 
𝑑𝑗 The required demand by destination 𝑗 

𝑦𝑖𝑗𝑘 Amount of product transshipped at node 

𝑘 from source 𝑖 to destination 𝑗 
𝑧𝑘 A binary variable representing whether 

transshipment node 𝑘 is used or not 

Mathematical model: 

 min∑𝑓𝑘𝑧𝑘 +∑∑𝑐𝑖𝑗 (𝑥𝑖𝑗 +∑𝑦𝑖𝑗𝑘
𝑘∈𝐾

)

𝑗∈𝐽𝑖∈𝐼𝑘∈𝐾

 (1) 

 Subject to:  

  ∑(𝑥𝑖𝑗 +∑𝑦𝑖𝑗𝑘
𝑘∈𝐾

)

𝑗∈𝐽

= 𝑠𝑖 , ∀𝑖 ∈ 𝐼 (2) 

  ∑(𝑥𝑖𝑗 +∑𝑦𝑖𝑗𝑘
𝑘∈𝐾

)

𝑖∈𝐼

= 𝑑𝑗 , ∀𝑗 ∈ 𝐽 (3) 

  ∑∑𝑦𝑖𝑗𝑘
𝑗∈𝐽𝑖∈𝐼

≤ 𝑄𝑘𝑧𝑘 , ∀𝑘 ∈ 𝐾 (4) 

  𝑥𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (5) 

  𝑦𝑖𝑗𝑘 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (6) 

  𝑧𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾 (7) 
 

The fixed-charged transshipment problem, as shown 

in the mathematical model, is a combinatorial 

optimization problem known for its NP-hardness, making 

it very difficult to solve using classical approaches. 

Therefore, metaheuristics are the preferred choice for 

tackling such problems. These approaches can be broadly 

classified into two categories: single-based metaheuristics 

(e.g., simulated annealing, Tabu search, and variable 

neighborhood algorithms) and population-based 

metaheuristics (e.g., particle swarm optimization, gray 

wolf, genetic algorithm, and the proposed emperor 

penguin optimizer algorithm (EPO) presented in this 

paper) [11]–[14]. 

In this paper a new form of the transshipment problem 

is presented, which considers fixed charges associated 

with selected routes. To fill this gap, we propose a 

hybridized EPO algorithm that incorporates a heuristic 

procedure based on priority vectors to achieve solution 

improvement. Before presenting the hybridized algorithm, 

we propose a modified EPO algorithm and compare its 

performance with both the classical EPO and a particle 

swarm optimization algorithm.  

4 Emperor penguin optimizer 

algorithm 
The emperor penguin optimizer algorithm is a population-

based metaheuristic that was first proposed by Dhiman 

and Kumar [15]. It mimics the emperor penguins’ 

huddling behavior. The steps of the algorithm include 

generating the boundaries of the huddle, computing the 

temperature of the huddle, the distances between specific 

penguins, and finding the emperor penguins by obtaining 

the effective mover. The proposed algorithm by Dhiman 

and Kumar [15] consists of four phases: 

• Generating positions based on huddle 

boundaries. 

• Calculating the temperature around the huddle. 

• Determining the distances between emperor 

penguins. 

• Relocating procedure. 

The next subsections show these phases followed by 

the full pseudo code of the basic POA algorithm. 

4.1 Generating positions based on huddle 

boundaries 

In this phase, the positions of the penguins are to be 

generated using the huddle boundaries, where they are 

restricted by the lower bound (𝐿𝐵) and the upper bound 

(𝑈𝐵). So, each penguin position is to be generated using 

equation (8) for all 𝑛 penguins in the huddle. 
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𝑃𝑜𝑠𝑖 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑(0,1)(𝑈𝐵 − 𝐿𝐵), ∀𝑖
= {1,… , 𝑛} 

(8) 

4.2 Calculating temperature profile 

around the huddle 

In this phase, the temperature profile of the huddle is to be 

calculated using the radius of the huddle (𝑅). If the radius 

of the huddle is less than 1, then the temperature (𝑇) equals 

to 1, and 𝑇 equals 0 if 𝑅 greater than or equals 1. The 

radius of the huddle in the algorithm is to be generated 

randomly in each iteration from the interval [0,1]. So, the 

new temperature profile around the huddle (𝑇′) can be 

calculated according to equation (9). 

 

𝑇′ = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 (9) 

𝑇 = {
1, 𝑅 < 0
0, 𝑅 ≤ 1

  

4.3 Determining the distance between the 

emperor penguins 

The distance between emperor penguins and the best 

penguin can be calculated using two vectors that prevent 

collision 𝐴 and 𝐶, the position of the penguin 𝑖 in the 

current iteration (𝑃𝐼𝑡𝑟(𝑖)), a social force 𝑆, and the position 

of the current optimal emperor penguin (𝑃𝑜𝑝𝑡). The 

proposed equation by Dhiman and Kumar [15] to calculate 

the distance (𝐷) is presented in equation (10). The 

calculations of the two collision vectors 𝐴 and 𝐶 are 

shown in equations (11) and (12), respectively. The 

𝑃𝑔𝑟𝑖𝑑  variable found in equation (13) is the absolute value 

of the difference between the position of the best emperor 

penguin and the current penguin 𝑖, where the equation of 

the 𝑃𝑔𝑟𝑖𝑑  is equation (13). The social force function can be 

calculated using equation (14). 

 

𝐷 = |𝑆(𝐴)𝑃𝑜𝑝𝑡 − 𝐶𝑃𝐼𝑡𝑟(𝑖)| (10) 

𝐴 = (2 × 𝑇′ + 𝑃𝑔𝑟𝑖𝑑 × 𝑟𝑎𝑛𝑑(0,1)) − 𝑇
′ (11) 

𝐶 = 𝑟𝑎𝑛𝑑(0,1) (12) 

𝑃𝑔𝑟𝑖𝑑 = |𝑃𝑜𝑝𝑡 − 𝑃𝐼𝑡𝑟(𝑖)| (13) 

𝑆 = (√𝑟𝑎𝑛𝑑(2,3)𝑒
−

𝐼𝑡𝑟
𝑟𝑎𝑛𝑑(1.5,2) − 𝑒−𝐼𝑡𝑟)

2

 (14) 

4.4 Relocating procedure 

In this phase, the position of each emperor penguin is to 

be modified using the calculated distance (𝐷) as found in 

equation (15). 

 

𝑃𝐼𝑡𝑟+1 = 𝑃𝐼𝑡𝑟 + 𝐴𝐷 (15) 
Now the pseudo code of the basic algorithm 

developed by Dhiman and Kumar [15] can be summarized 

as follows: 

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅  
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒  

𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑜𝑝𝑡) 

𝐼𝑡𝑟 = 1 

𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜: 

 𝑖 = 1 

 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜: 

  𝑇′ = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 

  𝐴 = 𝑀 × (𝑇′ + |𝑃𝑜𝑝𝑡 − 𝑃𝐼𝑡𝑟(𝑖)| × 𝑟𝑎𝑛𝑑(0,1)) − 𝑇
′ 

  𝑆 = (√𝑟𝑎𝑛𝑑(2,3)𝑒
−

𝐼𝑡𝑟
𝑟𝑎𝑛𝑑(1.5,2) − 𝑒−𝐼𝑡𝑟)

2

 

  𝐷 = |𝑆 .  𝑃𝐼𝑡𝑟(𝑖) − 𝑟𝑎𝑛𝑑 𝑃𝑜𝑝𝑡| 

  𝑃𝐼𝑡𝑟+1(𝑖) = 𝑃𝐼𝑡𝑟(𝑖) − 𝐴𝐷 

  𝑖𝑓 𝑓(𝑃𝐼𝑡𝑟+1(𝑖)) ≤ 𝑓(𝑃𝑜𝑝𝑡) 𝑡ℎ𝑒𝑛: 

   𝑃𝑜𝑝𝑡 = 𝑃𝐼𝑡𝑟+1(𝑖) 

  𝑖 = 𝑖 + 1 

 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑝𝑡  

5 Modified penguin optimizer and 

comparative results 
This section presents a modification of the EPO algorithm 

to adapt it for solving FCTP. The new modification of the 

algorithm considers adding an information vector 

(𝑃𝐼𝑉(𝑖))[16]. Such information vector will be created 

during the relocating procedure of the algorithm. The 

creation of this vector is done using the positions of two 

emperor penguins. The first position is associated with the 

position of penguin (𝑖) at iteration (𝐼𝑡𝑟) in the population 

(𝑃𝐼𝑡𝑟(𝑖)), while the second position is associated with the 

relocated position of that penguin (𝑃𝐼𝑡𝑟+1(𝑖)). The 

threshold herein is used as a predetermined number from 

the interval [0,1]. It is used to determine whether to select 

a component from the 𝑃𝐼𝑡𝑟(𝑖) or from 𝑃𝐼𝑡𝑟+1(𝑖). So, the 

steps to create the information vector can be summarized 

as follows: 

 

𝑗 = 1  

𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃𝐼𝑡𝑟(𝑖)) 𝑑𝑜: 

 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

  𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟+1(𝑖)[𝑗] 

 𝑒𝑙𝑠𝑒: 

  𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟(𝑖)[𝑗] 

 𝑗 = 𝑗 + 1 

The created 𝑃𝐼𝑉(𝑖) replaces the 𝑃𝐼𝑡𝑟(𝑖) if its fitness 

value is better.   Now, the modified version of the emperor 

penguin optimizer can be summarized as follows: 

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
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𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒  
𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑜𝑝𝑡) 

𝐼𝑡𝑟 = 1 
𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜: 

 𝑖 = 1 
 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜: 

  𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 

  𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑜𝑝𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴 

  𝑆 =  (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 

  𝐷 = |𝑆 .  𝑃𝐼𝑡𝑟(𝑖) − 𝑟𝑎𝑛𝑑 𝑃𝑜𝑝𝑡| 

  𝑃𝐼𝑡𝑟+1(𝑖) = 𝑃𝐼𝑡𝑟(𝑖) − 𝐴 . 𝐷 
  𝑗 = 1 

  𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃𝐼𝑡𝑟(𝑖)) 𝑑𝑜: 

   𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
    𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟+1(𝑖)[𝑗] 
   𝑒𝑙𝑠𝑒: 
    𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟(𝑖)[𝑗] 
   𝑗 = 𝑗 + 1 

  𝑖𝑓 𝑓(𝑃𝐼𝑡𝑟+1(𝑖)) ≤ 𝑓(𝑃𝑜𝑝𝑡) 𝑡ℎ𝑒𝑛: 

   𝑃𝑜𝑝𝑡 = 𝑃𝐼𝑡𝑟+1(𝑖) 

  𝑖 = 𝑖 + 1 
 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑝𝑡  

The information vector proves efficiency in the 

proposed modification of the EPO algorithm that prevents 

stagnation in local optima, especially in the multi-model 

test optimization functions. EPO mainly uses a vector-

based methodology to deal with positions and modify 

them using its relocating procedure and the new proposed 

information vector creation process. In order to test the 

performance of the algorithm, 19 test optimization 

problems are selected from https://www.sfu.ca/~s 

surjano/optimization.html to be solved using the EPO 

algorithm. 

Figure 1 and Figure 2 show the 3D plots of the 19 

optimization functions. To evaluate the effectiveness of 

the modified EPO, a comparison is done with the classical 

EPO and particle swarm optimization (PSO) algorithms. 

These algorithms are implemented in Python, and the 

comparisons are conducted on a PC featuring a core-i5 

3.40 GHz CPU and 4 GB of memory. Table 3 shows the 

comparative results, where the highlighted values in the 

table prove the effectiveness of the modified EPO in terms 

of objective values and robustness. Furthermore, the 

Friedman test [17] is applied to prove that the null 

hypothesis is rejected, since the p-value for means is 

0.00093, and for standard deviations is 0.00064. The 

comparative results show that the modified EPO 

outperforms the other algorithms in 15 problems in terms 

of means and standard deviations. 

 

Table 2: Test optimization problems 

No. Function Name 𝑓(𝑥) Global Minimum 

1 Ackley 
20 (𝑒

−0.2 √
1
𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − (𝑒

1
𝑑
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑑
𝑖=1 ) + 20 + 𝑒, 𝑥𝑖

∈ [−33, 33] 

𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

2 Bohachevsky 
𝑥1
2 + 2𝑥2

2 − 0.3 𝑐𝑜𝑠(31𝜋𝑥1) − 0.4 𝑐𝑜𝑠(31𝜋𝑥2) + 0.7,
𝑥𝑖 ∈ [−100, 100] 

𝑓(𝑥∗) = 0, 𝑥∗

= (0, 0) 

3 Booth (𝑥1 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2, 𝑥𝑖 ∈ [−10, 10] 
𝑓(𝑥∗) = 0, 𝑥∗

= (1, 3) 

4 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|, 𝑥𝑖 ∈ [−15, 3] 

𝑓(𝑥∗) = 0, 𝑥∗

= (−10, 0) 

5 Cross-in-Tray −0.0001(|𝑠𝑖𝑛(𝑥1) 𝑠𝑖𝑛(𝑥2)𝑒
|100 − 

√𝑥1
2+𝑥2

2

𝜋
|
| + 1)

0.1

,

𝑥𝑖 ∈ [−15,15] 

𝑓(𝑥∗)
= −2.06261, 𝑥∗

= (1.3491,−1.3491) 

6 Drop Wave −
1 + 𝑐𝑜𝑠 (12√𝑥1

2 + 𝑥2
2)

0.5(𝑥1
2 + 𝑥2

2) + 2
, 𝑥𝑖 ∈ [−5.12, 5.12] 

𝑓(𝑥∗) = −1.5, 𝑥∗

= (0,0) 

https://www.sfu.ca/~s
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No. Function Name 𝑓(𝑥) Global Minimum 

7 Discus 106𝑥1
2 +∑𝑥𝑖

2

𝐷

𝑖=2

, 𝑥𝑖 ∈ [0, 100] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

8 Easom −𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒
(−(𝑥1−𝜋)

2−(𝑥2−𝜋)
2) , 𝑥𝑖 ∈ [−100, 100] 

𝑓(𝑥∗) = −1, 𝑥∗

= (𝜋, 𝜋) 

9 Eggholder 

−(𝑥2 + 47) 𝑠𝑖𝑛 (√|𝑥2 +
𝑥1
2
+ 47|)

− 𝑥1 𝑠𝑖𝑛 (√|𝑥1 − (𝑥2 + 47)|) , 𝑥

∈ [−500, 500] 

𝑓(𝑥∗)
= −959.6407, 𝑥∗

= (512, 404.2319) 

10 Griewank ∑
𝑥𝑖
2

4000
−∏𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

, 𝑥 ∈ [−600, 600] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

11 Holder Table −|𝑠𝑖𝑛(𝑥1) 𝑐𝑜𝑠(𝑥2)𝑒
(|1−

√𝑥1
2+𝑥2

2

𝜋
|)
| , 𝑥𝑖 ∈ [−10, 10] 

𝑓(𝑥∗)
= −19.2085, 𝑥∗

= (8.05502,−9.66459) 

12 Michalewicz −∑𝑠𝑖𝑛(𝑥𝑖) 𝑠𝑖𝑛
20 (

𝑖𝑥𝑖
2

𝜋
)

𝑑

𝑖=1

, 𝑥 ∈ [0, 𝜋] 
𝑓(𝑥∗)
= −1.8013, 𝑥∗

= (2.20,1.57) 

13 Modified Schwefel 

418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

, 𝑧𝑖

= 𝑥𝑖 + 4.209687462275036𝑒 + 002, 𝑥𝑖
∈ [−500, 500] 

𝑔(𝑧𝑖)

=

{
 
 

 
 𝑧𝑖 𝑠𝑖𝑛 (|𝑧|

1
2) , 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)) 𝑠𝑖𝑛 (√500 − |𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

1000𝐷
, 𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500) 𝑠𝑖𝑛 (√|𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500|) −
(𝑧𝑖 + 500)

1000𝐷
, 𝑖𝑓 𝑧𝑖 < −500

  

𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0] 

14 Rastrigin 10𝑑 + ∑[𝑥2 − 10 𝑐𝑜𝑠(2𝜋 𝑥𝑖)]

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−5, 5] 
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0] 

15 Rosenbrock ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑑−1

𝑖=1

, 𝑥𝑖 ∈ [−5, 10] 
𝑓(𝑥∗) = 0, 𝑥∗

= (1,… , 1) 

16 Schwefel 418.9829𝑑 −∑𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−500, 500] 
𝑓(𝑥∗) = 0, 𝑥∗

= (420.9687,… , 420.9687) 
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No. Function Name 𝑓(𝑥) Global Minimum 

17 six-hump 
(4 − 2.1𝑥1

2 +
𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2,

𝑥𝑖 ∈ [−3, 3] 

𝑓(𝑥∗)
= −1.0316, 𝑥∗

= (0.0898,−0.7126) 

18 Sphere ∑𝑥𝑖
2

𝑛

𝑖=1

, 𝑥𝑖 ∈ [−5, 5] 
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0] 

19 Zakharov ∑𝑥𝑖
2

𝑑

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

2

+(∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

4

, 𝑥𝑖 ∈ [−5, 10] 
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0) 

Table 3: The comparative results of the modified EPO with the classical EPO and PSO in 19 test optimization 

problems 

Functions EPO mean EPO Classical mean PSO mean EPO std EPO Classical std PSO std 

Ackley 3.30 7.71 9.64 0.62 1.14 2.43 

Bohachevsky 0.22 0.23 0.01 0.20 0.21 0.02 

Booth 0.00 0.00 0.00 0.00 0.00 0.00 

Bukin 0.89 1.62 0.29 0.44 0.57 0.22 

Cross-in-Tray -2.06 -2.06 -2.06 0.00 0.00 0.00 

Drop Wave -1.00 -0.97 -0.99 0.00 0.03 0.03 

Discus 101.99 313.97 424.81 22.33 75.34 38.10 

Easom -0.98 -0.59 -1.00 0.00 0.30 0.00 

Eggholder -942.86 -933.63 -915.82 10.38 17.30 35.44 

Griewank 1.48 35.68 6.07 0.24 15.66 1.96 

Holder Table -19.21 -19.18 -19.21 0.00 0.01 0.01 

Michalewicz -8.29 -5.92 -5.12 0.22 0.52 0.65 

Modified 

Schwefel 
73.83 1574.72 1135.02 24.10 64.48 71.17 

Rastrigin 6.59 25.61 40.20 2.68 7.23 9.12 

Rosenbrock 11.81 49.92 2811.51 1.75 27.63 2926.26 

Schwefel 263.11 1953.86 2114.75 142.06 109.59 338.20 

six-hump -1.03 -1.03 -1.03 0.00 0.00 0.00 

Sphere 0.01 0.01 1.70 0.00 0.00 0.79 

Zakharov 2.58 11.62 50.02 1.27 6.37 24.62 
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Figure 1: The plots of the first 10 optimization functions
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Figure 2: The plots of the 11 to 19 optimization functions 

6 Modified EPO for solving FCTP 
To adapt EPO for solving FCTP, a priority rule that uses a 

weighted vector is developed in this paper. The length of 

the weighted vector equals the ordered product which 

consists of the set of all ordered pairs of supplies and 

demands. The transshipment problem involves transient 

nodes that can be considered for both supplies and 

demands simultaneously. Hence, the number of supply 

nodes (𝑆𝑁) is equal to the sum of the number of supplies 

and the number of transient nodes, while the number of 

demand nodes (𝐷𝑁) is equal to the sum of the number of  

 

demands and the number of transient nodes. So, the 

number of ordered pairs in our case herein can be 

calculated using equation (16): 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 = 𝑆𝑁 × 𝐷𝑁 (16) 
 

Each ordered pair consists of two components. The 

first component is the supply node number, and the second 

component is the demand node number. By arranging 

these ordered pairs and solving the problem according to 

this arrangement, a heuristic solution can be obtained. As 

aforementioned, a proposed weighted vector is used to 
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generate a priority rule for these ordered pairs, where each 

ordered pair has an associated weight, and the highest 

weighted ordered pair will be assigned first. Table 4 shows 

an example of the ordered product for a problem where the 

number of supplies equals three and the number of 

demands equals four. 

 

Table 4: An example of an ordered pair for a problem of 

three supplies and four demands 

Supplies Demands Ordered Pairs 

1 1 (1,1) 

1 2 (1,2) 

1 3 (1,3) 

1 4 (1,4) 

2 1 (2,1) 

2 2 (2,2) 

2 3 (2,3) 

2 4 (2,4) 

3 1 (3,1) 

3 2 (3,2) 

3 3 (3,3) 

3 4 (3,4) 

 

In the heuristic procedure, the arrangement of ordered 

pairs is to be arranged according to the weighted vector, 

which can be initially generated randomly for each 

ordered pair. For illustration, Table 5 shows an example 

of arranging these ordered pairs according to a weighted 

vector. 

 

Table 5: An example of using the weighted vector to 

rearrange the problem’s ordered pairs. 

Ordered Pairs Weights 

(3,3) 0.99 

(2,3) 0.90 

(1,1) 0.83 

(1,3) 0.71 

(3,2) 0.44 

(1,2) 0.43 

(3,1) 0.43 

(2,1) 0.37 

(3,4) 0.10 

(2,2) 0.05 

(2,4) 0.05 

(1,4) 0.00 

 

The proposed heuristic procedure of the algorithm can 

be implemented using the arranged ordered pairs, where it 

considers assigning the quantities of the problem 

according to the arrangement found by the weighted 

vector. The heuristic procedure now can be illustrated 

using the following pseudo code: 

 

𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑
=  𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑔𝑛𝑒𝑑 𝑜𝑟𝑑𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡  
𝑡𝑜 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟  

𝑆𝑒𝑡 𝑆 = {𝑠𝑖|𝑖 ∈ 𝐼} 𝑎𝑛𝑑 𝐷 = {𝑑𝑗|𝑗 ∈ 𝐽} 

𝐶𝑟𝑒𝑎𝑡𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑦 𝑧𝑒𝑟𝑜𝑠 𝑤𝑖𝑡ℎ  
𝑆𝑁 𝑟𝑜𝑤𝑠 𝑎𝑛𝑑 𝐷𝑁 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 
𝐼𝑛𝑑𝑒𝑥 = 0 

𝑊ℎ𝑖𝑙𝑒 𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑  𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝑑𝑜: 

 (𝑎, 𝑏) = 𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑[𝐼𝑛𝑑𝑒𝑥]  

 𝐼𝑓 𝑠𝑎 = 𝑑𝑏 𝑡ℎ𝑒𝑛: 
  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑎, 𝑏) = 𝑠𝑎  

  𝑠𝑎 = 0 

  𝑑𝑏 = 0 

  
𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑
= {(𝑖, 𝑗)|𝑖 ∈ 𝐼 𝑎𝑛𝑑 𝑖 ≠ 𝑎, 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑗 ≠ 𝑏} 

 𝐸𝑛𝑑 𝑖𝑓 

 𝐼𝑓 𝑠𝑎 < 𝑑𝑏 𝑡ℎ𝑒𝑛: 
  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑎, 𝑏) = 𝑠𝑎  

  𝑑𝑏 = 𝑑𝑏 − 𝑠𝑎 

  𝑠𝑎 = 0 

  𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 = {(𝑖, 𝑗)|𝑖 ∈ 𝐼 𝑎𝑛𝑑 𝑖 ≠ 𝑎, 𝑗 ∈ 𝐽} 

 𝐸𝑛𝑑 𝑖𝑓 

 𝐼𝑓 𝑠𝑎 > 𝑑𝑏 𝑡ℎ𝑒𝑛: 
  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑎, 𝑏) = 𝑑𝑏  

  𝑠𝑎 = 𝑠𝑎 − 𝑑𝑏 

  𝑑𝑏 = 0 

  𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 = {(𝑖, 𝑗)|𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑗 ≠ 𝑏} 

 𝐸𝑛𝑑 𝑖𝑓 

𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥  
 

The proposed modified Penguin Algorithm can now 

solve the problem by utilizing the previously mentioned 

heuristic procedure and a weighted vector. These 

weighted vectors represent the positions of the penguins. 

By modifying the weighted vector, new solutions can be 

obtained using the heuristic procedure. The heuristic 

procedure can now serve as the optimization function that 

needs to be optimized, with the weighted vectors 

representing the positions of the penguins. 

6.1 Computational complexity 

The algorithm initializes with a number of priority vectors 

equal to 𝑁 solutions with 𝑑 dimensions. So, the 

initialization process requires 𝑂(𝑁 × 𝑑). The heuristic 

procedure step count is less than 𝑑, since not all of the 

ordered pairs are selected in the heuristic procedure. Thus, 

the heuristic procedure requires 𝑂(𝑁 × 𝑑 ×𝑀𝑎𝑥𝐼𝑡𝑟), 
hence it will repeat until the maximum number of 

iterations is reached. The step count of the rest of the 

functions required for calculating new positions in the 

EPO equals 𝑁 with 𝑘 formulas. So, it this requires 

𝑂(𝑁 × 𝑘). The total time complexity required for the 

algorithm is 𝑂(𝑁 × 𝑑 ×𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑘) and the space 

complexity is 𝑂(𝑁 × 𝑑), since the algorithm only works 
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with population that initialized by 𝑁 solutions with 𝑑 

dimensions. 

6.2 Experimental design 

In order to obtain the optimal settings of the algorithm, an 

experimental design is done on both the hybrid EPO and 

PSO algorithms for solving the fixed charged 

transshipment problem. The code of the hybrid algorithms 

and the other codes related to the problem are coded using 

python and can be found in https://github.com 

/MZakaraia/EPO_Transshipment/. The selected problems 

for experimental design are generated using the generate 

problem’s function found in previously mentioned GitHub 

repository. The modified EPO algorithm has 3 parameters, 

which are 𝑀𝑎𝑥𝐼𝑡𝑟, the population size (𝑃𝑜𝑝𝑆𝑖𝑧𝑒), and 

𝑅𝑎𝑑𝑖𝑢𝑠. For each parameter, 4 levels are chosen as shown 

in Table 6. 

The full factorial design requires 43 × 5 = 320 trails 

for 5 replicates. This number of experiments can be 

reduced using Taguchi’s orthogonal arrays. In order to 

select the convenient orthogonal array, the degrees of 

freedom should be calculated. So, the degree of freedom 

for such experiment is 1 of the overall mean and 3 for each 

parameter, which means the total degrees of freedom 

herein is 10. The most convenient orthogonal array for this 

experiment is 𝐿16(4
3). The 16 runs of the experimental 

design are implemented each 5 times to calculate the 

signal to noise ratio (𝑆𝑁𝑅) using equation (17) after 

normalizing the outputs. Figure 3shows the optimized 

parameter levels for each parameter, which is 20 

iterations, 20 penguins, and the radius should be equal 2. 

 

Table 6: Parameter levels for the modified EPO 

algorithm 

𝑀𝑎𝑥𝐼𝑡𝑟 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 𝑅𝑎𝑑𝑖𝑢𝑠 

20 20 0 

50 50 -1 

70 70 1 

100 100 2 

 

  

 
Figure 3: The main effect plots of signal to ratio of EPO 

 

𝑆𝑁𝑅 = 10 log (
𝜇2

𝜎2
) 

(17) 

 

For the hybridized PSO algorithm, there are 5 

parameters, which are 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, Inertia weight, 

personal weight, and the global weight. The proposed 

levels for each parameter are found in Table 7. 

 

Table 7: Parameter levels for the PSO algorithm 

𝑀𝑎𝑥𝐼𝑡𝑟 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 
Inertia 
weight 

personal 
weight 

global 
weight 

20 20 0.1 0.1 0.1 
50 50 0.3 0.3 0.3 
70 70 0.5 0.5 0.5 

100 100 0.6 0.6 0.6 
 

 

 

 

The required number of trails for the full factorial 

design for the hybrid PSO according to the levels in Table 

7 is 45 × 5 = 5120 trails. The Taguchi’s orthogonal 

arrays again can be used to reduce this number using the 

𝐿16(4
5), where the number of trails is 80 trails for 5 

replicates. Figure 4 shows the optimized parameter levels 

for the hybrid PSO algorithm, which are 20 iterations, 20 

particles, 0.1 for the inertia weight, 0.6 for personal 

weight, and 0.6 for global weight. The optimized 

parameter levels are to be used in the computational 

results section to show the comparative results between 

the EPO and PSO algorithms. 

 

 
Figure 4: The main effect plots of signal to ratio of PSO 

https://github.com/
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6.3 Computational results 

This section presents the implementation of the modified 

EPO algorithm for solving 30 generated problems, which 

can be found at https://github.com/MZakaraia/EPO_T 

transshipment. The problem sizes cover three different 

forms of transshipment problem sizes: 3 × 3 × 2, 4 × 4 ×
3, and 5 × 5 × 4. All these problems are generated using 

the generate problems function in the Transshipment.py 

file. This function allows for generating more fixed-

charge transshipment problems with different sizes. 

Therefore, the included problems are considered 

benchmarks for future comparisons. 

 

 

 

Both the EPO and PSO algorithms were implemented 

to solve the 30 problems using the optimized parameter 

levels found through the experimental design. The 

convergence curves for the problems are shown in Figure 

5, 6, and 7. Table 8 presents the comparative results. The 

Wilcoxon test [18] was performed on selected metrics 

(mean, standard deviation, maximum, minimum) between 

the EPO and PSO results. The p-value for each metric 

indicates rejection of the null hypothesis since the p-value 

for means is 1.89 × 10−9 and for standard deviations is 

0.00046. Therefore, the comparative results in Table 8 

conclude that the proposed EPO algorithm outperforms 

the PSO algorithm in terms of mean results and robustness 

for solving fixed-charge transshipment problems. 

 

Table 8: The comparative results of the 30 fixed charged transshipment problems between the modified EPO and PSO 

Problem 
EPO 

Mean 

PSO 

Mean 
EPO Std PSO Std 

EPO 

Max 

PSO 

Max 

EPO 

Min 

PSO 

Min 

3X3X2_0 41797 42206.3 92.29084462 508.4504007 42031 43136 41719 41719 

3X3X2_1 40680.5 41229.8 267.1895395 567.3982376 41237 42530 40547 40547 

3X3X2_2 33693.5 34348.6 88.86534758 572.6377913 33960 35163 33663 33663 

3X3X2_3 29758.4 30133 144.9497844 424.4848643 30117 30874 29688 29688 

3X3X2_4 42124.7 42336.3 153.5689096 240.9514681 42445 42713 42030 42030 

3X3X2_5 37551 37904.9 184.3805847 383.2465134 37908 38456 37432 37432 

3X3X2_6 38157 38436.7 23.37947818 247.5019394 38198 38968 38142 38180 

3X3X2_7 33565 34001.8 0 411.3178333 33565 34920 33565 33565 

3X3X2_8 30994 31619.5 0 645.4463959 30994 32779 30994 30994 

3X3X2_9 31027.1 31353.8 102.3 298.0412052 31334 31873 30993 30993 

4X4X3_0 47553.3 49048.4 632.032602 1151.657953 49443 50903 47324 47324 

4X4X3_1 58361.5 59400.7 128.9234269 351.1797403 58663 60087 58217 58880 

4X4X3_2 60169.8 60771.1 813.7788152 594.8965372 61489 61697 59351 59667 

4X4X3_3 71064.5 72923.7 1106.743895 620.5789313 73668 73803 70269 71847 

4X4X3_4 65386 67792.3 762 1303.083961 67672 71176 65132 65740 

4X4X3_5 64932.1 65240.9 945.1474435 811.3807306 66407 67011 63926 64370 

4X4X3_6 56582.9 57742.8 95.05519449 869.7954702 56853 59901 56538 56634 

4X4X3_7 64673.8 65989.4 242.1808415 599.2033378 65260 66880 64432 65080 

4X4X3_8 64801.4 66226.3 598.4196187 632.1170857 66091 67494 64249 65245 

4X4X3_9 64173.9 65578 452.4350672 450.8871256 65236 66499 63846 64718 

5X5X4_0 99127 101002 525.5029971 1238.38217 99858 103173 98290 98948 

5X5X4_1 103558.6 105635.4 971.9633944 1316.379824 105953 107749 102571 104127 

5X5X4_2 118153.9 120260 500.3739502 1535.788136 119108 123992 117548 118137 

5X5X4_3 100174.3 103129.5 222.7321486 1607.177977 100741 107405 99905 100916 

5X5X4_4 105533.9 107772.6 563.3280483 1053.34811 106665 110543 104657 106575 

5X5X4_5 101425.3 103906.4 165.7950844 1003.615285 101794 105193 101214 102351 

5X5X4_6 97936.6 100878.4 1137.296901 2000.878567 100376 104848 96986 97753 

5X5X4_7 106153.2 107832.2 1274.031224 757.3083652 108707 108989 105099 106449 

5X5X4_8 86597.7 87972.9 1604.486089 1036.310229 89020 89773 84759 86412 

5X5X4_9 92603.3 94816.2 307.2627703 1282.450217 93358 97327 92113 92515 

https://github.com/MZakaraia/EPO_T
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Figure 5: The convergence curve of the 3 × 3 × 2 problems 

 

 
Figure 6: The convergence curve of the 4 × 4 × 3 problems 

 



92 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al. 

 
Figure 7: The convergence curve of the 5 × 5 × 4 problems

 

7 Conclusion 
In conclusion, this paper introduced a modified 

Emperor Penguin algorithm tailored for solving FCTP. 

The algorithm demonstrated its effectiveness in finding 

high-quality solutions by utilizing new benchmarks 

specifically designed for the problem. The computational 

results presented in this study provide valuable insights 

into the algorithm's performance. The mean results 

showcased the algorithm's ability to achieve competitive 

solutions for the FCTP, while the standard deviation and 

Relative Standard Deviation offered measures of its 

robustness. The findings of this research contribute to the 

field of logistics and supply chain management by 

offering an optimized algorithmic approach for addressing 

the FCTP. The modified Emperor Penguin algorithm, with 

its robustness and improved solution quality, holds great 

potential for enhancing supply chain operations and 

optimizing transshipment processes.  

Future research directions may involve further fine-

tuning of the modified algorithm and expanding the 

benchmark suite to encompass a wider range of real-world 

scenarios. Additionally, investigating the algorithm's 

performance on larger-scale instances and exploring its 

applicability to other related optimization problems would 

be beneficial. The future research also may include 

extending the formulations of the transshipment problem 

to cover: 

 

 

• The solid transshipment problem by including 

constraints related to the type of transportation 

and products. 

• The capacitated fixed charged transshipment by 

considering capacity constraints related to each 

transshipment node.  

In conclusion, this paper's findings highlight the 

promising capabilities of the modified Emperor Penguin 

algorithm for tackling the Fixed Charged Transshipment 

Problem, providing a valuable tool for optimizing supply 

chain operations and fostering efficiency in logistics 

management.  
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