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Cloud computing Infrastructures have been created to facilitate consumer’s access to various services
through the Internet. Massive energy consumption by data centers that hosts Cloud applications result
in high carbon footprints to the environment. Therefore, it is required to develop ways that reduce the
energy consumption. These aspects are reduced by efficiently task scheduling within the deadline respect
and providing the resources according to the user’s request. Energy usage, execution time, and SLA viola-
tions in virtualized cloud data centers are discussed in this study. For effective scheduling, the suggested
approach is predicated on job categorization and thresholds. Tasks having lengthy execution duration are
preprocessed in the first stage by being placed in different lists. The following stage involves classifying
tasks according to the resources required. Finally, Genetic Algorithm is used to select the best schedules.
To represent the dynamic nature of the cloud environment and to offer a scheduling solution that is nearly
optimum and decrease energy consumption, execution time, and SLA violation, an adaptive Genetic Algo-
rithm is developed. By the use of cloud infrastructure simulation and a series of performance and quality
assessment experiments, the suggested model is tested in this setting. Results show that the suggested
method improves performance by reducing execution time, energy usage, and SLA violations.

Povzetek: Analizirano je energetsko učinkovito načrtovanje opravil v oblaku z uporabo prilagodljivega
genetskega algoritma za zmanjšanje porabe energije, časa izvedbe in kršitev SLA. Model izboljša učinkovi-
tost z dvostopenjskim pristopom k obdelavi in optimizaciji, kar so potrdili tudi rezultati simulacij.

1 Introduction

Cloud computing has emerged as a key paradigm in the
world of computing. It contributes to the increasing ex-
pectations for availability and flexibility. Users of the In-
ternet and computers are becoming more interested in the
services proposed by the cloud computing providers due to
its impressive growth in recent years[1]. Energy consump-
tion is a crucial topic in cloud computing that has become a
significant issue. It requires appropriate solutions and sev-
eral data centers contain servers, cooling systems, switch-
ing and network components that make up the cloud com-
puting infrastructure.[2] The energy consumed by data cen-
ters has increased due to the rising demand for infrastruc-
ture that has become a serious problem. Higher expenses of
profit and CO2 emissions result from the excessive energy
used. Therefore, efficient solutions are required to reduce
the negative effects on the environment and cloud provider
profit. Every year, energy cost rises and several studies
have examined how much energy is needed by data cen-
ters and individual servers [3]. Numerous studies have been
launched on the subject of energy and power in computing
systems. The creation of virtual machine (VMs) within a
physical server is made possible by virtualization technol-
ogy that also enables to utilize resources more efficiently

while using less hardware [4]. Task scheduling and energy
efficiency are two key obstacles in resource allocation[5].
This paper presents an Energy-Aware Scheduling Model
(EASM) for task scheduling in cloud computing. The
objective of the proposed model is to reduce the energy
consumption, execution time, and SLA violation. EASM
works in two phases, i.e., pre-processing and optimization
with Adaptive Genetic Algorithm. In the first phase, tasks
with longer execution times are allocated in VMs with high
processing capabilities[6]. In the next phase, GA is used to
optimize scheduling and find better solutions. In the popu-
lar meta-heuristic method known as the genetic algorithm,
populations of potential candidate solutions, known as in-
dividuals, are developed over many generations to find the
best solution for a specific problem. With the contribution
of various genetic operations, the optimization begins with
random individuals and eventually reaches the global op-
timum [7]. The simulations’ results confirm that the sug-
gested approach is more robust and efficient in terms of en-
ergy usage, execution time, and SLA violations. The struc-
ture of this paper is as follows: We evaluate related work
in section 2. We present the proposed model that aims to
reduce energy in cloud computing in section 3. Then, we
discuss in Section 4 the performance evaluation and exper-
imentation. Finally, Section 5 concludes the paper.
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2 Related Work

For load balancing, energy efficiency, and better resource
scheduling, an effective cloud environment, (Feng, H. et
al.) [8] using a variety of optimization algorithms, includ-
ing the whale optimization algorithm (WOA), cat swarm
optimization (CSO), cuckoo search algorithm (CSA), BAT,
and particle swarm optimization (PSO) is created. The sug-
gested work employs a cost-effective solution to the load
balancing and resource scheduling issues.
(Ibrahim, H. et al.) [2] have selected two advanced

scheduling algorithms to examine the outcomes in a same
cloud computing environment and examine the approaches
that maximize energy and cost in a cloud computing envi-
ronment. The main objective of the energy-efficient strat-
egy (EES) is to spread out the maximum load over the
fewest possible virtual machines. By assigning appropri-
ate resources to the required tasks, Cost-based Scheduling
using Genetic Algorithmminimizes execution time that de-
creases user costs. The results are then studied and com-
pared to other scheduling algorithms, such as Round-Robin
(RR) and First-come- First-served (FCFS).
(Thekkepuryil, J.K.V. et al.) [9] present an Integer Lin-

ear Programming (ILP) model for cloud computing energy
optimization and an Adaptive Genetic Algorithm (GA) for
dynamic work scheduling in the cloud data center. In order
to account for the dynamic nature of the cloud environment
and to offer a near-optimal scheduling solution that reduces
energy usage, an Adaptive Genetic Algorithm (GA) is de-
veloped. By allocating incoming tasks to resources in a way
that both user needs and the energy consumption of cloud
data centers are fulfilled. This study attempts to establish a
model and an algorithm for reducing the energy consump-
tion in a cloud computing infrastructure. It concentrates on
a single Cloud data center as its environment settings.
(Medara, R. et al.)[10], authors suggest to use an energy-

aware workflow scheduling technique for cloud computing
with VM consolidation. The suggested EASVMC tech-
nique is designed to achieve many objectives including re-
source usage, VM migrations, and energy consumption.
Task scheduling and VM consolidation are the two stages
of the EASVMC algorithm’s operation (VMC). The virtual
machine that will consume the least amount of energy dur-
ing the first phase is assigned to the task with the longest
possible execution time. The second phase includes a well-
known NP-hard issue, namely VM consolidation. Based on
CPU utilization, the VMC phase divides the physical hosts
into hosts with a regular load, under-loaded hosts, and over-
loaded hosts. Therefore, double threshold values are em-
ployed. Migration of virtual machines from overloaded and
underloaded hosts to normally loaded hosts. Authors used
the Water Wave Optimization (WWO) algorithm, a nature-
inspired meta-heuristic approach, for the VMC phase. This
algorithm finds an appropriate migration plan to reduce en-
ergy consumption by increasing overall resource utilization
and switching off idle hosts after migrating their VMs to an
appropriate target host. They evaluated the effectiveness of

this algorithm in comparison to three well-known methods:
HEFT, EES, and PESVMC. The simulation results demon-
strated that the EASVMC algorithms surpass the other three
techniques in terms of overall performance.
To overcome the drawbacks of task consolidation and

scheduling, (Panda ,S.K. et al.) [11] proposed an energy-
efficient task scheduling algorithm (ETSA). The proposed
algorithm uses a normalization process to determine when
to schedule tasks while taking into consideration their com-
pletion times and resource use overall. The energy efficient
task-scheduling algorithm that is presented for reducing en-
ergy consumption and execution time is the foundation of
this study. For heterogeneous cloud computing systems,
the authors created an online energy-efficient work schedul-
ing system. The proposed system can be used for cloud,
application, energy, and scheduling models. In order to de-
cide on scheduling, the method computes the completion
time and overall resource usage of a job on the resources.
(Rajkumar Choudhary et al.) [12] suggested a new ap-

proach based on multi-objective optimization. For compli-
cated VM scheduling solutions, they calculate the amount
of energy used, the CPU usage, and the number of instruc-
tions performed in each scheduling period. Multi-objective
PSO (particle swarm optimization) optimization can lead
to better and more efficient results for various parameters
than multi-objective GA (genetic algorithm) optimization
in terms of energy efficiency and execution time reduction.
(Shaimaa Badr et al.) [13] focused on the issue of power

consumption and proposes a powerful method called Task
Consolidation based PowerMinimization (TCPM). It effec-
tively allocates jobs to the cloud environment’s available re-
sources in order to reduce power consumption. The best-fit
approach is employed to achieve the optimum resource us-
age and prevent energy waste in the proposed TCPM algo-
rithm that improves and incorporates various advantages of
the current algorithms. The results of the proposed TCPM
algorithm are compared with FCFS, WWO, and MCT al-
gorithms using the CloudSim toolkit.
(Nimra Malik et al.) [6] suggested a method for effec-

tive scheduling and improved resource usage based on task
categorization and thresholds. Workflow tasks are prepro-
cessed in the first stage to prevent bottlenecks by separating
tasks with high dependencies and lengthy execution dura-
tions. The following phase is classifying tasks according to
the intensity of the resources needed. To choose the op-
timum schedules, Particle Swarm Optimization (PSO) is
employed. To verify the suggested approach, experiments
were done. Comparative results from benchmark datasets
are given. The findings demonstrate how the suggested al-
gorithm performs better than the other algorithms in terms
of energy usage, execution time, and load balancing.
(Sasan Gharehpasha et al.) [14] developed a novel

method for optimum placement of virtual machines utiliz-
ing a combination of the Sine-Cosine and Salp Swarm al-
gorithms as discrete multi-objective and chaotic functions.
The initial objective of the suggested method was to de-
crease the amount of electricity used in cloud data centers



Energy-Aware Scheduling of Tasks in Cloud Computing Informatica 48 (2024) 125–136 127

by reducing the quantity of physically active devices. The
second objective was to decrease resource waste and con-
trol it by strategically placing virtual machines on actual
equipment in cloud data centers. The third goal was to keep
Service Level Agreement amongst the active physical com-
puters in cloud data centers to a minimum. By using the
suggested approach, the migration of virtual machines onto
real equipment is prevented from growing. In the end, the
suggested algorithm’s results were compared with the re-
sults of First Fit, Modified Best Fit Decreasing, and Virtual
Machine Placement Ant Colony System.
In [15], in order to schedule the workflow tasks to the

VMs and dynamically deploy/undeploy the VMs in accor-
dance with the workflow task’s needs, an energy and re-
source efficient workflow scheduling algorithm (ERES) is
presented. To determine the EC of the servers, an energy
model is offered. It uses a double threshold strategy to de-
termine if the server is overloaded, underloaded, or oper-
ating normally. Live VM migration is used to balance the
load on the overloaded/underloaded servers. Live VM mi-
gration strategy is used. Extensive simulation tests are run
to evaluate the efficacy of the suggested approach. On the
basis of RU, energy efficiency, and task execution time, the
suggested approach is compared to the PESVMC (power
efficient scheduling and VM consolidation) algorithm. Ad-
ditionally, the results are validated in a genuine cloud envi-
ronment. The outcomes show how successful the suggested
ERES algorithm is.
(Shishidoa,H.,Y. et al.) [3] investigated the effectiveness

of using meta-heuristic techniques for scheduling cloud
processes. The purpose of this study was to evaluate the ef-
fects of GA and PSO augmentation on workflow schedul-
ing optimization. To assess the competency of the meta-
heuristic technique, a cost-aware workflow scheduling is-
sue was used. PSO, GA, and Multi Population GA meta-
heuristics were also used in the experiments. The evalua-
tion of meta-heuristic algorithms was based on the objec-
tives of cost minimization and time for response. These
algorithms produced more effective schedules that reduce
costs in a reasonable amount of time.
The proposal of [16] presents a multi-objective optimiza-

tion method for cloudlet computing that makes use of the
non-dominated sorting idea. The objectives taken into con-
sideration include delay, user energy consumption, cloudlet
energy consumption, and cost, which are determined by the
number of cloudlets. Non-dominated sorting genetic algo-
rithms (NSGA-III and NSGA-II) are employed to be com-
pared to this proposed work.
In [17], authors offer a task scheduling heuristic for het-

erogeneous cloud systems that saves energy. It performs by
choosing the best physical host with virtual machines while
taking into account the utilization of any incoming tasks
on that specific virtual machine. They demonstrate the su-
periority of the proposed heuristic in energy-efficient task
scheduling in heterogeneous cloud settings by comparing
its energy efficiency with other previous methods, includ-
ing ECTC, MaxUtil, Random, and FCFS, on both synthetic

and benchmark datasets.
The authors in [18] provide a new hybrid method for ef-

fective virtual machine placement that combines the Sine
CosineAlgorithm (SCA)with theAnt ColonyOptimization
(ACO) algorithm. The results obtained by the ACO algo-
rithm have been examined using SCA, an advancing search
method that makes use of the Sine and Cosine functions in
the engineering domain.The ACOmethod has been utilized
to exploit the search space’s solutions for effective virtual
machine placement, hence facilitating power management
and reducing resource wastage.
The table 1 illustrates a summary that compares the re-

viewed approaches in terms of key performance metrics,
such as energy efficiency, execution time, and SLA viola-
tion rates.

3 The proposed model
In this section, discussion of the system model and energy
model is followed by the details of each phase.

3.1 System Model
Scheduling is the process of allocating a number of tasks
to a number of resources (virtual machines). In the cloud
data centers, there are two levels of scheduling: (i) series
of rules for deploying VMs at the server level and (ii) rules
for assigning tasks to VMs. The main focus of this paper is
VM-level task scheduling techniques. The scheduling ap-
proach is a strategy for selecting which resources to use to
execute tasks in order to shorten execution times and con-
serve energy.
Consider the Cloud Data Center (CDC) consists of N

physical machines (PM). It can be represented in Eq. (1):

CDC = {PM1, PM2, ..., PMN} (1)

where PMi (i=1,…,N) denotes the PMs presented in the
CDC.The features of PMi are defined in Eq. (2):

PMi = {Ci, Size_PMi, RAM_PMi,

Bandwidth_PMi, #Core_PMi} (2)

Consider the physical machine consists of M virtual ma-
chines (VMs) It can be represented as in Eq. (3):

PMij = {VMi1, V Mi2, ..., V MiM} (3)

where (j=1,….,M) M is the number of virtual machines
obtained from PMi. The features of VM are defined in
Eq. (4):

VMij = {cij , Size_VMij , RAM_VMij ,

Bandwidth_vmij , #Coreij} (4)
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Year Approche Energy consumption Execution time SLA violation
2021 Feng, H. et al.[8] Yes Yes No
2018 Ibrahim, H. et al.[2] Yes Yes No
2021 Thekkepuryil, J.K.V. et al.[9] Yes Yes Yes
2021 Medara, R. et al.[10] Yes Yes No
2019 Panda, S.K.[11] Yes Yes No
2022 Rajkumar Choudhary et al. [12] Yes Yes No
2022 Shaimaa Badr et al.[13] Yes Yes Yes
2021 Nimra Malik et al.[6] Yes Yes No
2021 Sasan Gharehpasha et al. [14] Yes No Yes
2021 Neha Garg et al.[15] Yes Yes Yes
2018 Shishido, H., Y. et al.[3] No Yes Yes
2023 Ali Salah Alasady et al.[16] Yes No Yes
2021 Mahendra Kumar Gourisaria et al.[17] Yes Yes No
2024 C.Vijaya et al. [18] Yes Yes Yes

Table 1: summary table

The tasks submitted by the users can be represented as in
Eq. (5):

Tasks = Tasks_D ∪ Tasks_O (5)

Where Tasks_D is set of tasks submitted by users with the
consideration of deadline constraints. Tasks_O is set of
tasks submitted by users without the consideration of dead-
line constraints.

Tasks_Dkd = {TD1, TD2, ..., TDP } (6)

where P is the number of tasks submitted with the consid-
eration of deadline constraints.

Tasks_Oko = {TO1, TO2, ..., TOL} (7)

where L is the number of tasks submitted without consid-
eration deadline constraints. The features of Tasks_D and
Tasks_O are defined in Eq. (8) and (9):

TDkd = {lengthkd, F ileSizekd, Deadlinekd} (8)

TOko = {lengthko, F ileSizeko} (9)

3.2 Energy Model
The processing capacity cij of a resource VMij is com-
puted with the MIPS of each VM. The capacity of M VMs
is calculated with Eq. (10)[6].

Ci =

M∑
j=1

cij (10)

In cloud computing, resource use has a major effect on how
much energy is used. The utilization can be calculated with
Eq. (11)[6].

ui =

M∑
j=1

cij

Ci
(11)

Where M is the number of VMs running on PMi, and cij
refers to the computing allocated to VMij . In Eq. (11), Ci

is the total processing capacity of the PMij . This research
examines CPU use that determines how much electricity
physical devices consume. About 70% of the power of a
physically active machine is used when it is inactive. So,
using Eq. (12), the power consumption (u) as CPU utiliza-
tion is defined as: [19]

P (u)i = Pmax(0, 7 + 0, 3×ui) (12)

where ui is the current CPU usage and Pmax is the
maximum power of a physical system operating at 100%
CPU utilization. CPU usage is defined as a function
u(t) of time since it varies over time. As a result, Eq.
(13) establishes a physical machine’s (PMi) total energy
consumption: [19]

Ei =

∫
f(u(t)) dt (13)

3.3 Scheduling model
Themain objective of the suggested approach is to decrease
the amount of energy used, the execution time, and SLA
violations of the cloud resources while taking diverse users
priorities into account and optimizing the energy and ex-
ecution time under the deadlines constraints. This paper
proposes a tasks scheduling model in cloud computing that
treats two sets of tasks. The first set of tasks takes priority
since the users require the deadline unlike the second set of
tasks. The respect of deadline of first set will involve more
energy consumption compared to the energy consumption
of the second set. Two possible scenarios are distinguished,
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Symbol Description
CDC Cloud Data Center.
PMi Physical machine. i = (1,…,N)
N Number of physical machines in the cloud environment
Size_PMi The size of PMi.
RAM_PMi The RAM of PMi.
Bandwidth_PMi The Bandwidth of PMi.

#Core_PMi Number of cores in PMi.
VMij Virtual machine. j=(1,…,M)
M The number of virtual machines in the cloud environment.
Size_VMij The size of VMij .
RAM_VMij The RAM of VMij .
Bandwidth_VMij The Bandwidth of VMij .
#Core_VMij Number of cores in VMij .
Tasksk The tasks submitted by the users in DCD. k=(1,…,Ntsk)
Ntsk The number of tasks submitted in the cloud environment, where Ntsk = L+P.
Tasks_Dkd Set of tasks with deadline constraints. Kd=(1,…,P)
P The number of deadlined tasks submitted in the cloud environment.
Tasks_Oko Set of tasks without deadline constraints. Ko=(1,…,L)
L The number of no_deadlined tasks submitted in the cloud environment.
Tdkd Deadlined Task.
TOko No-deadlined task.
Lengthkd The length of deadlined task.
FileSizekd The size of deadlined task.
Deadlinekd Time till which the tasks should be finished.
Lengthko The length of no-deadlined task.
FileSizeko The size of no-deadlined task.
Ci The total processing capacity of PMi.
cj The processing capacity of VMij .
ui The current CPU utilization of PMi.
Pi The power of PMi.
Pmax The maximum power of a physical machine.
Ei The total energy consumption PMi.
ECTk The required execution time of task on VMij .
%SLAviolationi The percentage of tasks that have exceeded their deadlines in PMi.

Table 2: Symbols used in the proposed method.
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one for deadlined tasks and the other for no-deadlined ones.
In these two cases, two phases are applied. In the first
phase, thresholds are used for the tasks length. Tasks with
longer execution times are allocated in VMs with high pro-
cessing capabilities. Once the energy consumption reaches
a threshold, the second phasewill be launch. The genetic al-
gorithm is a global scheduler that allocates incoming cloud
tasks to suitable VMs. These two phases are used to reduce
the execution time applying to decrease energy consump-
tion as resources are utilized efficiently.

3.3.1 Task allocation phase

In the first phase [6], a new method that is proposed and
intended to dynamically prioritize the tasks and schedule
them to the best suitable selected resource. The tasks in
Cloud Computing require to be executed by the available
resources to achieveminimal total time for completion. The
expected completion time for the task is defined in Eq.
(14):[6]

ECTk =
Lengthk

cij
; k = 1, 2, ..., Ntsk;

i = 1, 2, 3,….., N ; j = 1, 2, 3,…..,M (14)

Where ECTk is the time needed for the kth task to execute
on the Mth virtual machine, where M is the number of VMs
and Ntsk is the number of tasks.
Lengthk is the length of a task in Million Instruction

(MI) and cij is the VMij speed Million Instructions Per
Second (MIPS).
Allocation of tasks with deadline constraint

Tasks_Dkd = {TD1, TD2, ..., TDP } (15)

Where P is the number of tasks submitted with the consid-
eration of deadline constraints. Tasks_D is the first set of
tasks requiring top priority processing compared to the sec-
ond set of tasks to avoid SLA violation. The execution time
ECT of each task should be less or equal then the deadline.

(ECTkd ≤ Deadlinekd)AND(Min(ECTkd)) (16)

Task allocation depends on the length of each task and re-
specting the deadline constraint where the proposed algo-
rithm sets a threshold for the length of the tasks and the
threshold values are applied. They are intended to priori-
tize tasks during execution. To decrease the total execution
time, the lengthier tasks need to be processed first. High
processing capacity virtual machines are assigned to these
tasks.
Allocation of tasks without deadline constraint

Tasks_Oko = {TO1, TO2, ..., TOL} (17)

where L is the number of tasks submitted without consider-
ation of deadline constraints. Tasks_O is the second set of
tasks requiring second priority processing.

Min(ECTko) (18)

Task allocation depends on the length of each task where
the proposed algorithm sets a threshold for the length of the
tasks and the threshold values are used to prioritize tasks
during execution. As a result, each task’s priority is estab-
lished according to its duration. Tasks with longer length
need to be processed with priority and VMs with high pro-
cessing capabilities are allocated to these tasks.

Algorithm 1 Task Allocation
Input: TD1_list, TO2_list, V M_list, cij ,
task_length
Output: Allocation(TK,VMij)
while TD1 <> Null do Search_execMin_deadl
(TD1.length, VM) // search high performance (VM) to the
longest tasks and respect deadline constraint

whileTO2 <> Null do search_execMin (TO2.length,
VM) //search high performance (VM) to the longest tasks.
Return Allocation (TK,VMij).

Algorithm 1 shows the steps involved in the procedure
where this one is composed of two functions:
Search_execMin_deadl: the objective of this function is to
search the available resources (VMs) for the deadline tasks
in the data center to achieve Minimal total time for comple-
tion while respecting the deadline constraint of each task.
Search_execMin: seeks to search for the available re-
sources (VMs) for the no-deadline tasks in the data Center
to achieve Minimal total time for completion.

3.3.2 Task scheduling phase

In the second phase, the proposed algorithm uses two
modified Genetic Algorithm (GA) to optimize scheduling
and find better solutions for the two sets of tasks (with
deadline and without deadline).
Encoding
In this paper, the choice is to use a direct representation;
Table 3 illustrates the encoding representation. In the
suggested example, there are two major information. The
tasks that are scheduled and the number of the VM instance
to which it is assigned are shown in table 3.[20]

Task ID T1 T2 ... Tn-1 Tn
VM ID VM1 VM3 ... VM2 VM4

Table 3: Encoding

Initial Population
The creation of an initial population of T-size solution can-
didates for evolution is the first stage in the optimization
utilizing genetic algorithms process. T-size refers to the
population size. Every population set has numerous chro-
mosomes containing genes corresponding to various tasks
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planned on distinct virtual machines.[7]. The one set of
chromosomes is presented in table 4.

Task ID T1 T2 T3 T4 T5
VM ID VM1 VM3 VM2 VM2 VM3

Table 4: Initial Population

Fitness function:
Which chromosomes to pass on to the following generation
depends critically on their level of fitness.
Fitness Function for set of tasks with deadline constraint:
The fitness value of deadlined tasks is defined in Eq. (19):

fitnessfunction01 = α

N∑
i=1

Ei+β

N∑
i=1

%SLAviolationi,

α+ β = 1 (19)

WhereEi refers to the energy consummated by thePMi.
%SLA_violation refers to the percentage of tasks that
have exceeded their deadlines in PMi.
Fitness Function for set of tasks without deadline constraint
is defined in Eq. (20):

fitnessfunction02 =

N∑
i=1

Ei (20)

where Ei refers to the energy consummated by the PMi.
Therefore, the population’s best and worst chromosomes
have the lowest and highest fitness rates, respectively.
Selection operation
Populations are ranked according to their fitness levels,
choosing the best elite chromosomes of a predefined size,
and passing them on to the following generation.
Crossover
In GAs, the crossover operator is crucial for changing the
population chromosomes. The crossover operator improve
population evolution in GAs. The operator joins several
chromosomes to form a new generation of chromosomes.
While certain characteristics are inherited from both par-
ents, others are inherited from one parent only[8]. The indi-
viduals from the previous stage are used in this study. They
go through a process called crossover where genes are ex-
changed at random crossing points. As seen in tables 5,6,7
and 8, Chosen individuals will produce two offspring fol-
lowing a crossover.

Task ID T1 T2 T3 T4 T5
VM ID VM1 VM3 VM2 VM2 VM3

Table 5: Parent 1

Task ID T1 T2 T3 T4 T5
VM ID VM3 VM2 VM1 VM3 VM2

Table 6: Parent 2

Task ID T1 T2 T3 T4 T5
VM ID VM3 VM3 VM1 VM2 VM2

Table 7: Offspring 1

Task ID T1 T2 T3 T4 T5
VM ID VM1 VM2 VM2 VM3 VM3

Table 8: Offspring 2

Mutation
By changing chromosomes, mutations are used to maintain
population variety. To create variation in the population,
many chromosomes are mutated by the mutation operator
after being combined using the combination operator. As
indicated in tables 9 and 10, a random VM has been pro-
vided to a task from the list of tasks at random.[21]

Task ID T1 T2 T3 T4 T5
VM ID VM1 VM2 VM2 VM3 VM3

Table 9: Before Mutation

Task ID T1 T2 T3 T4 T5
VM ID VM1 VM2 VM3 VM3 VM3

Table 10: After Mutation

Termination conditions
For each objective function, the individual of each gener-
ation is compared to the previous best fitness value. If the
new individual outperforms the old one, the best value is
updated[7]. The suggested method ends when all of the
chromosomes, or solutions, converge to the same degree
of fit. However,there are no further improvements to the
fitness value.[21]

4 Experimental evaluation
The experiments conducted to evaluate the suggested
energy-aware scheduler are presented in this section. The
evaluation configuration, comprising the cloud infrastruc-
ture, the scheduler algorithm, and the machine utilized to
perform the scheduling, is discussed in the initial part of
this section. The results of the scheduling for the various
situations are shown in the second section. A series of ex-
periments are completed to assess the effectiveness of the
scheduling algorithm after analyzing the impact of differ-
ent factors and algorithms on the execution time and energy
consumed.
The research presents a unique method of work schedul-

ing in cloud settings that is solely evaluated with the
CloudSim simulator and makes use of modified genetic al-
gorithms. This approach outperforms conventional heuris-
tic techniques in terms of minimizing SLA violations, re-
ducing execution time, and optimizing consumption of
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energy. The efficacy of sophisticated algorithmic tech-
niques for cloud infrastructure management is validated,
that makes a substantial contribution to the theory of dis-
tributed systems. In practical terms, the approach can save
energy costs and increase operational efficiency for cloud
data centers, however it still has to be verified in real-world
scenarios. Before a large-scale implantation, a phased ap-
proach that begins with controlled test settings is advisable.
Cloud service providers may manage varying workloads
with more efficiency and dependability by using this strat-
egy.

4.1 Simulation experiments
In order to evaluate the proposed algorithms, the proposed
solutions has been implemented using the CloudSim simu-
lator. To carry out the experiments, an Intel i3-4005U CPU
1.70 GHz and 4 GB of memory have been utilized.

4.1.1 Cloud infrastructure

In this simulation experiments, one data center was created
and contained a number of PMs. A variety of VMs types
are created in this simulation environment. The specific
parameters are listed in Table 11.
In this research, several important factors inform the

choice of simulation settings. Firstly, representativeness is
essential; the simulations are pertinent since the character-
istics selected match common data center schemes based
on previous studies. Second, to represent a wide range
of system behaviors and situations, different Physical Ma-
chines (PMs), Virtual Machines (VMs), and tasks are cho-
sen. Thirdly, the use of standard setups ensures repeatabil-
ity, making it easier to compare the results with previous
studies and increasing their validity.
This paper treats two sets of tasks. The first one takes pri-

ority since the users require the deadline unlike the second
one. The respect of the deadline will involve more energy
consumption compared to the energy consumption by the
second set.

4.1.2 Scheduler configuration

After the submission of the tasks by the users, this study
seeks to allocate the tasks with deadlines to the first. Then,
we allocate the tasks without deadline. In this phase, we
allocate each task to the fastest VM. Finally, we control the
energy levels based on an energy threshold.
Threshold for energy consumption: Once the energy
consumption reaches this threshold, we will launch the
scheduling phase based on Genetic Algorithm.
Genetic Algorithm: Initialization and looping algorithms
were divided into two categories. The optimal solution was
identified by evaluating the fitness values after a random
viable solution had been created during the initialization
procedure. Subsequently, the looping segments confirmed
if a certain terminal condition was satisfied. The muta-
tion, crossover, and selection processes were used in order

throughout the continuous loop. In the end, the process of
iteration produced the optimum solution. [7][20]
A sensitivity study is conducted to evaluate the model’s

resilience under various conditions. This included ana-
lyzing workload intensity variations to comprehend how
varying demand levels affected system performance. Also,
modifications were examined to the VM and PM setups
to determine how resource allocation influenced results.
Additionally, a variety of resource management strategies
were evaluated, focusing on how different work allocation
techniques affected system performance. This thorough ex-
amination strengthened the model’s validity and resilience,
guaranteeing its dependability in a variety of situations.

4.1.3 Experimental results

The algorithms were evaluated in terms of execution time,
energy consumption, and SLA violation. To confirm the
effectiveness of the approaches over the ones already in use,
an extensive statistical studies were conducted, including
comparison tests. A statistically meaningful improvement
is shown from the results.
In the simulation experiments, we compare the proposal

with:
Naïve Genetic Algorithm (NGA): in this experiment, we
allocate user tasks by FCFS technique and we use GA after
reaching the energy threshold without difference between
deadline and no-deadline tasks.
Round-Robin: we allocate deadline tasks by Round-Robin
technique and the no-deadlined tasks with the FCFS
technique. The proposal treats two priorities of two types
of tasks that are deadlined and no-deadline tasks. The
deadline tasks take the first priority to involve violations.
In these two cases of tasks, two thresholds are proposed,
one for tasks length and the other for energy consumed.
Tasks with length longer than first threshold are allocated
in VMs with high processing capabilities. Once the energy
consumption reaches the second threshold, we will launch
the genetic algorithm.
Execution time
First, we evaluated the performance of our algorithm by
varying the number of tasks from 50 to 600.
Experiment 1: We changed the number of tasks as indi-
cated in Fig. 1 and measured the performance efficiency
using a fixed number of virtual machines (VMs) of 30.

Experiment 2:
As seen in Fig. 2, we set a limit of 30 tasks and a range

of 10 to 50 virtual machines. Compared to the suggested
approach, NGA and RR take longer in both scenarios to
accomplish a task.
Experiment 3: In the third scenario, the number of

VMs and tasks are not fixed as shown in Fig. 3.

Fig. 1, 2, and 3 show the comparative analysis of the
execution time of set of algorithms. The three figures
present the evaluation results of EASM vs. NGA and
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Entity Type Parameters Values
Data Center Number of Data Center 1

PM Number of PM 50
C (MIPS) 4000-8000

VM Number of VM 10-60
C(mips) 1000-4000

Tasks Number of Tasks 10-10000
Length (MI) 10000-30000

Table 11: The Resources Parameters.
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Figure 1: Execution time(s) of different numbers of dead-
lined and no-deadlined tasks.

RR. Fig. 1 presents the execution time regarding tasks
number. Fig. 2 presents the execution time regarding
VMs number and Fig. 3 presents the execution time in
different experimentations. As shown, EASM outperforms
NGA and RR. This is due to using the proposed algorithm
that decreases the consumed time. The execution time of
EASM is satisfying when compared with the NGA and
RR since it is based on task classification and thresholds.
The model has the potential to improve the execution time
speed and optimization efficiency of the EASM. Even
when the number of tasks rises, EASM has strong capacity
to assess the outcomes attained, identify the greatest fitness
value, and make the best decision. The respect of the
deadline of the deadlined-tasks involves more execution
time compared to the execution time of the no-deadlined
ones.
Energy consumption
Now, we evaluated the performance EASM for energy
consumption by varying the number of the tasks from 50
to 600.
Experiment 4: The fourth scenario of the experiments
evaluated the energy consumption by the fixed number of
VMs at 30 and a changed number of tasks as shown in Fig.
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Figure 2: The Execution time(s) of different numbers of
VMs.

4.

Experiment 5:
As shown in Fig. 5, the tasks in this scenario are fixed at
30 and the range of virtual machines (VMs) is 10 to 50,
increasing by 10.

Fig. 4 and 5 show the energy consumption comparison
between deadlined and no-deadlined tasks of the proposed
EASM, NGA and RR. The energy consumed by the EASM
is considerably less than the NGA and RR. It is evident that
there is a significant difference among the compared algo-
rithms and EASM consumes less energy in different tasks.
The respect of the deadline of the first set involves more
energy consumption compared to the energy consumption
of the second set of tasks.
Experiment 6:Energy consumption with the Changing of
VMs and Tasks.
In this scenario, the number of VMs and tasks are not fixed
as shown in Fig. 6.
Fig. 6 presents the energy consumption in different ex-

perimentation. Our EASM outperforms NGA and RR. This
is due to using the proposed algorithm that decreases the
consumed energy. The energy consumption of the proposed
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Figure 3: The Execution time(s) of different experimenta-
tions.

algorithm is better when compared to the NGA and RR.
Experiment 7: The average SLA violation rate for all
methods are shown in Fig. 7. It is evident that, in compar-
ison to different approaches, EASM produced the lowest
rate of SLA violations. The obtained results confirm the
effectiveness of the model in minimizing SLA violations,
due to using the task classification and thresholds.
The performance of EASM can be explained by the clas-

sification and priority mechanisms and algorithm searches
for an optimal solution more quickly. This algorithm con-
siders not only processing time and energy consumption,
but also resource utilization and the number of resources
that can effectively complete the user’s task.
This study has resulted in several implications for cloud

computing settings. Firstly, cloud service providers may
be able to significantly minimize their operational costs as
a result of the increased energy efficiency as well as shorter
execution times. This would increase the financial viabil-
ity of their offerings. Second, this method guarantees im-
proved service quality by lowering Service Level Agree-
ment (SLA) violation rates, that greatly raises customer sat-
isfaction and trust in cloud services. Additionally, main-
taining optimal performance in diverse settings and guar-
anteeing scalability and flexibility in the face of changing
demands depend largely on the model’s capacity to adjust
to dynamic workload fluctuations in cloud data centers.
Although results are encouraging, this method has en-

countered several limitations. A significant constraint per-
tains to the results’ generalization, as the experiments were
carried out inside a simulated setting. In real-world, cloud
settings must verify their validity so the findings are consid-
ered valuable. The scalability at large scale is another draw-
back. While being built for dynamic contexts, the model’s
effectiveness at extremely high scales still has to be care-
fully assessed to ensure it can manage complex and large-
scale cloud infrastructures.
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Figure 4: The energy consumption (Kwh) of different num-
bers of tasks.
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Figure 5: The energy consumption (Kwh) of different num-
bers of VMs.

5 Conclusion and perspectives

Due to the size of cloud data centers, there is a significant
energy consumption and longer task execution times. As a
result, users must regularly transmit data and data centers
use virtual machine scaling to improve the efficiency of sys-
tem resources. Themain purpose of this work is to schedule
effectively work into the available cloud environment re-
sources, minimal energy consumption, execution time, and
SLA violation. Task categorization, thresholds, and queu-
ing are the foundation of the proposed work. Tasks are
gathered into queues in the first phase based on how long
they will take to complete. Then, GA is applied to find bet-
ter solutions to improve scheduling. The suggested model
had been validated and the comparative experimental find-
ings were presented in terms of execution time, energy ef-
ficiency, and SLA violation. The results demonstrated that
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Figure 6: The energy consumption (Kwh) of different ex-
perimentation.
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Figure 7: Average SLA violation of different tasks number.

for all parameters, the suggested algorithm surpassed the
other approaches.
In future work, we concentrate on the stretch of themodel

by working on multiple data centers geographically dis-
tributed and we will improve the Multi-parameter energy
functions making it possible to take into consideration all
the factors that energy consume. There are other ways
that might be investigated to advance this study. Exten-
sive testing in real cloud systems is an essential step toward
experimental validation, which will support and improve
this model. Hybrid optimization is an extra approach that
seems at different combinations of optimization methods in
an effort to further enhance performance. Furthermore, for
larger application, modifying the methodology is required
for multi-cloud scenarios, in which resources are dispersed
across several cloud service providers. Incorporating arti-
ficial intelligence and machine learning methods to predict

workloads and dynamically modify resources might ulti-
mately greatly improve the effectiveness and availability of
cloud services.
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