
https://doi.org/10.31449/inf.v48i16.5765 Informatica 48 (2024) 89–104 89

An Innovative Task Scheduling Method Utilizing the Knapsack Algorithm in
Heterogeneous Computing Systems

Lotfi Bendiaf1, Ahmed Harbouche2, Mohammed Amin Tahraoui2, Fatima Zohra Lebbah3,4
1LME Laboratory, Hassiba BenBouali University of Chlef, 02000, Algeria
2LIA Laboratory, Hassiba BenBouali University of Chlef, 02000, Algeria
3Higher School of Electrical and Energetic Engineering, Oran, 31000, Algeria
4Computational Intelligence and Soft Computing Team (CISCO), Laboratory of Research in Computer Science, Higher
School of Computer Science, Sidi Bel Abbes, 22016, Algeria

Keywords: scheduling, dynamic scheduling, multi-processors system, knapsack problem, heterogeneous computing en-
vironments

Received: February 27, 2024

As with any technical field, IT systems become increasingly complex, which can jeopardize their perfor-
mance in terms of both time and quality of response. Consequently, performance is recognized as a primary
criterion to meet IT users’ requirements and expectations. Task scheduling techniques aim to fully exploit
the power of multicore processors to enhance computer performance and optimize the management of
computer networks. However, task scheduling, particularly in Heterogeneous Computing Systems (HCS),
presents a challenging NP-hard problem.In this article, we propose a novel approach to address the task
scheduling problem in HCS. We introduce a Knapsack-based Co-Scheduling Algorithm for Task Allocation
KaCoSTA, which integrates the knapsack problem with dynamic programming. We conducted experiments
on KaCoSTA and compared it with state-of-the-art methods, applying it to various task sets and processor
configurations. The experimental results demonstrate that KaCoSTA significantly reduces the makespan
and improves Resource Utilization (RU). Specifically, KaCoSTA optimizes task allocation and resource
management while minimizing makespan, making it an efficient solution for task scheduling in heteroge-
neous computing environments.

Povzetek: KaCoSTA je pristop za sočasno razporejanje, ki temelji na problemu nahrbtnika in združuje di-
namično programiranje ter algoritem nahrbtnika za optimizacijo dodeljevanja nalog in upravljanja virov v
heterogenih računalniških sistemih, s čimer učinkovito skrajša čas obdelave in izboljša splošno učinkovitost
sistema.

1 Introduction

In recent decades, the field of computer science has
seen rapid advancements in both hardware and soft-
ware. New technologies, such as multi-core processors,
multi-processor systems, and distributed computing, have
emerged to enhance the efficiency of IT systems in terms of
time and quality of service. However, despite hardware de-
velopment, conceiving modern materials for HCS remains
insufficient without efficient software techniques. Task
scheduling in an HCS environment is particularly chal-
lenging due to the NP-hard nature of the problem [1]. It
requires a balancing solution between minimizing sched-
ule length and maximizing processor utilization. To tackle
task scheduling problems, according to the characteristics
of the corresponding systems and their environments, al-
gorithms with specific criteria and limits have been pro-
posed. Several scheduling techniques have been proposed
to assign tasks to a processor that provides the best per-
formance in terms of Quality of services. Although, as
shown in [2], in order to meet the requirements of task

precedence and minimize schedule length, it is impossible
to map all the tasks to the most efficient processor. Among
these algorithms, Min-Min [2, 3, 4] and Max-Min algo-
rithms [5, 7] succeed in minimizing makespan, but they of-
ten fall short in terms of RU and scalability. On the other
side, the algorithms HEFT (Heterogeneous Earliest Finish
Time) and CPOP (Critical Path On a Processor) [8, 9] pri-
oritize tasks based on static rankings, which are not well
adapted to dynamic HCS environments. Moreover, the au-
thors in [10] presents an improved elite genetic algorithm
for disassembling complex equipment with asynchronous
tasks, taking into account priorities, mutual interference and
human resources. Li et al. [11] proposed a load balanc-
ing and ants’ colony optimization algorithm for cloud task
scheduling, demonstrating improved load balancing and re-
duced makespan. Parsa and Entezari-Maleki [12] intro-
duced RASAwhich usesMin-Min strategy to execute small
tasks before the large ones, and applies Max-Min strategy
to avoid delays in the execution of large tasks and to sup-
port concurrency in the execution of large and small tasks in
grid environments. Hybrid scheduling algorithms for col-

90 Informatica 48 (2024) 89–104 L. Bendiaf et al.

laborative mobile edge computing in 5G networks, such
as Raeisi-Varzaneh et al. in [13], who published a sur-
vey on fairness and load balancing indicators in schedul-
ing. Bittencourt et al. proposed in [14] a genetic algorithm
for task scheduling in hybrid cloud environments, optimiz-
ing resource allocation and reducing execution time. Beck
and Werner presented a QoS-aware [3] task scheduling al-
gorithm for mobile edge computing, focusing on meeting
the quality of service requirements while optimizing the
resources’ utilization. In [15], Rodriguez and Buyya in-
troduced a multi-objective scheduling algorithm for dy-
namic workloads’ multi-processing environments, balanc-
ing workload distribution and minimizing execution time
[11].
Despite the variety of existing techniques, it is hard to

adequately address the complexity of task dependencies
and dynamic resource availability in HCS. This highlights
the need for more adaptive and efficient scheduling algo-
rithms. In this article, we propose a Knapsack-based Co-
Scheduling Algorithm for Task Allocation (KaCoSTA) to
avoid the deficiencies cited above, by combining the knap-
sack problem with dynamic programming to optimize task
allocation and resource management. KaCoSTA is con-
ceived to minimize makespan while maximizing RU, and
adapting to changes in task arrival times and system states.
The experimental results compared to SOTA algorithms
demonstrate the success of our approach applied in hetero-
geneous computing environments.
The remainder of this article is structured as follows:

Section 2 presents the state of the art, discussing various
approaches and techniques in the literature. Section 3 pro-
vides a detailed explanation of our approach and its under-
lying principles. Section 4 includes experimental results
and comparisons with existing methods. Finally, Section 5
concludes the paper with a summary and perspectives for
future work.

2 State of the art

Because of the strong relationship between performance in
IT systems and scheduling, several scientific works have
been proposed in this field. Indeed, algorithms [16, 17]
performed in multiple steps to solve the problem of match-
ing application needs with resource availability without ne-
glecting Quality of Service (QoS). In HCS, one of the goals
of tasks’ scheduling is to achieve high system through-
put while considering available computing resources and
QoS. Thus, to meet minimal makespan requirements, the
authors in [2] have proposed a technique to assign tasks
to processors according to the minimum execution cost of
each task computed on a different processor. However,
in the majority of cases, the results obtained show an in-
crease in the makespan measure, which is poor in terms
of QoS. Therefore, several researchers, such as Ezzatti et
al. [4, 2, 18], have proposed an improved implementa-
tion of Min-Min heuristic by taking into account QoS con-

straints. The researchers in [19] consider that a Genetic
Algorithm (GA) should be performed naturally in parallel
systems with multiple processing nodes. Thus, they pro-
posed an appropriate allocation by applying genetic opera-
tors crossover and mutation. On the other hand, the authors
in [20] have adapted a distributed algorithm for cloud sys-
tems and proposed a workflow scheduling algorithm that
considers dynamic priority for the tasks. This approach un-
dergoes a process of Min-Max normalization [5]. In ad-
dition, Jasim et al. [6] present an intelligent algorithm for
scheduling tasks in cloud data centres, based on the Cuckoo
intelligent methodology. The authors analyse in detail the
different optimization methods such as genetic algorithms,
greedy algorithms, Ant-lions optimiser and ant colony op-
timization. The proposed use of an algorithm based on the
Cuckoo method is expected to improve the scheduling time
and the optimization of resources in dynamic environments,
which would contribute to the efficiency of cloud services.
While we focus on the optimization aspect of the schedul-
ing problem, Stützle et al. [7] introduced Max–Min Ant
System (MMAS), which is an Ant Colony based optimiza-
tion algorithm that considers ants as simple agents that pro-
gressively construct candidate solutions to treat an NP-hard
static combinatorial optimization problem.
In this article, we propose a dynamic priority-based task

scheduling algorithm for heterogeneous computing envi-
ronments. Drawing an analogy to the knapsack problem
algorithm [21], each node in the system is assigned an es-
timated Makespan Threshold (MT) value (see Equation 6).
Specifically, MT represents the knapsack capacity, acting
as the upper bound that should not be exceeded. This en-
sures that the sum of the assigned tasks’ execution times
stays within the MT. Our approach integrates resource uti-
lization optimization at the processor level with Quality of
Service (QoS) considerations.

2.1 Scheduling problem definition
Firstly, we introduce the scheduling problem in HCS
context, followed by its corresponding model based on
scheduling criteria, including processor computing speeds,
total runtime, and system RU.
The scheduling system is defined by the quintuple S =

(T,E, P,K,MT), where T = t1, . . . , tn is the set of avail-
able non-preemptive tasks, K = k1, . . . , km is the set of
heterogeneous processors, E is the tasks’ execution cost
matrix where E[i][j] represents the execution cost of task
ti on processor kj , P = p1, . . . , pn is the set of task priori-
ties (or task weights), andMT is defined as the makespan
threshold.
Secondly, the system is represented by the directed

acyclic graph (DAG), G = (T,Ed), where T = t1, . . . , tn
denotes the set of application tasks, and Ed denotes the set
of edges that represent inter-task data dependencies. Task
tx cannot start execution until task ty completes, if tx is a
child task of ty .
The problem to be addressed is: ’How can tasks be as-

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 91

signed to processors without exceeding the MT, while con-
sidering RU constraints and Quality of Service (QoS)?’

2.2 Related works

For example, consider the heterogeneous environment S
shown in Table 1, where the same set of tasks T =
t1, t2, t3, t4, t5 is assigned to three interconnected proces-
sorsK = k1, k2, k3, each with different processing speeds.
Consequently, different execution costs are observed, as ex-
pected. In this system, it is assumed that all tasks are inde-
pendent.

Processors t1 t2 t3 t4 t5
k1 94 55 14 30 108
k2 74 35 10 22 81
k3 99 65 23 42 130

Table 1: Tasks execution costs in heterogeneous environ-
ment

A new version of Min-Min approach was proposed in[2],
by He et al. to improve the original algorithm results. Ef-
fectively, by applying both algorithms on the same system,
traditional Min-Min and QoS Guided Min-Min (see Figure
1), themakespan shows an enhancement of 8.85% from 113
to 103.

k1 k2 k3
0

20

40

60

80

100

M
ak
es
pa
n

J1 J2 J3 J4 J5

Figure 1: QoS guided Min-Min approach

Another study, called the Static Task Graphs Stratifica-
tion, was presented in [22], this algorithm mainly focuses
on multi-core load balance, by partitioning the tasks. Thus,
at first, the independent tasks are assigned to distinct levels
(see Figure 2). Then, the static task group scheduling algo-
rithm will be applied to allocate these tasks for secondary
cores. During the system’s running, the tasks whose the
running times are unpredictable, are allocated to secondary
cores by applying the dynamic link algorithm.

First level k2

Second level k1

Third level k3

Figure 2: Graph stratification approach

The tasks Ti, i = 1, ..n are selected for cores
kj ∈ K, j = 1, ..m decreasingly, according their time-
consuming. In other words, the none allocated task Tk

that verifies the relationship Formula 1 is chosen to be pro-
cessed, and continue until all tasks are mapped.

timetotal + tk > avgtime (1)

where:

avgtime =
∑

i=1,..n Ti/|K|,

K = k1, k2, ...km is the set of the available cores in the
system,

timetotal =
∑

i=1,..p,i ̸=c Ti.

Our proposed approach, KaCoSTA, is compared with
other task scheduling methods across various characteris-
tics, as summarized in Table 2. This comparison highlights
KaCoSTA’s advantages in terms of efficiency, makespan
reduction, and resource utilization.

3 The proposed approach
Dynamic programming methods are often used when solv-
ing the discrete optimization problems, since most of them
are usually NP-hard. The knapsack problem the one of the
most adopted discrete optimization problem in the litera-
ture. In other words, many tackled problems in the discrete
optimization field have the same characteristics as those of
the knapsack problem [23].

Definition 1. Dynamic programming
Dynamic programming (DP) is a method used for solving
complex problems by breaking them down into simpler sub-
problems. It is particularly effective for optimization prob-
lems where the solution can be constructed from the solu-
tions of overlapping subproblems. In the context of task
scheduling, DP helps in determining the best assignment
of tasks to processors by systematically evaluating all pos-
sible task allocations and selecting the one that minimizes
makespan and maximizes RU [24].

The researchers are often attracted by applying algo-
rithms and models coming from local search area, to raise
the scheduling challenges. Thus, local optimization tech-
niques and DP methods [24] have been proposed and suc-
ceeded to provide efficient schedulings.

92 Informatica 48 (2024) 89–104 L. Bendiaf et al.

algorithm Makespan RU Complexity Experimental Character-
istics

Min-Min High Low O(n ·m) Not suitable for large tasks
Max-Min Medium Low O(n2 ·m) Less efficient in dynamic en-

vironments
QoS Min-Min Medium Medium O(n ·m) Limited scalability, Less ef-

ficient for large datasets
HEFT Medium High O(n2 + n ·m) Task prioritization, Difficult

to implement
CPOP Medium Medium O(n logn+ n ·m) Task ranking
PETS Medium Low O(n logn+ n ·m) Task prioritization, Less ef-

ficient for non-preemptive
tasks

PHTS Low Medium O(n logn+ n ·m) Path-based priority, Less
adaptable

KaCoSTA Low High O(n ·m) Dynamic programming,
Knapsack-based model
Task prioritization, Tasks’
run times are known be-
forehand, Deterministic
conditions

Table 2: Characteristics of SOTA scheduling algorithms compared to our algorithm KaCoSTA

The aim of this work is to highlight the efficiency of
the our approach that we conceive by analogy to the knap-
sack problem, to address the scheduling problem in hetero-
geneous computing environment. More precisely, our ap-
proach is based on the one dimension knapsack problem
applied on multi-processors systems, whose the definition
is given via Model 2.

3.1 Proposed model
Assume we have n items, their costs ci > 0 and weights
wi > 0, i = 1, 2, · · ·n, and a knapsack carrying capacity
R. In addition, suppose that

∑
wi > R, and 0 < wi ≤ R.

The purpose is to fill the knapsack with a set of items,
whose the sum of their capacities is maximal. As shown in
Model 2, the problem is described as a discrete mathemat-
ical model, in terms of boolean variables xi, i = 1 · · ·n,
where:

Max F =
∑n

i=1 ci · xi,

s.c

{ ∑n
i=1 wi · xi ≤ R

xi ∈ {0, 1}
(2)

By analogy to model 2, consider a processor Km, and its
positive estimated MakespanThreshold (MT), a set T =
{t1, . . . tn} of tasks, their respective processing positive
costs (processing times) e1, · · · en and their respective pos-
itive priorities p1, · · · pn.
The purpose of our approach is to select the best subset

Tk of tasks (see Definition 2), which compromises between
the priorities pi/ti ∈ Tk and the processing times ei/ti ∈
Tk. In addition, the sum of the processing times ei/ti ∈ Tk

should not exceedMakespanThreshold.

Definition 2. Scheduling Mathematical Model
Let T be a set of tasks to schedule and Tk its tasks’ subset
which is assigned to the processor kj . Tk is the best subset
Tk ⊂ T of tasks, that verify the linear program given below:

Max Z =
∑n

i=1 Pi · xi

s.c

{ ∑n
i=1 E[i][j] · xi ≤MakespanThreshold

xi ∈ {0, 1}
(3)

where:
Pi: the priority of the task ti (See Definition 3),

E[i][j]: the execution cost of the task ti on the processor
j,

MakespanThreshold (See Definition 5): the estimated
makespan threshold of the system,

xi: the corresponding variable of the task ti, where:

xi =

{
1 if ti is assigned to the processor
0 otherwise

Definition 3. Task Priority Calculation [25]
The Upward Technique is applied for task prioritization
while satisfying the precedence constraint [26]. The pri-
ority of each task is calculated by Eq. 4

Pi = avgExi + max
jϵsucc(ti)

CC(i, j) + Pj (4)

where:
avgExi : average execution cost of ti on all processors

succ(ti): represent all successors of ti on the scheduling
system

CC(i, j): Communication Cost between ti and tj

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 93

3.2 Methodology and mathematical
formulations

Based on Model 3, our approach is a scheduling method
that performs in a heterogeneous computing system. By
means of DP, this approach combines between makespan
(See Definition 4) minimisation and optimization of re-
sources utilization.

Definition 4. Makespan, Cmax

The total schedule length also defined as completion time,
calculated in Eq. 5, is the maximum Finish Time (FT) of
the exit task. [25]

makespan,Cmax = Maxi(FT (exit_task)) (5)

Definition 5. MakespanThreshold (MT), is an estimated
value, which is defined as the average of the processing
times of all jobs across processors. MT in this work is ob-
tained by processing the following formula 6.

MT =
1

|K|2
m∑
j=1

n∑
i=1

E[i][j] (6)

where:

T = {t1, t2, . . . , tn} is the set of tasks,

K = {k1, k2, . . . , km} is the set of processors,

E[i][j] : Execution matrix, is the execution cost of task ti
on processor kj .

n : Number of tasks on the queue.

m : Number of processors on the system.

Basically, dynamic programming (DP) is used for solv-
ing complex problems by breaking them down into sim-
pler sub-problems. Particularly, DP is effective for tackling
problems from combinatorial optimization field, whose the
solution can be constructed from the solutions of overlap-
ping subproblems. In the context of task scheduling, DP
helps in determining the best assignment of tasks to pro-
cessors by evaluating systematically all possible task allo-
cations and selecting which minimizes makespan and max-
imizes RU.
Our purpose, through DP techniques, is to maximize the

total priority weight without exceeding theMT for the ex-
ecution times of the tasks chosen. We interpreted our prob-
lem in a formal mathematical way as defined in Model 3.
The utilization of DP Recurrence, allows the leading of

the best capacity DP (k), which is the DP table entry for
capacity k. For each task ti and capacity k,DP (k) is eval-
uated through Formula 7

DP [k] = max(DP [k], DP [k − E[i][j]] + P [i][j]) (7)

The boolean matrix A(n × m) gives the assignments’
information of a task to a processor. In other words, a term
of A is defined as follows:

A[i][j] =

{
1 if a task ti is assigned to a processor pj
0 otherwise

Therefore, at each recursion, if DP [k] > DP [k −
E[i][j]] then A[i][j] = 1 (the matrix A is updated).
As given in Formula 8, the makespanMP is calculated,

by using the last evaluation of A as the maximum comple-
tion time across all processors.

MP =
m
max
j=1

n∑
i=1

E[i][j] ·A[i][j] (8)

After computing A thenMP through the system, the re-
source utilization in the HCS is calculated by formula 9

RU = 100− MP −Min(ProcessorUsage)

MP
(9)

where:

Min(ProcessorUsage) is the least utilized processor in
the scheduling system.

3.3 Approach process
The method process steps are outlined as follows:

1. (Tasks Partitioning Dependency)
The first step consists of addressing tasks precedence
constraint by partitioning the tasks, the independent
tasks are grouped to distinct partition levels fromDAG
G(T ,Ed) (Figure 3), and the result is defined in Figure
4.
The following steps are applied to each partition

t0

t1

t3 t4 t5

t2

t6 t7 t8

Figure 3: Example of DAG (Task Graph)

Partition 1 t0

Partition 2 t1 t2

Partition 3 t3 t4 t5 t6 t7 t8

Figure 4: Tasks Partitioning Dependency (Step 1)

94 Informatica 48 (2024) 89–104 L. Bendiaf et al.

2. (Estimation of the MakespanThreshold) (See Defi-
nition 5)

3. (Modulation and decomposition of the MT)
MakespanThreshold modulation takes part of the DP
process (See Eq 7), thus MT value is decomposed.
For instance, in the case of MT = 500, the modula-
tion process ofMakespanThreshold provides the fol-
lowing modulation vector Vl defined as:
Vl = 1, (1, 2), (1, 2, 3), ...(1, ...500), where the MT
is broken down into units, each unit called Modulated
Makespan Threshold (MMTl), and l represents the
unit number.

4. (Adding tasks process (Pre-scheduling phase))
Adding the tasks one by one according to their arrival
times in the system, then browse theMTMl modula-
tion vector and process step 3 to each unit.

5. (Fill the dynamic table)
Based on DP, completing the table (Tab) by dynami-
cally adding the tasks by processing the following for-
mula:

Tab[i, E[i−1][j]] = Max[Tab(i−1, E[i−1][j]),

Tab(i− 1, E[i][j]− E[i][j]) + P [i]] (10)

6. (Subset and Assignment Vector Construction)
If Tab[i, E[i][j]] = Tab[i− 1, E[i][j]]
⇒ Task not assigned

A[i][j] =

{
1 if ti is assigned to the processor kj
0 otherwise

where:

A : Assignment Matrix

7. (Processing all the tasks in the system) The process
is repeated with none selected tasks for the remain pro-
cessors, Unassigned tasks will be handled by the same
process for the next node until all tasks will be treated,
then assigned tasks are executed according to their pri-
ority.

3.4 Proposed algorithms
3.4.1 Knapsack based recursive algorithm for

scheduling tasks allocation (KReSTA)

The first algorithm represents the first version of the ap-
proach.
Recursion is one of the popular problem-solving ap-

proaches in data structure and algorithms. Even some
problem-solving approaches are totally based on recursion
for example: decrease and conquer, divide and conquer,
DFS traversal of tree and graphs, backtracking, top-down
approach of DP and many others. Thus, time complex-
ity analysis of recursion is critical to understand these ap-
proaches and improving our code’s efficiency.
In the Figure 5 bellow, we present the recursive version.

Algorithm 1 KReSTA (Knapsack-based Recursive
Scheduling algorithm for Tasks Allocation)
Require: T : Set of tasks {t1, t2, . . . , tn},E: Execution

costs matrix, where E[i][kmax] is the execution cost of
task ti on processor kmax,P : Priority weight of task ti

Ensure: A: Assignment Vector, where A[i][kmax] ← 1 if
task ti is assigned to processor kmax andA[i][kmax]←
0 otherwise

1: Order the processors from the most to the least effi-
cient, then the most efficient processor kmax available
in the queue is chosen.

2: Initialize Assignment Matrix A[i][kmax] ←
[0, 0, . . . , 0]

3:
4: function DP(k)
5: if k = 0 then return 0
6: end if
7: max_value← 0
8: for ti ∈ T do
9: if E[i][kmax] ≤ k then
10: value← DP(k − E[i][kmax]) + P [i]
11: max_value← max(max_value, value)
12: end if
13: end for
14: returnmax_value
15: end function
16: for ti ∈ T do
17: if E[i][kmax] ≤MT then
18: k ←MT
19: for k < E[i][kmax] do
20: if DP(k) > DP(k−E[i][kmax])+P [i] then
21: A[i][kmax]← 1 ▷ Assign task ti to

processor kmax

22: end if
23: k ← k − 1
24: end for
25: end if
26: end for
27: Update the processor queue then repeat the process

with remaining processors and tasks
return A ▷ Assigned tasks’ set to the processor

kmax

28: The results tasks are queued then executed according
to their priority

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 95

KReSTA(E,P,MT,N)

Max

KReSTA(E, P, MT, N-1) +

KReSTA(E, P, MT - E[N-1], N-1) P[N-1]

If E[N − 1] ≤MT

Figure 5: Knapsack Recursive Scheduling TasksAllocation
(KReSTA)

3.4.2 Knapsack based iterative algorithm for
scheduling tasks allocation (KISTA)

The algorithm 2 mentioned bellow is featured by the intro-
duction of iterative approach method to enhance time com-
plexity.
First, we will estimate the difference between the two

proposed algorithm 1 and 2 to highlight the optimization
of the approach which intuitively brings an added value
and thus a relevant aspect to the scheduling system over-
all. Scheduling algorithms performances are estimatedwith
∆time = FinishT ime−BeginT imemeasure defined in
Section 4, consequently, according to tasks-set processed,
trivial difference can be noticed on Figure 6 bellow, Indeed,
KReSTA algorithm shows exponential comportment while
increasing number of tasks, whereas KISTA increases pro-
portionally, which explains time complexity differences,
we can observe for KReSTA with tasks-set : N=960, the
algorithm needs 400.13 milliseconds to process, while with
tasks-set : N=1920 the algorithm displayed the result in
848.57 milliseconds, hence, an increase of 112.07%, in the
other side, KISTA with the same tasks-set : N=240, N=480
shows respectively 281.98 and 566.73 milliseconds which
results in 100.98% increase, as a consequence, KISTA in-
creases proportionally with N while KReSTA does not,
for instance for N = 1920, KISTA is 41.63% better than
KReSTA, as a result traduces a better performance com-
pared to KReSTA in the first experiments as shown in Fig-
ure 6.

3.4.3 Co-scheduling algorithm

The final step consists of taking into consideration the dif-
ferent nodes in the system, which implies managing all
tasks to represent the heterogeneous computing environ-
ment’s behaviour.
In this section, the KaCoSTA algorithm (See Algorithm

3) consists to apply the approach to the whole system in het-
erogeneous environment with different processors process-
ing capacities. First, the Makespan Threshold (MT) is cal-
culated. Next, the processors are sorted in ascending order

Algorithm 2KISTA (Knapsack-based Iterative Scheduling
algorithm for Tasks Allocation)
Require: T : Set of tasks {t1, t2, . . . , tn},N = |T |,E: Ex-

ecution costs matrix, whereE[i][kmax] is the execution
cost of task ti on processor kmax,P : Priority weight of
task ti, tab[i][l]← −1 ▷Matrix
of optimization, initialised with -1 (Undefined), with l
: modulation cursor

Ensure: A: Assignment Vector, where A[i][kmax] ← 1 if
task ti is assigned to processor kmax andA[i][kmax]←
0 otherwise

1: Order the processors from the most to the least effi-
cient, then the most efficient processor kmax available
in the queue is chosen.

2: Initialize Assignment Matrix A[i][kmax]← 0
3: for ti ∈ T do
4: mt← 0
5: formt toMT + 1 do
6: if i = 0 Ormt = 0 then
7: t[i][mt]← 0
8: else if E[i− 1] ≤ mt then
9: tab[N][MT] ← Max(P[i − 1] + tab[i −

1][MT − E[i− 1]], tab[i− 1][MT])
10: else
11: tab[i][mt]← tab[i− 1][mt]
12: end if
13: end for
14: end for
15: Res← tab[N][MT]
16: mt←MT
17: for i = N to 0 do
18: if Res ≤ 0 then
19: Break
20: else if Res← tab[i− 1][mt] then
21: Continue
22: else
23: A[i− 1][kmax]← 1 ▷ Assign task ti to

processor kmax

24: Res← Res− P [i− 1]
25: mt← mt− E[i− 1]
26: end if
27: end for
28: Update the processor queue then repeat the process

with remaining processors and tasks
return A ▷ Assigned tasks’ set on processor

kmax

29: The results tasks are queued then executed according
to their priority

96 Informatica 48 (2024) 89–104 L. Bendiaf et al.

Algorithm 3 KaCoSTA (Knapsack-based Co-Scheduling
Algorithm for Tasks Allocation)
Require: T : Set of tasks {t1, t2, . . . , tn}, K: Set of pro-

cessors {k1, k2, . . . , km}, E: Execution costs matrix,
where E[i][j] is the execution cost of task ti on pro-
cessor pj , P : Priority weights matrix, where P [i] is the
priority weight of task ti,Memo: Memoization matrix
Memo[i][j] to avoid repeated computing

Ensure: A: Assignment matrix, where A[i][j] = 1 if task
ti is assigned to processor pj andA[i][j] = 0 otherwise,
Makespan: (See Definition 4)

1: Initialize Makespan Threshold (MT)
2: Sort processors in ascending order of their processing
capacities.

3: for kj ∈ K do
4: Initialize Assignment Matrix A[i][j]← 0
5: Initialize Memoization TableMemo[j]← Null ▷
LengthMT + 1

6: end for
7:
8: function DP(j, k)
9: if k = 0 then return 0
10: end if
11: if Memo[j][k] ̸= Null then returnMemo[j][k]
12: end if
13: max_value← 0
14: for each task ti in T do
15: if E[i][j] ≤ k then
16: value← DP(j, k − E[i][j]) + P [i]
17: max_value← max(max_value, value)
18: end if
19: end for
20: Memo[j][k]← max_value returnmax_value
21: end function
22: for ti ∈ T do
23: if E[i][j] ≤MT then
24: for k = MT down to E[i][j] do
25: if DP(j, k) > DP(j, k−E[i][j])+P [i] then
26: A[i][j]← 1 ▷ Assign task ti to

processor kj
27: end if
28: end for
29: end if
30: end for

return A,MP .

300 600 900 1,200 1,500 1,800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks

Ti
m
e
co
ns
um

in
g
al
go
rit
hm

in
se
co
nd
s KReSTA Algorithm

KISTA Algorithm

Figure 6: KISTA and the improved algorithm KReSTA
comparison on total elapsed time with the same given num-
ber of tasks

based on their performance capacities. The KaCoSTA al-
gorithm is then applied. Any tasks that remain unassigned,
indicated by A[i][j] = 0 for all i = 1, . . . , N , are queued
for processing in the next iteration. This process contin-
ues until all tasks are successfully assigned to a processor
during the pre-scheduling phase (See Figure 7).

3.5 Assumptions
In our approach we suppose that:

– All tasks are non-preemptive, meaning once a task
starts execution on a processor, it runs to completion.

– Task execution costs are known and deterministic.

– Processors have different capacities and execution
speeds, modeled by the execution costs matrix E.

– MakespanThreshold (MT) is estimated based on aver-
age processing costs andmay be adjusted dynamically.

3.6 Complexity analysis of KaCoSTA
algorithm

The complexity of the KaCoSTA depends on tasks number
n and processors numberm, The algorithm complexity can
be broken down into several components based on its steps.

Proposition 1 (Initialization of Makespan Threshold
(MT)). The time complexity for calculating the Makespan
Threshold (MT) is O(n ·m).

Proof. Calculating the average execution costs involves it-
erating over the execution cost matrixE, which has dimen-
sions n×m.

MT =
1

|K|2
n∑

i=1

m∑
j=1

E[i][j]

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 97

Start

Initialize MT

Sort processors

Initialize Assignment Matrix

Iterate over tasks

E[i][j] ≤MT?

Dynamic programming

Update A[i][j]

Skip to next task

All tasks assigned?

Calculate Makespan

Return A[i][j] and Makespan

Repeat for unassigned tasks

Yes

Yes

No

No

Figure 7: KaCoSTA Flowchart

Since we need to sum up all the elements in the matrix, the
time complexity is:

O(n ·m)

Thus, the time complexity for calculating MT is O(n ·m).

Proposition 2 (Sorting Processors). The time complexity
for sorting the processors is O(m logm).

Proof. Sorting the processors by their processing perfor-
mances involves using a sorting algorithm such as quick-
sort or mergesort, both of which have a time complexity of

O(m logm).

Time Complexity = O(m logm)

Thus, the time complexity for sorting the processors is
O(m logm).

Proposition 3 (Dynamic ProgrammingwithMemoization).
The time complexity for solving the knapsack problem using
dynamic programming with memoization isO(m ·MT ·n).

Proof. The dynamic programming approach involves fill-
ing a table DP for each processor kj up to the Makespan
Threshold (MT). For each task ti, we update the table from
MT down to the execution cost E[i][j]. The nested loops
iterate over all processors, all tasks, and all capacities up to
MT.

TimeComplexity = O(m)×O(MT)×O(n)

= O(m ·MT · n)

Thus, the time complexity for solving the knapsack prob-
lem using dynamic programming with memoization is
O(m ·MT · n).

Proposition 4 (Assignment and Update). The time com-
plexity for the assignment and update step is O(n ·m).

Proof. For each task ti, we need to update its assignment
to a processor pj and update the available capacities. This
involves iterating over all tasks and all processors.

Time Complexity = O(n)×O(m) = O(n ·m)

Thus, the time complexity for the assignment and update
step is O(n ·m).

Proposition 5 (Overall Complexity). The total time com-
plexity for the KaCoSTA algorithm is O(m ·MT · n).

Proof. Combining the complexities of each step:

1. Initialization of Makespan Threshold (MT): O(n ·m)

2. Sorting Processors: O(m logm)

3. Dynamic Programming for Knapsack Problem with
Memoization: O(m ·MT · n)

4. Assignment and Update: O(n ·m)

Summing these complexities:

O(n ·m) +O(m logm) +O(m ·MT · n) +O(n ·m)

Since O(n ·m) and O(m logm) are dominated by O(m ·
MT · n) and the MT is a value calculated beforehand and
considered a constant, the overall complexity is simplified
to:

O(m ·MT · n)

Thus, the total time complexity for the KaCoSTA algorithm
is O(m · n).

98 Informatica 48 (2024) 89–104 L. Bendiaf et al.

4 Experimental studies
The experimental part of the paper primarily focuses on the
performance disparities between our proposed techniques
and existing approaches in the field of scheduling. Addi-
tionally, these tests highlight the importance of improving
algorithm processing capabilities to produce results in less
time, which is particularly crucial in scheduling for HCS,
where every measure impacts the overall process.
This section compares our approach to traditional meth-

ods like Min-Min and QoS Guided Min-Min. Finally, we
present the results of these improvements relative to well-
known and recent approaches. Each test is conducted in
a real-time context without making assumptions, ensuring
that the results closely reflect real-world system environ-
ments.
Our experiments are conducted on a computer which

has the following hardware setup: Apple macOS Ventura
13.2.1, 64-bit operating system, Apple Silicon M1 proces-
sor with 8-core GPU and 8GB/RAM. The algorithms are
implemented in the Python language.
Regarding the datasets adopted in our experiments, We

utilized amix of synthetic and benchmark datasets 1 to eval-
uate the performance of our approach. We chose this kind of
datasets to cover a variety of tasks’ sizes and complexities,
that reflect real-world scenarios in heterogeneous comput-
ing systems.
As given in Table 3, synthetic datasets are generated to

include tasks with varied execution times and dependencies
that mimic different workloads, and processor capabilities
in an HCS environment.

Dataset Number
of tasks

Type of exe-
cution time

Number
of hetero-
geneous
processors
(NHP)

A <50 random, uni-
form

2, 3

B 500 random 10
C 1000 follow a

normal distri-
bution

15

Table 3: Characteristics of experimented datasets

More precisely, the chosen synthetic datasets allow to
understand the impact of task distribution and processor
heterogeneity on the efficiency of the implemented algo-
rithms. Moreover, we taken in consideration benchmark
datasets that offer real-world scenarios to validate the prac-
tical applicability of the proposed algorithm.
Through this part of experiment section, our objective is

to compare our approach to algorithms and techniques that

1Experimented benchmark datasets are taken from http://mistic.
heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/
ordonnancement.html

share the same specifications, like priority-based criteria,
makespan minimisation and HCS involving.

4.1 Synthetic datasets experience
In this initial comparison, we aim to highlight the dif-
ferences between various approaches by comparing Ka-
CoSTA’s results with those of Min-Min, Max-Min, and
other methods in the literature. To achieve the aforemen-
tioned objectives, we consider the following example with
independent tasks on three heterogeneous processors, as de-
scribed in Table 4 and summarized in the following table:

Processors t1 t2 t3 t4 t5 t6 t7
k1 77 56 23 29 9 40 31
k2 98 90 54 50 22 65 76
k3 82 70 40 43 17 51 45

Table 4: Tasks-set execution costs on three processors k1,
k2 and k3

First, the estimatedMakespanThreshold is calculated as
described in section 3 equation 6:
MakespanThreshold ⇒ 1

32 (1068) = 1068
9 ≈ 119 Then

according to the makespan threshold result, a schedule is
given by means of DP using knapsack algorithm presented
by our approach, the schedule result’s makespan (Figure
8) does not exceed the makespanThreshold. Finally the
results are compared with Min-Min [27] and QoS guided
Min-Min [2] in the following figure 8

t1 t2 t3 t4 t5 t6 t7

KaCoSTA QoS Min-Min Max-Min Min-Min
0

50

100

150

Sc
he
du
le
Le
ng
th

Figure 8: Min-Min, Max-Min, QoS guided Min-Min and
KaCoSTA makespan comparison

For this initial comparison, the results demonstrate com-
paratively better performance of the proposed approach.
Specifically, for the given set of tasks, KaCoSTA provides
a makespan of 119, which does not exceed the estimated
MakespanThreshold. This result is achieved by assigning

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 99

t3 and t6 to processor 2, t2 and t4 to processor 3, and the re-
maining tasks t1, t5, and t7 to processor k3. In comparison,
Min-Min results in a makespan of 140, while both QoS-
Guided Min-Min and Max-Min yield a makespan of 130,
leading to a 15% improvement in this test. It is noted that
the complexities of KaCoSTA and Max-Min are O(n ·m)
andO(n2 ·m), respectively, where n is the number of tasks,
m is the number of processors, and MT is the calculated
makespan threshold defined in Eq. 6.
For fairness, we will use the same task set and values as

in [28], as described in Table 5.

Processors t0 t1 t2 t3 t4 t5
k1 4 15 4 13 10 7
k2 6 22.5 6 19.5 15 10.5

t6 t7 t8 t9 t10
8 4 12 6 9
12 6 18 9 13.5

Table 5: Tasks-set execution costs on the processors K1,
K2 [28]

In this part of the test, we assess the comparison be-
tween PHTS, PETS, Sorted Nodes in Levelled DAG Divi-
sion (SNLDD), CPOP, HEFT, and our proposed approach,
KaCoSTA.

Scheduling Algorithms

0

20

40

60 59 61
65.5 65 64

M
ak
es
pa
n

KaCoSTA PHTS HEFT PETS SLNDD

Figure 9: Makespan metric comparisons of all the four al-
gorithms with KaCoSTA

The results of the experiment, as shown in Figure 9,
demonstrate a clear advantage. Specifically, in terms
of scheduling length, our approach outperforms the other
mentioned methods.
Our heuristic, KaCoSTA, achieved these results with the

following output: Makespan = max(59, 59) ⇒ makespan
= 59 (see results in Figure 10).
Effectively, KaCoSTA achieves a makespan of 59,

while the next best approach provides a makespan of no

Processor k1 Processor k2
0

20

40

60 59 59

50

59

50 5050 49.5

38

49.5

38

43.5

38

31.5

38

21

28

21

15

21

15 1515

6

0

6

Sc
he
du
le
Le
ng
th

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 10: Schedule result generated by KaCoSTA

less than 61. This indicates that our proposed approach
shows a 3.39% improvement over PHTS. Additionally, the
utilization rates for processors k1 and k2 are both 59.

Let us consider the following representation of task set
execution costs on three distinct processors, as presented in
[29] and summarized in Table 6.

Task k1 k2 k3
t1 14 16 9
t2 13 19 18
t3 11 13 19
t4 13 8 17
t5 12 13 10
t6 13 16 9
t7 7 15 11
t8 5 11 14
t9 18 12 20
t10 21 7 16

Table 6: Comparison of tasks-set’ execution cost values in
each node k1, k2, k3

Tasks dependencies represented by DAG in the Figure
11:
The obtained results presented in the following Figure

12, shown how the three approaches process, and how are
tasks assigned to the given processors. The heterogeneous
system example design is described by Ilavarasan et al. [29]
As illustrated in the figure, there is a clear difference in

scheduling length (makespan) between our approach and
the presented algorithms. Specifically, KaCoSTA records
makespans of 35, 49, and 39 on Processor 1, Processor 2,
and Processor 3, respectively, while PETS and CPOP result
in makespans ranging from 76 to 85 across all processors.
Notably, our algorithm performs 35.52% better than PETS.
This disparity can be attributed to the fact that PETS and

100 Informatica 48 (2024) 89–104 L. Bendiaf et al.

t1

t2 t3 t4 t5 t6

t7 t8 t9

t10

Figure 11: Tasks Dependencies DAG [9]

KACoSTA PETS CPOP

0

20

40

60

80

35

58

4749

77

86

39
45

68

M
ak
es
pa
n

k1 k2 k3

Figure 12: Comparison of elapsed time on each processor
k1, k2 and k3 for KaCoSTA, PETS and CPOP

CPOP do not account for independent task groups and em-
ploy a task prioritization phase. This phase determines the
priority of each task based on rankmetrics, and is calculated
through parental prioritization, as described in [30].

4.2 Benchmark datasets experience
Because, we adopt a dynamic programming technique,
which optimally balances the load across processors, Ka-
CoSTA consistently achieves lower makespan compared to
existing algorithms across all datasets 2. For example, in
Dataset A, KaCoSTA achieves a makespan of 105, signif-
icantly lower than Min-Min’s 140 and PHTS’s 110. Thus

2Experimented benchmark datasets are taken from http://mistic.
heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/
ordonnancement.html

KaCoSTA is the most efficient algorithm in task allocation
and execution time minimization.
Regarding RU, KaCoSTA shows the highest level of ef-

ficiency, with an average of 85% in Dataset A, compared to
65% for Min-Min and 80% for PHTS. This result indicates
that KaCoSTA effectively leverages available processing
power, reducing idle times and enhancing overall system
performance.
In addition, KaCoSTA performs particularly well in sce-

narios with high task heterogeneity and varying processor
capabilities. In Dataset B, with 500 tasks and 10 proces-
sors, KaCoSTA’s makespan is 600, compared to 700 for
Min-Min and 620 for PHTS. This highlights KaCoSTA’s
adaptability and efficiency in complex environments.
Moreover, lower variance and narrower confidence inter-

vals for KaCoSTA (e.g., 6.5 variance and [103, 107] Con-
fidence Interval (CI) in Dataset A) indicate more consistent
performance and reliability compared to other algorithms.
This robustness is crucial for applications requiring pre-
dictable and stable task scheduling outcomes.
Thus, KaCoSTA demonstrates clear advantages over ex-

isting algorithms in terms of makespan reduction, RU, and
consistent performance across various datasets.

4.3 Discussion
KaCoSTA performs particularly well in scenarios with high
task heterogeneity and varying processor capabilities. For
example, in Dataset C, with 1000 tasks and 15 processors,
KaCoSTA achieves a makespan of 1250, compared to 1500
for Min-Min and 1350 for PETS. This highlights the algo-
rithm’s robustness and efficiency in complex and dynamic
environments.
The lower variance and narrower confidence intervals for

KaCoSTA, such as a variance of 6.5 and a 95% confidence
interval of [103, 107] in Dataset A, indicate more consistent
performance and reliability compared to other algorithms.
This is crucial for applications requiring predictable and
stable task scheduling outcomes.
Algorithm KaCoSTA significantly improves upon exist-

ing task scheduling algorithms (see Table 2) in terms of
makespan and RU. More precisely, KaCoSTA outperforms
Min-Min, Max-Min, and QoS-guided Min-Min to achieve
a low makespan, which is due to their unsuitability for long
tasks, less efficiency in a dynamic environment, and limited
scalability, respectively. In addition, despite the improve-
ment in terms of scalability of the SOTA algorithms consid-
ered in this work, our algorithm is still the best in terms of
makespan and RU. This is due to KaCoSTA’s complexity,
which is still the best.
Moreover, the observed makespan’s decreasing and the

RU’s increasing are primarily due to KaCoSTA’s dynamic
allocation of tasks, which is based on its real-time pro-
cessing ability. The experimental results of our approach
demonstrate significant improvements across all key met-
rics. We noticed the efficiency of dynamic programming
combined with the knapsack techniques, which enables

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 101

Dataset algorithm Makespan Variance 95% CI RU Variance 95% CI U
Dataset A Min-Min 140 15.2 [135, 145] 65% 2.5 [63%, 67%]

Max-Min 130 12.8 [126, 134] 70% 3.1 [68%, 72%]
QoS Min-Min 125 10.4 [121, 129] 72% 2.8 [70%, 74%]

HEFT 115 8.7 [112, 118] 78% 1.9 [77%, 79%]
PHTS 110 7.5 [107, 113] 80% 1.7 [79%, 81%]
PETS 120 9.6 [117, 123] 75% 2.4 [73%, 77%]

KaCoSTA 105 6.5 [103, 107] 85% 1.2 [84%, 86%]
Dataset B Min-Min 700 45.6 [688, 712] 60% 3.9 [58%, 62%]

Max-Min 680 40.8 [669, 691] 65% 4.1 [63%, 67%]
QoS Min-Min 670 38.2 [659, 681] 67% 3.7 [65%, 69%]

HEFT 640 35.4 [630, 650] 72% 2.9 [71%, 73%]
PHTS 620 30.6 [611, 629] 75% 2.2 [74%, 76%]
PETS 650 36.8 [640, 660] 70% 3.4 [68%, 72%]

KaCoSTA 600 25.2 [593, 607] 80% 1.8 [79%, 81%]
Dataset C Min-Min 1500 120.8 [1475, 1525] 55% 5.6 [53%, 57%]

Max-Min 1450 110.4 [1427, 1473] 60% 4.8 [58%, 62%]
QoS Min-Min 1400 105.2 [1378, 1422] 62% 4.5 [60%, 64%]

HEFT 1350 98.6 [1330, 1370] 68% 3.8 [67%, 69%]
PHTS 1300 85.4 [1283, 1317] 70% 3.1 [69%, 71%]
PETS 1350 90.2 [1333, 1367] 66% 3.6 [65%, 67%]

KaCoSTA 1250 70.5 [1235, 1265] 75% 2.9 [74%, 76%]

Table 7: Statistical Analysis of Algorithm Performance

KaCoSTA to handle larger task sets with better scalability
and quadratic complexity.
Our approach has proven its efficiency in terms of

makespan, RU. The reason is that our approach succeeds
to address the issues of the tested SOTA methods (see Ta-
ble 8).
The novelty of our approach lies in the new modeling

and solving techniques that allow optimal results in terms
of makespan and RU. More accurately, KaCoSTA models
a task scheduling problem as a knapsack problem, which
allows a structured and efficient task allocation. In addi-
tion, a DP technique is utilized to systematically solve the
scheduling problem, breaking it down intomanageable sub-
problems. This ensures optimal task allocation and load
balancing across processors. MakespanThreshold Estima-
tion is used to guide the scheduling process and to balance
the trade-off between minimizing makespan and maximiz-
ing RU.
Thus, our algorithm is highly adaptable to various HCS

scenarios, effectively handling different task sets and pro-
cessor configurations. KaCoSTA demonstrates consistent
performance with lower variance and narrower confidence
intervals, ensuring reliable scheduling outcomes. This ro-
bustness is crucial for applications requiring stable and pre-
dictable task execution times.

5 Conclusion and future works
In this paper, we first introduced a task scheduling algo-
rithm for Heterogeneous Computing Systems (HCS) called
KReSTA, a recursive method. We then presented a second

algorithm named KISTA, an improved version of KReSTA
that offers better computing performance overall, particu-
larly in terms of time complexity. However, in some cases,
KReSTA performs better, especially with relatively small
task sets. Specifically, when the number of tasks is n ≲ 35,
KReSTA is preferable as it provides better performance.
This observation leads us to plan future work on develop-
ing an enhanced version that combines the strengths of both
algorithms.
Finally, we proposed a procedure that encapsulates our

approach for applying the entire method to an HCS, de-
fined in Algorithm 3 and named KaCoSTA. The heuristic
introduced in this paper is primarily based on a mathemati-
cal model for solving the knapsack and optimization prob-
lems. The first phase involves estimating MT, analogous
to the knapsack capacity, which must not be exceeded. The
second phase involves considering all tasks as objects to be
placed in processors’ queues without surpassing the calcu-
lated MT. The final stage optimizes the objective function
concerning the execution cost and priority of each task, fol-
lowed by scheduling the assigned tasks according to their
priority.
The described process of our approach explains why it

achieves the minimum computation time. As a result, Ka-
CoSTA provides more efficient task scheduling compared
to other algorithms. We compared the performance of Ka-
CoSTA with algorithms like PHTS, HEFT, PETS, CPOP,
and SLNDD. The comparison metrics were based on ex-
amples from related work, which considered heterogeneous
systems with multiple processors and various task sets.
KaCoSTA yielded enhanced results in terms of makespan
and processing performance compared to PHTS and PETS,

102 Informatica 48 (2024) 89–104 L. Bendiaf et al.

Algorithm Handicap
Min-Min Performs poorly in RU due to its

tendency to leave some processors
underutilized. This results in a
higher makespan in heterogeneous
environments.

Max-Min Balances the load better than Min-
Min but still lacks efficiency in dy-
namic environments where task ex-
ecution times vary significantly.

QoS Min-Min Incorporates QoS constraints but
sacrifices scalability and efficiency.

HEFT Achieves better makespan and RU
but suffers from complexity in im-
plementation, making it less adapt-
able to varying scenarios.

PHTS Performs well in terms of makespan
and RU but has high complexity and
less adaptability, limiting its effec-
tiveness.

PETS Effective for preemptable tasks
but inefficient for non-preemptive
tasks, leading to a higher makespan
and lower RU.

Table 8: SoTA algorithms handicap

and it outperformed algorithms like QoS Guided Min-Min,
HEFT, and SLNDD in other measures.
KaCoSTA demonstrates clear advantages over state-of-

the-art algorithms in terms of makespan reduction, RU, and
consistent performance across various datasets and scenar-
ios. The utilization of a knapsack problem-based model,
coupled with dynamic programming, offers significant im-
provements in task scheduling for heterogeneous comput-
ing systems. This research highlights the potential of Ka-
CoSTA to enhance system performance and resource man-
agement in complex and dynamic environments.
By addressing the limitations of existing algorithms and

introducing innovative techniques, our heuristic has ad-
vanced the field of task planning in heterogeneous IT sys-
tems, providing a more efficient and adaptable solution.
Our future work will focus on strengthening the KaCoSTA
algorithm by exploring the application of Artificial Intelli-
gence (AI), which will improve the estimation ofMT and
further optimize task allocation behavior.

References

[1] M. Gallet, L. Marchal, F. Vivien (2009), Efficient
scheduling of task graph collections on heterogeneous
resources. IEEE International Symposium on Paral-
lel & Distributed Processing, IEEE, 2009, pp. 1–11.
http://dx.doi.org/10.1109/ipdps.2009.5161045

[2] X.He, X.Sun, G.Von Laszewski (2003), Qos guided
min-min heuristic for grid task scheduling. Journal of
computer science and technology 18 (4) (2003) pp
442–451. http://dx.doi.org/10.1007/bf02948918

[3] S. K. Panda, P. K. Jana (2016), Uncertainty-based
qos min–min algorithm for heterogeneous multi-
cloud environment, Arabian Journal for Science
and Engineering 41 (8) (2016) pp. 3003–3025.
http://dx.doi.org/10.1007/s13369-016-2069-7

[4] P.Ezzatti, M.Pedemonte, A. Martın (2013), An effi-
cient implementation of the min-min heuristic, Com-
puters & operations research 40 (11) (2013) pp. 2670–
2676. http://dx.doi.org/10.1016/j.cor.2013.05.014

[5] K. Etminani, M. Naghibzadeh (2007), A min-min
max-min selective algorihtm for grid task schedul-
ing, in: 2007 3rd IEEE/IFIP International Confer-
ence in Central Asia on Internet, IEEE, 2007, pp. 1–7.
http://dx.doi.org/10.1109/canet.2007.4401694

[6] Mohammad, Omer K Jasim and Salih, Bassim M
(2024). Improving Task Scheduling In Cloud Data-
centers By ImplementationOfAn Intelligent Schedul-
ing Algorithm. Informatica Journal. 48 (10), 2024
http://dx.doi.org/10.31449/inf.v48i10.5843

[7] T.Stutzle, H.H.Hoos (2000), Max–min ant sys-
tem, Future generation computer systems 16 (8)
(2000) pp. 889–914. http://dx.doi.org/10.1016/s0167-
739x(00)00043-1

[8] H.Topcuoglu, S.Hariri,M.-Y.Wu (1999), Task
scheduling algorithms for heterogeneous processors,
in: Proceedings. Eighth Heterogeneous Comput-
ing Workshop (HCW’99), IEEE, 1999, pp. 3– 14.
http://dx.doi.org/10.1109/hcw.1999.765092

[9] H. Topcuoglu, S. Hariri, M.-Y. Wu (2002),
Performance-effective and low-complexity
task scheduling for heterogeneous comput-
ing, IEEE transactions on parallel and dis-
tributed systems 13 (3) (2002) pp. 260–274.
http://dx.doi.org/10.1109/71.993206

[10] Xinyu, Zhang and JinJian, Liu and Guanwei, Zhang
and Wei, Guo (2024), Optimization of Asyn-
chronous Parallel Tasks Scheduling with Multi-
resource Constraints, journal Informatica, (2024) 48
(7) http://dx.doi.org/10.31449/inf.v48i7.5604

[11] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu
(2012), Online optimization for scheduling preempt-
able tasks on iaas cloud systems, Journal of Parallel
and Distributed Computing 72 (5) (2012) pp. 666–
677. http://dx.doi.org/10.1016/j.jpdc.2012.02.002

[12] S. Parsa, R. Entezari-Maleki, Rasa (2009), A
new grid task scheduling algorithm, Interna-
tional Journal of Digital Content Technology

An Innovative Task Scheduling Method Utilizing the Knapsack… Informatica 48 (2024) 89–104 103

and its Applications 3 (4) (2009) pp. 91–99.
http://dx.doi.org/10.4156/jdcta.vol3.issue4.10

[13] M. Raeisi-Varzaneh, O. Dakkak, A. Hab-
bal, B.-S. Kim (2023), Resource scheduling
in edge computing: Architecture, taxonomy,
open issues and future research directions,
IEEE Access 11 (2023) pp. 25329–25350.
http://dx.doi.org/10.1109/access.2023.3256522

[14] L. F.Bittencourt, E.R.Madeira (2010), Towards the
scheduling of multiple workflows on computational
grids, Journal of grid computing 8 (2010) pp. 419–
441. http://dx.doi.org/10.1007/s10723-009-9144-1

[15] M. A. Rodriguez, R. Buyya (2015), A responsive
knapsack-based algorithm for resource provi-
sioning and scheduling of scientific workflows
in clouds, 44th International Conference on
Parallel Processing, IEEE, 2015, pp. 839–848.
http://dx.doi.org/10.1109/icpp.2015.93

[16] K.Al-Saqabi, S.Sarwar, K.Saleh (1997), Distributed
gang scheduling in networks of heterogenous
workstations, Computer communications 20 (5)
(1997) pp. 338–348. http://dx.doi.org/10.1016/s0140-
3664(97)00020-0

[17] G. C. Sih, E. A. Lee (1993), A compile-time schedul-
ing heuristic for interconnection-constrained hetero-
geneous processor architectures, IEEE transactions on
Parallel and Distributed systems 4 (2) (1993) pp. 175–
187. http://dx.doi.org/10.1109/71.207593

[18] M.Pedemonte, P.Ezzatti, A. Martın (2016), Accel-
erating the min-min heuristic, Parallel Processing
and Applied Mathematics: 11th International Con-
ference, PPAM 2015, Krakow, Poland, September 6-
9, 2015. Revised Selected Papers, Part II, Springer,
2016, pp. 101–110. http://dx.doi.org/10.1007/978-3-
319-32149-3_10

[19] D. P. Vidyarthi, A. K. Tripathi (2001), Maximizing
reliability of distributed computing system with task
allocation using simple genetic algorithm, Journal
of Systems Architecture 47 (6) (2001) pp. 549–554.
http://dx.doi.org/10.1016/s1383-7621(01)00013-3

[20] I. Gupta, M. S. Kumar, P. K. Jana (2018), Efficient
workflow scheduling algorithm for cloud computing
system: a dynamic priority-based approach, Arabian
Journal for Science and Engineering 43 (12) (2018)
pp. 7945–7960. http://dx.doi.org/10.1007/s13369-
018-3261-8

[21] S.Martello, P.Toth (1987), Algorithms for knapsack
problems, North- Holland Mathematics Studies 132
(1987) pp. 213–257. http://dx.doi.org/10.1016/s0304-
0208(08)73237-7

[22] C. Wu, Y. Wang, A. Zhao, T. Qiu (2013), Research
on task allocation strategy and scheduling algorithm
of multi-core load balance, in: 2013 Seventh Interna-
tional Conference on Complex, Intelligent, and Soft-
ware Intensive Systems, IEEE, 2013 pp. 634–638.
http://dx.doi.org/10.1109/cisis.2013.114

[23] D. Zouache, A. Moussaoui, F. B. Abdelaziz (2018),
A cooperative swarm intelligence algorithm for
multi-objective discrete optimization with applica-
tion to the knapsack problem, European Journal
of Operational Research 264 (1) (2018) pp. 74–88.
http://dx.doi.org/10.1016/j.ejor.2017.06.058

[24] N. Galimyanova (2008), Experimental investiga-
tions of combined algorithms of branch and bound
method and dynamic program-mingmethod for knap-
sack problems, Journal of Computer and Systems
Sciences International 47 (3) (2008) pp. 422–428.
http://dx.doi.org/10.1134/s106423070803012x

[25] R.M.Sahoo, S.K.Padhy (2022), A novel algo-
rithm for priority-based task scheduling on a
multiprocessor heterogeneous system, Micropro-
cessors and Microsystems 95 (2022) 104685.
http://dx.doi.org/10.1016/j.micpro.2022.104685

[26] D. M. Abdelkader, F. Omara (2012), Dynamic
task scheduling algorithm with load balancing
for heterogeneous computing system, Egyptian
Informatics Journal 13 (2) (2012) pp. 135–145.
http://dx.doi.org/10.1016/j.eij.2012.04.001

[27] T.D.Braun, H.Siegal, N.Beck, L.L.Boloni,
M.Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, et al. (1999), A
comparison study of static mapping heuristics for
a class of meta-tasks on heterogeneous computing
systems, in: Proceedings. Eighth Heterogeneous
Computing Workshop (HCW’99), IEEE, 1999, pp.
15–29. http://dx.doi.org/10.1109/hcw.1999.765093

[28] R. Eswari, S. Nickolas, M. Arock (2014), A
path priority-based task scheduling algorithm
for heterogeneous distributed systems, Interna-
tional Journal of Communication Networks and
Distributed Systems 12 (2) (2014) pp. 183–201.
http://dx.doi.org/10.1504/ijcnds.2014.059437

[29] E. Ilavarasan, P. Thambidurai, R. Mahilmannan
(2005), Performance effective task scheduling algo-
rithm for heterogeneous computing system, in: The
4th international symposium on parallel and dis-
tributed computing (ISPDC’05), IEEE, 2005, pp. 28–
38. http://dx.doi.org/10.1109/ispdc.2005.39

[30] M. S. Arif, Z. Iqbal, R. Tariq, F. Aadil, M. Awais
(2019), Parental prioritization-based task scheduling
in heterogeneous systems, Arabian Journal for Sci-
ence and Engineering 44 (4) (2019) pp. 3943–3952.
http://dx.doi.org/10.1007/s13369-018-03698-2

104 Informatica 48 (2024) 89–104 L. Bendiaf et al.

	Introduction
	State of the art
	Scheduling problem definition
	Related works

	The proposed approach
	Proposed model
	Methodology and mathematical formulations
	Approach process
	Proposed algorithms
	Knapsack based recursive algorithm for scheduling tasks allocation (KReSTA)
	Knapsack based iterative algorithm for scheduling tasks allocation (KISTA)
	Co-scheduling algorithm

	Assumptions
	Complexity analysis of KaCoSTA algorithm

	Experimental studies
	Synthetic datasets experience
	Benchmark datasets experience
	Discussion

	Conclusion and future works

