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The 2D Discrete Wavelet Transform is a signal transform that is frequently used in picture and video 

compression. It is a computationally costly signal transform. VLSI implementation of 2D DWT is 

susceptible to a set of restrictions such as area and power consumption due to its increasing use in high 

data rate communication and storage in portable and handheld devices. The Distributed Arithmetic 

architecture is one of several architectures for constraint-driven VLSI implementation of 2D DWT that 

have been developed in recent years. The Distributed Arithmetic architecture is used efficiently to execute 

inner product computations, eliminating the need for multiplication and increasing computation speed. 

Filtering is the most power-intensive process in DWT, and multipliers are more expensive, so in 

Distributed Arithmetic architecture, multipliers are substituted with shifts and ROM lookup tables. 

However, as the number of filter coefficients grows, the size of the ROM look-up table grows, which can 

be decreased using the lookup table compression technique. In this paper, an Improved Memory Efficient 

Distributed Arithmetic Architecture for DWT has been proposed. The look-up table is used to stock the 

inner product values and then compressed. The performance of the improved LUT compressed algorithm 

is superior than the existing technique. 

Povzetek: Predlagana je optimizirana pomnilniško učinkovita VLSI arhitektura za 2D DWT pri obdelavi 

satelitskih slik. Z uporabo porazdeljene aritmetike in stiskanja LUT zmanjša stroške računanja, izboljša 

hitrost in učinkovitost za aplikacije z visoko hitrostjo prenosa podatkov.

1   Introduction  
Wavelet-based approaches are used to tackle complicated 

problems in math and engineering, with current 

applications including data compression, signal 

processing, image processing, pattern recognition, 

computer graphics, aeroplane and submarine detection, 

and other medical imaging technologies. A wavelet is an 

orthogonal function that may be applied to a limited set of 

data in the sense of the Discrete Wavelet Transform 

(DWT). 

Mohanty B.K. Meher P.K. introduced a distributed 

arithmetic (DA) formulation for DWT computation 

utilising 9/7 filters in 2009, and transferred it to bit-parallel 

and bit-serial architectures for high-throughput and low-

hardware implementations, respectively. For low-

hardware solutions, the bit-serial structure processes the 

input vector's bit-slices in a serial fashion, whereas the bit-

parallel structure processes all the bit-slices in parallel for 

high-throughput computing. The hardware usage 

efficiency of the bit-parallel structure is 100 percent. The 

suggested DA DWT structure has a much greater 

throughput rate and requires less area-delay product than 

conventional multiplier-less arrangements. 

To process N-bit input operands, the fundamental serial 

architecture needs N clock cycles [3]. The primary 

disadvantage of the serial DA design is that it consumes  

 

more clock cycles and the filter's performance is slow. To 

expedite the procedure, it is preferable to apply the DA in 

parallel. The input data is separated into even and odd 

samples based on their location in the parallel 

implementation. Even samples convolve with even and 

odd filter coefficients, while odd samples convolve with 

the same set of coefficients at the same time [2]. The result 

is achieved concurrently for both even and odd input 

samples. The number of clock cycles is lowered, resulting 

in faster processing and less memory. 

Distributed arithmetic calculations are bit-serial 

in nature in their most evident and direct form, i.e., each 

bit of the input samples must be indexed before a new 

output sample becomes available. When the input samples 

are represented with B bits of accuracy, an inner-product 

computation takes B clock cycles to complete. By 

replicating the LUT and adder tree, a parallel realisation 

of distributed arithmetic allows multiple bits to be 

processed in one clock cycle. The odd bits are sent to one 

LUT and adder tree in a 2-bit parallel implementation, 

while the even bits are fed to an identical tree. To suitably 

weight the outcome, the bit partials are left shifted and 

added to the even partials before aggregating the 

aggregate. All input bits can be calculated in parallel and 

then concatenated in a shifting adder tree in the extreme 

scenario [4]. 
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An LUT, a cascade of shift registers, and a 

scaling accumulator make up the distributed arithmetic 

implementation of the Daubechies 8-tap wavelet FIR 

filter. All potential sums of the Daubechies 8-tap wavelet 

coefficients are stored in the LUT. The bit-wide output is 

delivered to the bit serial shift register cascade, one bit at 

a time, as the input sample is serialised. The input sample 

is stored in a bit-serial format in the cascade, which is then 

utilised to generate the requisite inner-product 

computation. The shift register cascade's bit outputs are 

utilised as address inputs to the LUT. The scaling 

accumulator adds together partial LUT results to generate 

a final result at the filter output port. 

The benefit of utilising DA for a wavelet with a 

greater number of coefficients, on the other hand, may be 

lost over time due to a huge rise in memory size. The 

needed number of table entries is 2n. As the number of 

filter coefficients 'n' rises, the size of the look-up database 

grows exponentially. 

A recent 2D DWT implementation on the NVidia 

GeForce GTX TITAN Black GPU was proposed in [7]. 

The authors of the paper [7] used a register-based 

technique to propose their DWT algorithm, which they 

claimed was four times quicker than existing GPU-based 

software implementations of DWT. 

Darji et al. [8] presented a lifting DWT-based 

multiplier-less 1D/2D DWT architecture. They employed 

an innovative z-scanning method to reduce the transposing 

buffer size to 0 by using an innovative z-scanning method. 

Their temporal buffer size, on the other hand, is 

proportional to the number of input data points. Their 

requirement for adders is likewise quite great. Other newer 

methods may be able to outperform their architecture in 

terms of real-time image decomposition. 9/7 and 5/3 filter 

architectures were proposed by Meher et al. [9]. They 

offered 9/7 and 5/3 architectures with and without 

pipelines, as well as reconfigurable 9/7 and 5/3 systems. 

They concentrated on drastically lowering the size of the 

area and memory. Despite the fact that their design is 

space-efficient and their working speed is sufficient, there 

is still room to reduce their CP and thus increase the 

maximum operating frequency, which is a critical design 

component for real-time signal processing. 

A multiplier-less lifting-based 2D DWT 

architecture was proposed in the work [10]. A flipping-

based 2D DWT architecture was also presented in the 

same paper [10]. The inherent low critical-path delay of 

flipping-based architecture might be realised utilising 

lifting-based DWT design, according to the paper [10]. To 

validate the contributions, both designs were compared to 

other existing works. Despite the fact that the designs 

provided in [10] claim to greatly minimise critical-path 

delays, the critical-path delays of both lifting- and 

flipping-based architectures are significantly higher than 

any convolutional DWT architecture. As a result, there is 

plenty of room for improving timing performance. 

In the work of Hegde et al. [11], the authors 

proposed one lifting- and flipping-based DWT 

architecture which is memory and power efficient. They 

used area consumption, critical-path delay, and power 

consumption as the main performance metrics. They 

proposed ‘look-up table’ (LUT)-based multiplier to 

reduce area and critical-path delay. They developed the 

architecture using gate-level HDL language and provided 

the ASIC implementation details. By proposing LUT-

based multiplier, they successfully achieved to reduce the 

critical-path delay and area consumption of their 

multiplier than any conventional popular multiplier. 

However, they did not completely omit multipliers from 

their designs. Therefore, their design’s critical-path delay 

and power consumption are greater than any other 

multiplierless design. Moreover, LUT-based design uses a 

lot of registers or memory. Therefore, their design is also 

memory extensive. 

We are now concentrating on briefly mentioning 

some of the most current works in the domain of DWT 

architectural design, having discussed some of the most 

recent and benchmark works in the subject. The authors 

introduced 1D/2D DWT architectures based on floating-

point multiply and accumulator circuit' (MAC) units in 

their paper [12]. The 45 nm CMOS technology was used 

to implement the design. Though the validation and 

verification of the work is commendable, the performance 

in terms of critical-path delay, CT, and memory 

consumption should be improved further. 

The study given in [13] is about the LeGall 5/3 

DWT filter's DA-based DWT architecture. The work was 

implemented on an Altera FPGA, and the design's quality 

was compared to that of previous DWT-based works to 

demonstrate its superiority. However, there is still a lot of 

room for improvement in terms of area usage, power 

consumption, and operation speed with the DWT 

architecture. The authors of the paper [14] described a 

LeGall 5/3 DWT filter with a 1D DWT architecture based 

on 'canonical sign digit' (CSD)-based DA. 

The authors used the CSD-based DA approach to 

propose a hardware-efficient DWT architecture that only 

required seven adders, a few shift registers, and 

multiplexers. However, their clock period is 100 ns [14]. 

This means that the working frequency of their design is 

only 10 MHz, which is far too low for many real-time 

applications. The work of [15] offered another major and 

current DWT architecture. A dual-memory controller-

based 2D DWT architecture with a focus on real-time 

image processing was presented in the study [15]. The 

design's memory requirements were said to be streamlined 

to allow for real-time image processing. 

  An architecture that reduces the number of 

adders in a 1D Daub-4 filter module architecture and 

enhances the conventional Daub-4 very large-scale 

integration (VLSI) architecture design was proposed by 

Tiancai Lan et al [16]. The input image has a size of N × 

N matrix, and the output result is saved in the TM. Four 

sub-bands are obtained by reading the high and low 

frequencies one at a time to the second Daub-4 filter 

following the first Daub-4 filter's process.  

Hussin et al. [17] proposed the 2D DWT and 

Huffman encoding for image compression. Once the input 

image has been chosen, the first step begins with RGB 

layer division. Next, superfluous image data at each RGB 

layer is eliminated using the lossy compression (DWT) 

technique. The output of the DWT process is then encoded 
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and stored using lossless compression (the Huffman 

encoding approach). 

 

The major purpose of this study is to create a 

DWT with a memory-efficient multiplier-less 

architecture. In DWT filtering, the distributed arithmetic 

architecture is used to produce multiplier-less computing. 

The size of the ROM look-up table increases when the 

filter coefficients rise in DWT with DA architecture, 

which can be lowered by employing a more effective LUT 

compression mechanism. 

The size of the LUT can be lowered by counting 

the number of toggles between each pair of entries and 

compressing the result. The idea behind compressing the 

table is to reduce the amount of bit transitions per column 

as much as possible, then save the indices just where a bit 

toggling occurs rather than the entire column. Using the 

look-up table decoding approach, the needed inner 

product value is created from the compressed look-up 

table. 

The following is a breakdown of the paper's 

structure. The DA architecture for DWT implementation 

was covered in part II. The suggested DA-based DWT 

architecture with better compression algorithm is 

described in Section III. In section IV, the findings and 

debates are discussed. Section V brings the paper to a 

close. 

 

2 Distributed arithmetic 

architecrure for dwt implementation 
  

FPGA implementation may be difficult due to 

their lack of arithmetic capabilities compared to general-

purpose DSP processors. The reprogrammable 

configuration of FPGA is, nevertheless, its most 

significant benefit. Field Programmable Gate Arrays 

(FPGAs) are utilized in this study to implement DWT in 

hardware. With a large reduction in calculation time, 

DWT gives enough information for analysis and synthesis 

of the original signal. 

The DA-based DWT has several uses in science, 

engineering, mathematics, and computer science. The use 

of DWT as an analogue filter bank in biomedical signal 

processing for the creation of low-power pacemakers, as 

well as in ultra-wideband wireless communications, is 

demonstrated. 

To disguise the multiplications, DA is a bit level 

rearrangement of a multiply accumulate. It's a useful 

strategy for shrinking parallel hardware multiply 

accumulates that's ideally suited to FPGA designs. Since 

its introduction over two decades ago, DA has been 

frequently employed in VLSI implementations of DSP 

systems. The majority of these applications rely heavily 

on computing, with multiplication and/or addition being 

the most common operations. The key benefit of the 

distributed arithmetic technique is that it speeds up the 

multiply process by computing and storing all potential 

medium values in a ROM. After that, the input data may 

be used to address the memory and the result directly. 

 

Formulation of algorithm 

An illustration of normal Multiply Accumulate (MAC) 

operation 

                
1 1 2 2 ........... i iy A X A X A X= + +  

             (1) 

Ai = Coefficient,  Xi = Input       

                              

Distributed arithmetic implementation of DWT 

 

Let Xk be a N-bits scrambled 2’s complement number 

|Xk|<1 

 

Xk: {bk0, bk1, bk2……, bk(N-1),   

 Where bk0 is the sign bit 

 

Xk is expressed as 

 

                              Xk = -bk0 + ∑ 9𝑁
𝑛                          (2)                                                    

 

Substitute equation (2) in equation (1),       

 

y =  ∑ 𝐴𝑘
𝑘=1 𝑘

 + ∑ 9𝑁
𝑛    

 𝑦 = ∑ 𝑏𝑘0𝐴𝑘 +  ∑ 𝐴𝑘 ∑ (𝐴𝑘𝑏𝑘𝑛) 2−𝑛𝑁−1
𝑛=1

𝑘
𝑘=1

𝑘
𝑘=1  

                                                                                   

  𝑦 =  − ∑ 𝑏𝑘0𝐴𝑘 +𝑘
𝑘=1

             ∑ ∑ (𝐴𝑘𝑏𝑘𝑛)2−𝑛 𝑁−1
𝑛=1

𝑘
𝑘=1                        (3)                                  

 

Expanding this part        

                                                            

𝑦 =  − ∑ 𝑏𝑘0𝐴𝑘 + ∑ (𝐴𝑘𝑏𝑘1)2−1 +𝑘
𝑘=1

𝑘
𝑘−1

(𝐴𝑘𝑏𝑘2)2−2 + ⋯ + (𝐴𝑘𝑏(𝑁−1))2−(𝑁−1)      (4) 

𝑦 = −[𝑏10𝐴1 + 𝑏20𝐴2 + ⋯ +  𝑏𝑘0𝐴𝑘]            
+ [(𝑏11𝐴1)2−1 + (𝑏12𝐴1)2−2

+ ⋯ +  𝑏1(𝑁−1)𝐴12−(𝑁−1)] + ⋯

+  [(𝑏𝑘1𝐴𝑘)2−𝑘 +  (𝑏𝑘2𝐴𝑘)2−𝑘

+ ⋯ (𝑏𝑘(𝑁−1)𝐴𝑘)2−(𝑁−1)] 

 

y =  − ∑ 𝑏𝑘0
𝑘
𝑘=1 𝐴𝑘 + ∑ [ 𝑏1𝑛𝐴1 + 𝑏2𝑛𝐴2 +𝑁−1

𝑛=1

              … + 𝑏𝑘𝑛𝐴𝑘] 2−𝑛                                    (5)                            

 

y = − ∑ 𝐴𝑘(𝑏𝑘0)𝑘
𝑘=1 +  ∑ [∑ 𝐴𝑘𝑏𝑘𝑛]𝑘−1

𝑘=1
𝑁−1
𝑛=1  2−𝑛  

      (6)                                                    

 

Because each bkn can only take on values of 0 and 1, there 

are only 2k potential possibilities. The memory holds the 

result y after N such cycles. 

 

Hardware reduction in DA method  

 

Figure 2.1 gives the hardware realization of the 

original equation (3) and for this original equation, the 

hardware utilization is high. The DA approach decreases 

hardware use, allowing the operation to run faster. 
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y = − ∑ 𝐴𝑘(𝑏𝑘0)𝑘
𝑘=1 +  ∑ ∑ (𝐴𝑘𝑏𝑘𝑛)𝑁−1

𝑛=1
𝑘
𝑘=1 2−𝑛    

      (7)

                                                            

 
Figure 2.1: Hardware utilization for original equation 

 

Figure 2.2 shows the hardware utilization in bit level 

rearrangement. In that hardware is reduced compared to 

original equation 

 

y = − ∑ 𝐴𝑘(𝑏𝑘0)𝑘
𝑘=1 +  ∑ [∑ 𝐴𝑘𝑏𝑘𝑛]𝑘−1

𝑘=1
𝑁−1
𝑛=1  2−𝑛    

      (8)

                                                                  

         
Figure 2.2: Hardware utilization in bit level 

rearrangement 

 

 

 

DA architecture 

The LUT, Shift registers, and scaling 

accumulator make up the DA architecture of a FIR filter. 

Various sums of the four coefficients make up the LUT 

data. The operands are loaded into the registers through a 

register chain in the shift registers. Depending on whether 

a serial or parallel architecture is used, the operands are 

then shifted 'n' bits at a time. In the scaling accumulator, 

the output of the DA LUT is added to the scaled output. 

It's made with an M-bit adder and a N+M-bit shift register 

at the output. 

 

Serial DA architecture 

As illustrated in Figure 2.3, the basic serial 

architecture requires N clock cycles to handle N-bit input 

operands. The LUT, adder tree, and scaling accumulator 

are all part of the critical path in the DA architecture, 

which runs from the input shift register to the output. The 

critical path delay is dominated by adder delays without 

the pipeline registers. When the design is fully pipelined, 

the significant fan-out loading delay incurred at the output 

of the shift register feeding the DA LUT inputs entirely 

masks the adder delays. If the loading factor is taken into 

account, the adder delays dominate the critical route 

latency, which may be considerably reduced by applying 

the technique outlined in. However, there will be little 

benefit from adopting quicker adder stages until the fan-

out delays are addressed. 

 

 
 

Figure 2.3: Serial DA architecture 

 

The implementation findings show that by using 

parallelism with more than one bit at a time, the 

performance of DA systems may go up virtually linearly. 

Adding parallelism is the same as repeating the 

fundamental structure as many times as needed, each of 

which may function independently without clock 

frequency deterioration caused by pipelining. 

Due to pipelining, the frequency of both 

operations stays the same. Furthermore, because each 

stage of the DA calculation is only a single basic FPGA 

element, the highest potential clock frequency for a 

particular FPGA device may be exploited. The main 

drawback of the serial DA architecture is, it requires more 

clock cycles and the speed of filter is low. 

 

Parallel DA architecture 

The procedure will be slower because the DA 

architecture is bit serial in nature. A parallel distributed 

arithmetic architecture is built to speed up the procedure 

[4]. Figure 2.4 depicts the parallel DA architecture. The 

input data is separated into even and odd samples based 

on their location in parallel implementation. Filter 

coefficients are also divided into even and odd samples. 

Even samples convolve with even and odd filter 

coefficients, while odd samples convolve with the same 

coefficients at the same time. 

It is possible to receive results for both even and 

odd samples of input at the same time. The number of 

clock cycles is lowered, resulting in faster processing and 

less memory. The registers are loaded with the input 
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values for each cycle, and then the reloading procedure to 

registers is enabled for the following set of cycles. The 

serial shift register, which must access the look-up table, 

will receive the input x[n]. The old value will be moved 

into the next register when the new input arrives in the first 

register. Similarly, as new values enter registers, the old 

values are removed from the registers. 

 

 
 

Figure 2.4: Parallel DA architecture 

 

Consider the bit locations and retrieve the values 

of inputs from that bit position to get the address from the 

input values. Consider the LSBs of all serial registers to 

determine the initial address, for example. The initial 

position value will be generated using this address. Obtain 

all of the bit position addresses and the accompanying 

values from the look-up table in the same manner. Shift 

the values by the bit position value and provide them to 

the adder during adding. Finally, the output, which is the 

convolution of the filter coefficients and the inputs, will 

be generated. 

Both the high-pass and low-pass filters will be 

built using the same design. If the input is 8 bits long, the 

convolved value takes 8 clock cycles to compute. The 

filter operations are stated using floating point arithmetic 

while computing the wavelet coefficients. In practice, 

though, integer arithmetic is employed. The filter 

coefficients are shortened as a result. The precision of the 

calculated coefficients suffers as a result of this reduction. 

 

3 Proposed memory efficient da 

architecture for dwt 
Implementing DWT with DA architecture may 

improve computation speed, but it will also increase 

memory size as the number of wavelet coefficients grows. 

The multi-level decomposition requires a high level of 

DWT implementation complexity. As a result, the benefit 

of employing DA will be effectively gone. The size of the 

look-up table in the DA architecture for DWT is reduced 

using a novel way. A table compression approach, as 

shown in Figure 3.1, can be used to minimize the size of 

the look up table required to record all possible 

combinations of input in DA architecture. The algorithm 

for compressing the LUT is the same as that used to save 

a processor's assembly language instructions [5]. A similar 

approach can be used to reduce the number of LUTs in DA 

architecture [1].  

After going through high pass and low pass 

filters, the DWT coefficients are created. The filter 

coefficients are convolved with inputs to perform the filter 

operation with N input variables. The coefficients are 

fixed in this case. Binary can be used to represent inputs. 

The inputs are scaled to have absolute values less than one. 

In ROM look-up tables, the inner product for several 

inputs can be computed and saved in advance. If there are 

n wavelet coefficients, the look-up table will be 2n. All 

LSBs are assumed to be the first to receive data. Similarly, 

all bit positions are determined, and the look-up database 

is used to determine the appropriate values.  

 

 
Figure 3.1: Memory reduced DA architecture 

 

LUT encoding algorithm 

 The size of the LUT can be lowered by counting 

the number of toggles between each entry and 

compressing them [1]. The idea behind compressing the 

table is to reduce the amount of bit transitions per column 

as much as possible, then save the indices just where a bit 

toggling occurs rather than the entire column. Figure 2 

displays an example of a LUT with seven symbols, each 

with eight bits. The table is 56 bits in size (before 

compression). There are 8 distinct binary words in the 

table, with an index length of 3 bits. As a result, if the 

column contains no more than two transitions, it can be 

compressed. Seven columns will be compressed in this 

example, but one column will remain uncompressed. After 

compression, the table's size is reduced to 34 bits (from 56 

bits before). FPGA RAM blocks are used to hold the 

compressed table. 

 

 If the lookup table compression is modified using 

the following steps auxiliary compression can be 

achieved. The steps to be incorporated in the modified 

lookup table compression are as follows: 

 

Total number of locations:  LUT size: 2n 

if index< 2n/2  

      use rep with (n-1)-bits 

else 

       n-bits 

 

Using the above steps the table is further compressed as 

shown in Figure 3.2. Hence the LUT compression of 28 

bits can be achieved. 
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 (a)                                              (b) 

 
(c) 

Figure 3.2: a) Uncompressed LUT b) Existing 

Compressed LUT c) Improved LUT Compression 

 

Using the LUT compression methodology and 

the improved LUT compression, the size of the 

compressed LUT is decreased by 39.28% and 50%, 

respectively. Thus the modified LUT can be an efficient 

method for compressing the DWT coefficients. 

 

LUT decoding algorithm 

The needed inner product value is created from 

the compressed look-up table in this decoding process. 

When a certain input to a look-up table comes, it 

determines its location in each compressed table column. 

 

• If the input is greater or equal to the compressed 

look-up table value, then generate ‘1’ 

• If the input is lesser to the compressed look-up 

table value, then generate ‘0’ 

 

The uncompressed table columns' original bits are 

received straight from the ROM. 

 

DA DWT architecture 

 The parallel implementation of DA architecture 

is exposed in Figure 3.3. The input data is separated into 

even and odd samples based on their location in parallel 

implementation. As a result, even samples convolve with 

even and odd filter coefficients, whereas odd samples 

convolve with the same set of coefficients. The results for 

both even and odd samples of input are obtained. Here 

number of clock cycles are abridged which results in 

increased speed and decreased memory.  

 

 

 

 

 

 To access the LUT, the same number of registers 

must be used for accessing filter quantities. The data will 

be sent into a serial shift register, which will need to 

consult the look-up table. The old value will be moved into 

the next register when the new input arrives in the first 

register.  

 

Similarly, when new values enter registers, the 

old values are removed from the registers by examining 

bit positions and determining the values of inputs based on 

that bit position. Finally, all bit position addresses are 

obtained from the look-up table and are given as input to 

adder by shifting its values. Finally, the result, which is 

the convolution of the filter coefficients and the inputs, 

will be achieved. 

The DA architecture speeds up the operation by 

lowering memory use, but as the size of the look-up table 

grows larger, the decoding process becomes more time 

demanding. 

 
Figure 3.3: DA DWT architecture 

 

4 Results and discussion 
In this work, the distributed arithmetic 

architecture for DWT is designed and simulated using 

Verilog in MODEL SIM 0.61xd. Simulation verifies the 

functionality of both high pass and low pass filters. Then 

it is synthesized into Spartan3E FPGA platform using 

Xilinx ISE Design Suite 13.2.  

 

Simulation and synthesized results for single level 

DWT 

The synthesized results for the suggested design 

are presented in Figure 4.1 for the low pass and high pass 

filters. The Parallel DA-DWT Architecture reads input 

vectors from a ROM. The shredded outputs are saved, and 

simulated waveforms are used to illustrate them. 
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 Figure 4.1: Synthesized result of single level DWT 

 

Comparison of uncompressed and compressed DA 

ROM Size 

The Table I give the memory size of the look-up 

table for low pass and high pass filter with uncompressed 

DA is reduced to 60% and 40% compared to compressed 

DA respectively. The proposed technique gives the 

compression efficiency of 50% for low pass and 72% for 

high pass filter whereas the existing technique gives the 

compression efficiency of 60% for low pass and 63% for 

high pass filter. 

 

Table 1: Comparison of distributed arithmetic schemes 

Architecture 

Memory 

size (ROM) 

Lowpass 

filter 

Memory size 

(ROM) 

Highpass 

filter 

Uncompressed DA 

[1] 
80 bits 256 bits 

Existing Compressed 

DA [8] 
48 bits 96 bits 

Proposed Improved 

DA 
40 bits 72 bits 

 

Performance comparision 

The performance comparison of different architecture for 

DWT is given in Table II. 

 

Table 2: Performance comparison of various DWT 

architecture 

Scheme Level = 1 

Filter implementation [9] 16   multipliers 

Lifting implementation [8] 6 multipliers 

Serial DA  based 

implementation [14] 
43 adders 

Compressed DA based 

implementation 

4 adders 

4 subtractors 

 

The Table II gives the requirement of adder and 

multiplier for different architectures to design DWT. The 

filter based implementation involves direct multiplication 

for inner product calculation in the filter, which requires 

more number of multipliers. The filter based 

implementation of DWT for single level requires 16 

multipliers. The lifting scheme is implemented to reduce 

the arithmetic computation which requires 6 multipliers to 

implement the DWT for single level. The serial DA based 

architecture involves multiplier less operation for inner 

product calculation; it requires 43 adders to design single 

level DWT. The proposed method reduces up to 4 adders 

and 4 subtractors. 

 

Hardware utilization comparision 

The Table III gives the device utilization of DA 

architecture. It is less compared to convolution based 

architecture. The DA architecture uses LUT instead of 

multiplier for MAC unit to get inner product calculations. 

 

Table 3: Hardware utilization comparison 

LOGIC 

UTILIZATION 

CONVOLUAT

ION BASED 

ARCHITECT

URE (one 

level) [6] 

DA BASED 

ARCHITECT

URE (one 

level) 

Number of slices 

Flip Flops 
47 102 

Number of 4 

input LUTs 
294 115 

Total number of 

occupied slices 
209 91 

Number of 

bonded IOBs 
91 35 

Number of 

BUFGMUXs 
1 1 

 

Images transform comparisons using 2D-DWT 

  

 
     

(a) Input image (b) DWT Processed image (c) Output    

                                                                              image 

 

5 Conclusion 
The memory efficient DA architecture for 

discrete wavelet transform is implemented using Spartan 

3E FPGA. The DA architecture is built on the Look-up 

table technique for effective inner product computation. 

When using DA architecture to implement DWT, the size 

of the ROM look-up table grows as the filter coefficients 

grow. The revised look-up table compression technique 

reduces the size of the LUT up to 115. The compressed 

LUT is kept in the FPGA's ROM. Data can be decrypted 

by decompressing the table while conducting DWT 

calculation. The memory-based method enables the 

Parallel DA-DWT to achieve high computation speeds 
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while using a little silicon area by replacing multipliers 

with compact ROM tables. Saving adders, quick 

processing time, regular flow of data, and minimal control 

complexity are all advantages of the suggested 

architecture, making it suited for image compression 

systems. The proposed method reduces the memory size 

from 80 bits to 40 bits for LPF and 256 bits to 72 bits for 

HPF, but the decoding process will be time consuming 

while increasing the filter coefficients. The focus of future 

research will be on improving the speed of retrieval from 

LUTs and quick decoding. 
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