
https://doi.org/10.31449/inf.v48i4.5845 Informatica 48 (2024) 663–684 663

Towards an Ontological-based CIM Modeling Framework for IoT
Applications

Mohamed Bettaz1, Mourad Maouche2
1Czech Technical University in Prague, Prague, Czech Republic
2Freelance Researcher, Constantine, Algeria
E-mail: bettamoh@cvut.cz, maouche805@gmail.com

Keywords: CIM modeling, requirement engineering, UFO ontology, IoT applications

Received:March 5, 2024

Few works addressed contributions of ontologies to Computation Independent Modeling (CIM) of Inter-
net of Things’ (IoT) applications. This work targets CIM artefacts developed using a combination of a
goal-oriented requirements (KAOS) and a service-oriented (SoAML) modeling frameworks. This paper
proposes an ontological-based framework intended to help CIM modelers in their preliminary analysis of
IoT applications. We adopt the ontology reuse approach, an approach often used by the ontology engi-
neering community, where specific ontology fragments are selected, adapted and/or refined, and merged.
We use OntoUML to describe our fragments. The OpenPonk tool is used to edit and verify the syntax and
the semantics of these fragments’ models. The results of our contribution are summarized as follows. Im-
proving the semantics carried by the metamodels of KAOS and SoaML modeling languages, through our
proposed conceptualization grounded by the Unified Foundational Ontology (UFO), a sound ontological
framework; setting a link between our proposed KAOS and SoaML ontology fragments; designing a (par-
tial) IoT domain ontology to be integrated into our proposed CIM. An illustrative example, showing how to
instantiate selected ontology fragments, demonstrates the applicability of our results to IoT applications.

Povzetek: Prispevek predlaga ontološko zasnovan okvir za modeliranje CIM (Computational Independent
Modeling) IoT aplikacij. Uporablja pristop ponovne uporabe ontologij za izboljšanje semantike metamod-
elov KAOS in SoaML.

1 Introduction

Nowadays requirements’ engineering, a discipline cover-
ing the analysis and the specification of systems under
development, strongly relies on the Model Driven Engi-
neering (MDE) methodology [1]. System analysis is con-
cerned with the understanding and description of domains
under examination and their business aspects (problem do-
main), whilst system specification is essentially concerned
with the statement and the analysis of the prescribed re-
quirements for the system under development (solution do-
main). Specific models, intended to capture domains (do-
main modeling view), business issues (business model-
ing view), and system requirements (requirement model-
ing view), put together constitute the so-called CIM [2]. A
lot of research works conducted by the software engineer-
ing community have addressed and covered several aspects
related to this kind of models. Some of them have been de-
voted to the analysis of IoT applications, services, and sys-
tems: for instance the authors of [38] proposed a dedicated
UML profile intended to put together relevant computing
and business modeling concepts, and the authors of [15, 9]
suggested either an extension, or a combination of existing
general purpose modeling languages.
Usually, modeling languages are supported by metamod-

els (models of models) intended to describe their abstract
syntax and (structural) semantics. Models are supposed to
be conform to the metamodel associated with the model-
ing language used to build them. CIM models described
in appropriate modeling languages are intended to provide
necessary descriptive (domain, business, and requirements)
knowledge [2] that may be transformed into systems’ im-
plementation through a series of well-defined steps. Very
often, these languages are thought and designed in terms of
specific (combinations of) paradigms (goal-oriented, agent-
oriented, task-oriented, and service-oriented paradigms for
instance). Some of these paradigms may also share com-
mon kinds of modeling constructs. Moreover, the ontol-
ogy engineering community also has conducted several re-
search works investigating the potential contributions of
ontologies to the Requirement Engineering [12] in gen-
eral, and to the CIM modeling in particular [2]. Roughly
speaking, “ontologies are formal explicit representations of
shared conceptualization of parts of reality”. They pro-
vide powerful descriptive means making them able to for-
mally capture the essence of real-world phenomena rele-
vant to various domains. We may mention in the follow-
ing some of their potential links to MDE and also uses in
the context of CIM modeling: Firstly, the theoretical work
in [2] contributed to clarify the differences as well as the



664 Informatica 48 (2024) 663–684 M. Bettaz et al.

inter-play between metamodeling, and ontological-based
approaches to modeling languages. It states that, while on-
tologies are intended to capture only descriptive aspects of
relevant parts of reality, CIM models are intended to cap-
ture both descriptive (domain, business) and prescriptive
(requirements) aspects of systems under development. Sec-
ondly, the availability of worked-out ontologies covering
not only the IoT domain itself (sensors, actuators, measure-
ments, etc.), but also specific application domains where
IoT technology may potentially be applied (health, trans-
portation, business, and others), allows us to (re)use them
(i.e., such ontologies) in IoT applications’ CIM modeling
(domain and business views). Thirdly, the literature re-
ports various works showing the usage of ontologies in the
context of MDE modeling languages. The authors in [20]
raised the benefits of the use of ontological models as theo-
retical tools for analyzing and improving conceptual mod-
eling languages, stating that “providing real-world seman-
tics for modeling constructs” of conceptual modeling lan-
guages constitutes one of these expected benefits. Such
conceptualizations of modeling languages may help to de-
tect and make explicit hidden concepts carried by model-
ing languages, to derive solid metamodels for new devel-
oped modeling languages, or to support model transforma-
tions’ activities thanks to a set of well-known ontology en-
gineering tasks (integration, mapping, and merging of on-
tologies). Basic knowledge on these tasks is given in Sec-
tion 3. The wide and ever-growing deployment of both on-
tologies, covering aspects of the real life and the computing
discipline on one side, and IoT applications and services on
the other side, motivates our interest into this subject. To
the best of our knowledge, few works have been specifi-
cally devoted to the use of ontologies to capture the seman-
tics of CIM models associated with IoT applications under
development. The reported works mainly addressed the use
of ontologies for Ambient Assisted Living (AAL) applica-
tions’ development [13, 11], a particular application domain
where IoT technology is applied. The objective of this pa-
per is to propose an ontological-based framework intended
to help CIM modelers in their preliminary analysis of IoT
applications under development. This is achieved through
the construction of a global ontological model regrouping
and relating IoT domain key concepts, application domain
concepts, and concepts associated with key constructs of-
fered by the used CIM modeling languages. Instances of
this global ontological model can be analyzed, simulated,
and validated using appropriate tools. Ontologies’ merging
is the employed mechanism to build the intended global on-
tological model [35]. More concretely we propose to:

(a) Employ KAOS (Knowledge Acquisition in Auto-
mated Specification of Software Systems) for the goal-
oriented aspects [46], and SoaML (Service-oriented
architecture Modeling Language) for the business
view [14]. These choices are mainly motivated by the
availability of many works reporting on ontological
views of, respectively the goal-oriented and service-
oriented paradigms.

(b) Build preliminary ontological models for KAOS and
SoaML respectively, thus providing real-world se-
mantics for their respective key modeling constructs.
The ontological models associated with these model-
ing languages are built by exploiting the knowledge
carried explicitly by their metamodels, and also the in-
formal knowledge carried in their textual documenta-
tions [24].

(c) Employ ontological models to represent and describe
CIM domain views associated with IoT applications.
This is mainly motivated by the availability of several
ontological models representing the IoT domain (sen-
sors, actuators, etc.), and a lot of ontological models
representing various application domains.

(d) Construct an ontological model intended to represent
a global conceptual view regrouping and relating in a
“pragmatic” way the three CIM views of IoT appli-
cations. This is achieved by merging the ontological
models mentioned in (b) and (c). The merging opera-
tion is done in such a way that the ontological models
to be merged, seen as constituent fragments, are kept
unchanged in the resulting merged ontological model.

It is worth mentioning that our ontological models rely
on the UFO infrastructure, and are expressed in OntoUML,
a UFO ontology-based modeling language. Basic knowl-
edge on OntoUML and its supporting UFO foundation is
included in Section 3, while the motivation behind the de-
cision of such choices is exposed in Section 4.
The rest of the paper is organized as follows. Related

works are presented in Section 2. A preliminary knowl-
edge on ontologies, OntoUML, UFO infrastructure, Goal
Oriented Requirement Ontology, and a set of relevant mod-
eling languages is summarized in Section 3. The method
used to carry out this work as well as themotivations behind
the choice decision is explained in Section 4. Section 5 ex-
poses and details our proposed UFO-based ontology frag-
ments for the KAOS framework. Section 6 presents our
proposed reinforcement of the business dimension for the
KAOS framework. A preliminary SoaML ontology is de-
scribed in Section 7. Section 8 presents and explains the
approach used to merge our KAOS and SoaML ontologies.
In Section 9, we show how to transform OntoUML mod-
els into appropriate gentle UFO (gUFO) classes aimed at
their computerization. Section 10 presents an illustrative
example demonstrating the applicability of our results to
IoT applications. Concluding remarks, limitations, and fu-
ture works are outlined in Section 11.

2 Related works
The use of ontologies in the software engineering discipline
has been investigated for over a decade addressing its dif-
ferent fields with various motivations and intentions. On-
tologies for CIM modeling of systems in general, and of
IoT-based systems specifically have also been subject of



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 665

research interests and works. Table 1 encloses the results
of related works. It summarizes key concepts used in these
works and shows that our proposal is not addressed in them.

2.1 Ontologies for CIM modeling

The main contribution of [13] consists in a “smooth” com-
bination of various existing ontology fragments covering
the goal concept using a variant of an i-star (also denoted i∗)
[16] based ontology, and other AAL related domains such
as IoT (sensors, measures, etc.) and domotic. Their objec-
tive is to propose a goal-oriented ontology-based method-
ology for AAL systems motivated by the need of build-
ing AAL knowledge sources allowing the access to stored
or inferred relevant knowledge. Our contribution, whilst
similar to the work in [13], differs in three aspects; (i) it
includes a new modeling dimension, namely the business
view, hence covering all aspects of CIM modeling; (ii) we
adopt KAOS rather than i-star. Both (goal-oriented require-
ment engineering frameworks) present benefits and draw-
backs [45]. The KAOS ability to distinguish between agent
roles is one of the motivations behind our choice of KAOS;
(iii) our proposed ontology is built on UFO, a solid foun-
dational top-level ontological framework. The work in [11]
consists in building an ontology, called Goal Service Ontol-
ogy (GSO), as a support for designing a framework for dy-
namic service discovery, composition, and use. Although
GSO is not dedicated to IoT applications, it has been ap-
plied to the modeling of AAL applications. GSO, as our
ontology, is built on refining UFO-C ontology fragments
for the goal and tasks (an operation-like concept). Con-
trarily to our contribution whose objective is to build an
ontology to formalize CIM models using a combination of
KAOS and SoaML, GSO is intended to back themetamodel
of a new designed DSL language. Lastly, our conceptu-
alization of the service paradigm relies mainly on refine-
ments of pieces of UFO-A [17] and UFO-B [21] ontology
fragments rather than on the UFO-S [30] ontology frag-
ment as in GSO. The work in [43] consists in adopting an
ontology approach for the modeling of SysML/KAOS do-
mains. Roughly speaking, a metamodel for domain mod-
eling is built on some OWL (the web ontology language)
model elements, together with new added model elements.
In our work, domains are modeled as pieces of refined
UFO-A categories smoothly combined with our proposed
KAOS and SoaML ontologies. Go4SoA [10] is a proposal
combining the goal with the Service-oriented Architecture
(SoA) paradigm. The approach consists in extending and
enriching the SoaMLmetamodel with the goal concept. Re-
garding our work, the combination is done in an ontologi-
cal way, by bridging KAOS and SoaML ontologies. [3]
treats on the “semantic interoperability across IoT domains
in cross-domain applications”.

2.2 Ontologies for KAOS and SoaML
The literature reported ontology proposal(s) for KAOS
[27], and for SoaML [30, 37, 29]. In [27], the authors used
on the one hand a standard KAOSmetamodel as a reference
to build their KAOS ontology, and on the other hand the
Unified Enterprise Modeling Language (UEML) as an on-
tological modeling language. UEML is usually intended for
enterprises and information systems’modeling. Our KAOS
ontology, not only refers to a standard KAOS metamodel,
but also it is based on proposed refinements of modeling
elements drawn from the UFO-C (Agent and Goal) ontol-
ogy fragments [19, 23], and also on proposed refinements of
the Goal-oriented Requirement Ontology (GORO) [31, 23].
Regarding SoaML, [30] and [37, 29] are among the recent
works aiming at introducing ontology concepts for SoA and
SoaML. The authors of [30] have analyzed and evaluated
the use of UFO-S, an UFO sub-ontology for services, in
various approaches including the SoaML one; those of [37]
have proposed a set of ontologies covering the general as-
pects of the so-called Service Engineering (service-oriented
architecture, software service ontology, etc.) including on-
tologies for SoaML. Their work relies on the Open Group
Service Ontology, and also on the ISO/IEC SoA Refer-
ence Architecture. [29] provides a comparison between the
UFO-S service ontology and other similar service ontolo-
gies including the Open Group Service Ontology.
Our SoaML ontology is built using refinements and

adaptations of some modeling elements of UFO-A and
UFO-B ontology fragments. The suggested adaptations
mainly rely on relevant knowledge drawn from the OMG
SoaML specification document [33] as well as from [37,
29].

3 Preliminary knowledge
In order to make our paper (as much as possible) self-
contained, this section will summarize basic knowledge
on ontologies, GORO, and various relevant modeling lan-
guages (KAOS, OWL and RDF/RDFS, and SoaML).

3.1 Ontologies
Ontologies have been widely used in various disciplines
and real-world domains. The authors in [26] state that
“in computer science, ontology is a formal representation
of the knowledge by a set of concepts within a domain
and the relationships between those concepts. Ontologies
are used to conceptualize domains and to reason about do-
main properties”. Ontologies are often characterized by
their level of generality. General classes are specified in
top-level ontologies, whilst more specific classes are de-
scribed in lower-level ontologies [18]. Top-level ontologies
are intended to describe very general concepts. Some of
these ontologies are qualified as reference ontologies in the
sense that they are dedicated to a specific domain and rec-
ognized as a reference by its relevant communities. UFO



666 Informatica 48 (2024) 663–684 M. Bettaz et al.

Table 1: Summary table

Ref. Proposal CIM Require-
ment

CIM Busi-
ness

CIM Do-
main

Ontology /
Metamodel Application Remark

[38] IotReq KAOS-like
goal

SoaML
services

SoaML and
UML UML profile IoT app. no use of on-

tology

[11] GSO goal, agent,
task

services
(client,
provider)

UML class
models

UFO
grounded

includes IoT
app.

ontology for
new DSL

[10] Go4SoA goals BPMN UML class
models

extended
metamodel
with goal

bus. SoA
oriented
app.

no use of on-
tology

[44]

SysML/
KAOS
domain
model.

KAOS/
SysML
method

…
ontol. based
domain
models

domain
knowl. as an
ontology

CPS; IoT-
based
systems

not fully in-
tegr. in an
ontology

[13]

An on-
tol. based
methodol.
for AAL

Requirem. as
GRL goals …

mix. frag.
from various
dom.

GoAAL an
ontology for
AAL app.

AAL sys-
tems specific

[27]
[32]
[45]

KAOS
model.
methodol.

goals for
requirem.
model.

…
domain
model. with
UML

metamodels
& ontology

general pur-
pose; mainly
CPS app.

missing
bus. aspect
model.

[29]
[30]
[33]
[37]

SoaML
model.
methodol.

from bus.
proc. model-
ing.

…
UML class
diag. &
profile

UML profile bus. ori-
ented app.

missing goal
approach
for require-
ments

is a formalized top-level reference ontology [17]. It has
been successfully used to conceptualize a lot of specific do-
mains, and particularly the domain of modeling languages
[20, 22]. UFO includes four ontologymodules: UFO-A, in-
tended for the conceptualization of Endurants (commonly
called Entities) [17], UFO-B for the Perdurants (commonly
known as Events) [21], UFO-C for the Social and Inten-
tional Objects [19], and UFO-S for Services [30]. On-
toUML is an UFO-based UML profile, formally concep-
tualized by the UFO reference ontology [40]. It provides
a set of class stereotypes such as Category, Kind, Subkind,
Relator, Events and their related “association relationships”
stereotypes (cf. [41] for more details on OntoUML speci-
fications). OntoUML, mainly used in the ontology engi-
neering field, has retained the attention of the software en-
gineering community [36]. In particular, [6, 5] refer to a
newly OntoUML-inspired language that is intended to aug-
ment the object-oriented formal language Object-Z with
OntoUML-like features. Ontology integration, merging,
and mapping are among the interesting topics discussed by
the ontology engineering communities; these topics have
been investigated for more than two decades. Recent re-
search surveys [35, 39] discussed the confusion about these
ontology operations and their misuse.
Furthermore, ontologies may be seen as implementations
of knowledge based systems. Thus they may be populated
(instantiated) and queried as databases.

3.2 RDF and RDFS
OWL is an extension of Resource Description Framework
(RDF) for building ontologies. RDF is a framework for
describing resources organized as data graph models. An
RDF statement (rdf:<statement>) is a triple (subject, pred-
icate, object), where subjects and objects are graph nodes
and predicates are graph edges. Internationalized Resource
Identifiers (IRIs) are used to identify nodes and edges of an
RDF graph according to user defined namespaces. An IRI
described by the symbol “:” preceding a string means that
a default namespace is used. Among RDF syntax notations
we may mention those that define the elements of triples
(rdf:subject, rdf:predicate, rdf:object) and RDF properties
(for example rdf:type employed to indicate that a given
named resource is an instance of a class). RDF Schemas
(RDFSs) is a vocabulary extension of RDF that allows
the construction of taxonomies of classes and properties.
Among RDFS syntax notations we may mention those that
define a class of classes (rdfs:Class), those that declare a
subject as a subclass of a class (rdfs:subClassOf), and those
that declare the domain and range of a subject property
(rdfs:domain, rdfs:range). SPARQL, a “SQL-like” query
language, is widely used for querying RDF graphs.

3.3 GORO in a nutshell
GORO is an ontological framework intended to conceptu-
alize a well-established requirement engineering approach



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 667

called Goal Oriented Requirement Engineering (GORE)
[31, 4]. Several notions and relationships related to the re-
quirement engineering discipline are identified and seman-
tically defined. However, GORO is used in this work only
as a reference facilitating the understanding of the basic key
GORE notions. One of the objectives of GORO is to enable
the interoperability between different GORE modeling lan-
guages [4]. It is worth mentioning that the KAOSmodeling
approach supports the GORE approach.

3.4 The KAOS modeling framework
KAOS is a well-known requirements’ engineering frame-
work, supported by a set of modeling constructs, that pri-
marily relies on the goal paradigm to specify system re-
quirements. It has been used in the industry by software as
well as system engineering communities either as a single
modeling language [25, 42] or combined with other mod-
eling languages [34]. More concretely, a KAOS specifi-
cation consists of four inter-related models: a goal model,
a responsibility model, an operation model, and an object
model. The goal model is intended to describe the inten-
tions of actors (stakeholders and software). It is organized
as a hierarchy of goals representing a set of strategic (high-
level and middle-level goals) and operational (leaf-level
goals) intentions as well as their relationships. KAOS iden-
tifies two sorts of operational goals, named requirements
and expectations. The distinction between these two sorts
of operational goals is illustrated in Section 5. The respon-
sibility model describes the way the elicited operational
goals are assigned to specific actors, namely environment
agents (stakeholders) and software agents, for achievement
purpose. The operational model concerns the operational-
ization of the elicited leaf goals in terms of the operations
performed by the assigned agents . The object model is
intended to model elicited agents, and elicited application
domain entities to be monitored (through sensors) and/or
controlled (through actuators) [15]. More details on key
KAOS modeling constructs are given in Section 5. In this
work, we propose a preliminary UFO-based ontology in-
tended to conceptualize a subset of the KAOS keymodeling
constructs, that are based on the KAOSmetamodel reported
in [32, 44]

3.5 The SoaML modeling language
SoaML is a modeling language supporting the Object Man-
agement Group (OMG) Services’ Reference Model [33].
SoaML has been used in industry and enterprises by soft-
ware engineering and business communities. It mainly fo-
cuses on the service paradigm where business and soft-
ware services are treated in a uniform way. SoaML pro-
vides business experts with means allowing them to de-
scribe business issues, and it provides software engineers
with means allowing them to model computing issues (soft-
ware). Its key modeling constructs, provided by a specific
UML profile, capture relevant SoA entities such as ser-

vice, service contract, service interface, service architec-
ture, agent, participant, capabilities, operations, and others.
More details on these modeling entities are given in Sec-
tion 7. A UML metamodel is associated with this profile.
It is worthwhile to mention SoaML4IoT, an extension of the
SoaML profile, intended for IoT applications [9]. It refines
some of the (native) SoaMLmodel elements and introduces
new ones. In this work, we focus on SoaML and propose
a preliminary UFO-based ontology intended to conceptual-
ize a subset of the SoaML key modeling constructs, based
on the SoaML metamodel reported in [33].

4 Method
The objective of this work is to propose a framework aiming
at conceptualizing IoT CIM models in an ontological way.
For this purpose, we followed two steps.

1. State the starting point
Two alternatives are to be considered: CIM aspects
are expressed either directly by using available appro-
priate modeling languages or in a modeling language-
neutral. The advantage of the first alternative is that
the literature reported a number ofmodeling languages
that have already explored, identified and captured
(through metamodels) a large set of key concepts and
an almost “shared” vocabulary related to the whole
CIM aspects. The issue is now to select, among the
available languages, the ones that not only cover the
different aspects of CIM models but also have been
successfully for modeling IoT requirements.

2. Build the targeted ontology (fragments)
The ontology engineering community suggests two
alternative methods to build ontologies. Either con-
structing ontologies from scratch starting from well-
defined requirements (for instance the so-called Com-
petency Questions), or by reusing available ontology
fragments. Ontology integration and ontology merg-
ing are the twowell-knownmethods adopted in the on-
tology reuse approach. Ontology integration consists
in reusing selected and evaluated ontology fragments,
extending them, customizing and adapting them to the
targeted context. Ontology merging consists in merg-
ing fragments that capture the same “reality” or share
some common concepts. In our work we used both
integration and merging methods in an ad-hoc way.

4.1 Selection of appropriate CIM modeling
languages

Usually, CIM modelers select and combine specific lan-
guages to cover the three CIM aspects (i.e., domain, busi-
ness, and requirements aspects). In this work, ontologies,
due to their high descriptiveness power, are used in con-
junction with suitable languages to improve the modeling



668 Informatica 48 (2024) 663–684 M. Bettaz et al.

of CIMs. We retain KAOS for the modeling of the require-
ments as well as for the modeling of IoT and specific appli-
cation domains, and SoaML for the modeling of the busi-
ness aspect. This work proposes to build, and merge on-
tologies associated with each of these two languages. Two
main reasons motivate the choice of KAOS. Firstly, it has
shown its effectiveness in the modeling of the requirements
of real-life and academic projects. It has been also used, in
combinationwith the SysML language [15] for the develop-
ment of (engineered) systems in general and AAL systems
in particular; these kinds of systems are characterized by a
strong use of sensors and actuators. Secondly, we can reuse
and, by the way, build on available relevant ontology frag-
ments ([19], [31], [4], [27], [23]). Three reasons motivate
the choice of SoaML. Firstly, due to its support for SOA,
SoaML provides means to model business issues as well as
software issues, thusmaking it not only able to support CIM
business views but also to offer a smooth bridge to software
design views. Secondly, a previous work [11] and a more
recent one [10] emphasized the use of the service paradigm
in an ontological-based approach for respectively the AAL
systems, and IoT systems. Thirdly, as for KAOS, the avail-
ability of ontologies intended to conceptualize the service
paradigm ([30]] as well as SoaML ([37], [28]) allows us
to work-out our preliminary ontology for SoaML without
starting from scratch.

4.2 Building of our ontology fragments
For this purpose we followed two steps.

1. Construction of preliminary KAOS and SoaML on-
tologies
Nowadays, new ontologies are mainly built by reusing
(parts of) available ontologies. The ontology inte-
gration methods requires to select, evaluate and cus-
tomize available ontology fragments matching with
the reality to conceptualize. On one side, for
the purpose of our KAOS ontology, we selected
well-evaluated fragments provided either by UFO or
GORO. It is worthwhile to note that the GORO on-
tology allowed us to get a better understanding of the
concepts inherent to the goal-oriented requirement en-
gineering. On another side, our proposed SoaML on-
tology fragments are mainly inspired from a set of Ser-
vice and SoA ontology proposals reported in the liter-
ature ([29], [30], [37]). These works allowed a better
understanding of key concepts of SoA and SoaML.
Finally, the adaptation and customization of the se-
lected fragments to KAOS and SoaML is mainly gov-
erned by an appropriate mapping of their concrete key
constructs in conformance with their associated pub-
lished metamodels. For convenience and uniformity
purposes, the proposed ontologies are expressed us-
ing a unique ontology modeling language, namely On-
toUML. This modeling language has been chosen be-
cause it is backed up by a theoretical reference ontol-
ogy that puts solid foundations for the goal, agent, and

service paradigms.

2. Merging our worked-out preliminary ontologies
As a first attempt, we chose a pragmatic approach to
conduct the merging of our proposed preliminary on-
tologies. A mapping operation stating a direct or indi-
rect correspondence between similar constructs is re-
quired before performing the merging. We start by
identifying potential similarities between shared mod-
eling constructs, then we either merge both equiva-
lent concepts into one concept in case of a direct map-
ping, or we build an intermediate ontology serving as
a bridging ontology in case of an indirect mapping.

5 Ontology fragments for KAOS

5.1 Choice of UFO and OntoUML
To the best of our knowledge, the sole attempts to build
an ontology-based model for KAOS is in [27], using the
Unified Enterprise Modeling Language (UEML). This lan-
guage, intended to unify enterprise modeling and informa-
tion system modeling, is backed-up by the Bunge-Wand-
Weber (BWW) model and Bunge’s ontology. Among its
use cases, we can mention its use to describe the meta-
model of KAOS [27]. The authors of this work noticed that
UEML is difficult to use, and exposed some limitations of
the UEML language itsellf as well as its ontological frame-
work (at the date of the publication of their work). In our
work, we chose to use OntoUML (an ontological-based ver-
sion of UML) mainly for the following reasons: OntoUML
is backed up by UFO, a formal top-level foundational on-
tology presenting good relevant ontological properties such
as completeness; availability of reliable middle-level UFO
ontology fragments conceptualizing in a very abstract way
concepts like goal, agent, event, and others; OntoUML is
easy to learn and use because of its proximity with UML
(widely used in various communities); OntoUML offers a
palette of stereotyped classes and relationships able to cover
and face numerous and various modeling situations. We
used the OpenPonk tool [8] to edit and verify the syntax
and the semantics of each of our models. The semantics is
checked against well-defined anti-patterns.

5.2 Approach
The scope of this work encompasses the four KAOS mod-
els constituting the KAOS framework (Agent, Goal, Op-
eration, and Object). The concepts of Obstacle/Conflicts
relating to Goal modeling are not addressed, because not
pertinent to the results of this (part of) work. Our pro-
posal builds on and refines specific UFO ontological el-
ements to conceptualize concepts relevant to the KAOS
models, according to the KAOS universe of discourse. The
KAOS metamodel is used as a primary source to capture
this universe of discourse, augmenting by the way the de-
gree of validity of our ontology fragment. GORO ontology



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 669

has also served as a reliable source for this work, however
GORO is mainly used for comparing similar goal-oriented
requirement frameworks (KAOS, i-star, and others). Thus,
GORO is built in such a way that it abstracts features spe-
cific to each framework. Various UFO ontology fragments
give a solid theoretical conceptualization of the goal and
agent concepts, and their inter-play as well. Relevant UFO
classes and relationships of these fragments are selected,
reused, and then refined in such a way to be the most clos-
est as possible to the KAOS constructs. The following ex-
poses, for each model of the KAOS framework, the aspects
that will be emphasized by our ontology fragments.
– KAOS Agent Model
The KAOS agent fragment has to conceptualize the
following aspects:

(a) KAOS agent, its different sorts as well as the
specificity and the meaning of each of its sorts
(conformance with the metamodel).

(b) The eventual real world entities that may be be-
hind each sort of agent. These aspects are out-of
scope of the KAOS metamodel. We added them
because, in this work, we are interested in the IoT
applications.

(c) The relationships (and their nature) that capture
the links between the entities mentioned in (b)
and their corresponding agents elicited in (a).

Figure 1 depicts the ontology fragment that captures
the (a) and (c) aspects, while Figure 2 and Figure 3
depict, respectively, the ontology fragments that cap-
ture the aspect (b).

– KAOS Goal Model
The KAOS Goal ontology fragments have to concep-
tualize the following aspects:

(a) KAOS goal, and its different forms as well as the
specificity and the meaning of each of its forms
(according to the metamodel).

(b) The way KAOS goals are classified, structured
and organized.

Figure 4 together with Figure 5 depict the ontology
fragment that captures the aspects mentioned above .

– KAOS Operation and Object Model
The KAOS Operation and Object ontology fragments
have to conceptualize the following aspects:

(a) The KAOS operation and their different sorts.
(b) The operation parameters.
(c) The pre-state and post-state attached to the oper-

ations.
(d) The Object model state on which operations ap-

ply.

The fragment related to these aspects is not described in
this paper. All the above mentioned figures are detailed in
the following sub-sections.

5.3 KAOS agent ontology
The KAOS metamodel identifies and reveals in an explicit
way two sorts of agents according to the role they play in
the context of a KAOS based requirements’ model, namely
an environment agent and a requirement agent. KAOS
environment agents are intended to enforce the “satisfac-
tion” of the so-called expectations, whilst KAOS require-
ment agents are intended to enforce the satisfaction of the
so-called “requirements”. Expectations and requirements
are specific KAOS goals explicitly defined in the KAOS
metamodel. KAOS environment agents are exemplified
by software agents (artificial active entities) that are con-
cepts related to the computing context, and KAOS envi-
ronment agents are exemplified by either humans /corpo-
rations (physical active entities) that are concepts related
to the business and technical contexts. While the previous
sentence is just an informal statement written in KAOS doc-
uments, our ontologymakes it explicit. Figure 1 shows four
sorts of OntoUML stereotyped classes (Category, Kind, Re-
lator, and Role). The stereotype Category is generally used
for representing abstract classes. We use them to glue our
ontology to relevant UFO top- and middle-level categories
and then specialize them into for instance Kind, or other
stereotyped rigid sortal entities. KAOS agents are charac-
terized by two features. On one hand they are agents (active
entities), on the other hand they are intentional agents be-
longing to the KAOS framework. Figure 1 shows that the
KAOS Agent concept is represented by a class (stereotype
Kind) that specializes the abstract class Category Agent.
This way we ensure that our ontology fragment (Figure 1)
faithfully captures the intentional agent concept. Because
these agents belong to the KAOS framework, we need to
conceptualize the fact that the KAOS framework reveals
two sorts of agents. Here we have the choice to capture this
aspect by specializing the Kind Agent either into two sub-
kind agents or into two role agents. However the nature of
these two sorts of agents seems to be more close to Perdu-
rants rather than Endurants (according to the UFO terminol-
ogy). That is why we retain the stereotype Role rather than
the stereotype Subkind to deal with this aspect. Moreover,
Figure 1 captures also the informal statement related to the
real-world entities that may exemplify these two roles. For
this purpose, we introduce two relators. The first one, Re-
quirement Agent Reification, conceptualizes the idea that
software agents, through their specialized role (RoleMixin)
KAOS IoT Software Agent, exemplify KAOS Require-
ment Agent (RoleMixin). The second relator, Environment
Agent Reification, conceptualizes the idea that Stakeholder,
through their specialized role (RoleMixin) IoT Application
Stakeholder, exemplify KAOS Environment Agent. 

5.4 Stakeholder ontology fragment
The following fragment, which is outside of the scope of
the KAOS metamodel, is useful and relies on the follow-
ing UFO knowledge: UFO ontology defines a category,
named Substantial, which is specialized into the Object and



670 Informatica 48 (2024) 663–684 M. Bettaz et al.

Figure 1: KAOS agent ontology

the Agent categories. Agents conceptualize active entities,
whilst objects conceptualize passive and unintentional enti-
ties. Agents are of different sorts: physical (e.g., machine,
human being), artificial (e.g., software), and social agents
(e.g., society associations, institutions, stakeholders). So-
cial Object, a refinement of UFOObject, is intended to con-
ceptualize social objects like value, money, etc. In Figure 2,
we propose a conceptualization of stakeholders in the con-
text of IoT applications. Category Institutional Agent, a
specialization of UFO Social Agent, is intended to abstract
all sorts of institutional agents. Figure 2 shows two sorts of
concrete institutional agents. The first one represents work-
ers, conceptualized by a Kind class, acting as IoT project
stakeholders, and the second one represents corporations,
conceptualized by also by a Kind class, acting as initiator
and/or developer of IoT applications. Corporations (Kind
class) are modeled as a group of corporation units (Sub-
Kind class). Workers may be eventually engaged or not in
IoT projects. Two disjoint Phase classes (Active, Inactive)
allow to conceptualize this situation. Moreover we distin-
guish three sorts of workers: Business and System, mod-
eled as Subkind of Kind Worker, and Manager modeled as
Subkind of Business. The fragment includes also, a Role
class, intended to conceptualize users of IoT applications
(Role IoT Application User specializing Kind Person). IoT
Application Stakeholder is intended to model the fact that
the IoT application stakeholder notion includes application
users as well as active workers. Because IoT Application
Stakeholder is aggregating two Roles (customer, worker),
RoleMixin is the more appropriate OntoUML stereotype
class to represent it. Finally, the Relator Commitment con-
ceptualizes the fact that a commitment links the IoT appli-
cation stakeholders with the with the corporation units that

Figure 2: Stakeholder ontology

are contractors with the project, i.e., the corporation unit
that owns the project and also the corporation units such as
the Ambulance Supplier Center, the Security Center, and
the Home CareGiving Center. The IoT Application Corpo-
ration Stakeholder class represents the active corporation
workers participating into the IoT application project.

5.5 IoT software agent ontology fragment
Figure 3 depicts a software agent ontology fragment. In
the context of IoT applications, we identify two sorts of
IoT software agents: those which are embedded into IoT
devices, and those which are hosted by computing devices
like servers and others. The first sort is modeled as a Sub-
kind class (IoT Device Software Agent), and the second
one as a Role class (Application-Specific Software Agent).
The Subkind IoT Device Software Agent is specialized into
two Role classes (IoT Sensor Software Agent and IoT Ac-
tuator Software Agent).Three Relators (S-Embedding, A-
Embedding, and Hosting) conceptualize the embedding as
well as the hosting of software agents according to their re-
spective digital devices. Digital Device, is itself specialized
into two subkinds: Subkind IoT Device and Subkind Com-
puting Device.

5.6 KAOS goal model ontology
The proposed KAOS goal model ontology is composed of
two ontology fragments. The first one, depicted in Fig-



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 671

Figure 3: IoT Software agent ontology

ure 4, models the KAOS goal concept as well as the hi-
erarchy structure of the KAOS goal model. The second
one, depicted in Figure 5, conceptualizes the various sorts
of KAOS goals as well as the relevant links to their corre-
sponding KAOS agents.

5.6.1 Goal and hierarchical model

Figure 4 presents an ontology fragment including three
parts: the first part represents the KAOS goal concept, the
second part the hierarchical structure of the KAOS goal
model, and the third part the concept of the KAOS abstract
goal (decomposable goal).

– Goal Concept
A KAOS goal is seen as a RoleMixin of the Cate-
gory Requirement Engineeging Goal Specializing the
Category Goal. Figure 4 shows, for instance, the
RoleMixin i∗ Goal representing the concept of goal in
the i∗ framework. The Category Requirement Engi-
neering Goal is introduced to factorize abstract shared
features that may exist between different frameworks
that deal with the goal oriented requirement approach.

– Goal Hierarchical Model
The RoleMixin Retained KAOS Goal in Figure 4, a
specialization of the RoleMixin KAOS Goal, concep-
tualizes the fact that an elicited KAOS goal is retained
to be inserted into the hierarchy of a goal model. The
hierarchy concept is modeled as a Kind (Goal Hier-
archy), a refinement of an abstract Category, named
Structure, intended to represent all sorts of structures
(not represented in the figure). The Relator Incor-
poration, a relationship between a retained KAOS

(RoleMixin Retained KAOS Goal) and a KAOS goal
hierarchy (RoleMixin KAOS Goal Hierarchy) that
conceptualizes the fact that a retained goal is inserted
into a goal hierarchy. According to its position in the
goal hierarchy, a retained goal may play either the role
of an abstract goal or the role of a concrete goal. Fig-
ure 4 includes aKind (TreeNode) to represent nodes of
the Tree structure. Tree Node is used as a secondary
class allowing the modeling of abstract goals incor-
porated into a non-leaf node of the hierarchy, and the
modeling of a concrete goal incorporated into a leaf
node of the goal hierarchy.

– Abstract Goal
Contrarily to a KAOS concrete goal, an abstract
one may be refined into sub-goals (decomposable).
The KAOS metamodel emphasizes two sorts of goal
refinement: AND refinement and OR refinement.
The AND refinement specifies that a refined goal is
achieved if and only if all sub-goals are achieved. The
OR refinement specifies that a refined goal is achieved
if and only if one of its sub-goals is achieved. For this
purpose, Figure 4 includes two roles (Role AND De-
composable and Role OR Decomposable) refining the
RoleMixin Abstract Goal. Finally two relators (Rela-
tor OR Parent and Relator AND Parent) conceptualize
the relationships between an abstract goal (as a parent
goal) and its sub-goals (as child goals). To this end,
Figure 4 includes two roles (Role ANDChild and Role
OR Child) which are refinements of the RoleMixin
Retained KAOS Goal.

Figure 5 depicts an ontology fragment intended to rep-
resent three sorts of KAOS concrete goals defined in the
KAOS metamodel, as well as their relationships with their
corresponding KAOS agents or with the KAOS object
model. KAOS concrete goal sorts are often named real-
isable or operational goals in the KAOS literature.
The RoleMixin (KAOS) Concrete Goal is specialized by

three roles (Role Expectation, Role Requirement, and Role
Domain Property) intended to represent the three sorts men-
tioned above. Expectations are taken in charge by KAOS
Environment Agents, whilst Requirements are to be made
operational (realizable) by KAOS Requirement Agents.
For this purpose, Figure 5 includes two relators (Relator
Assignment and Relator Responsibility) for the conceptu-
alization of the (above mentioned) relationships between
Role Expectation and Role KAOS Environment Agent on
one hand, and between Role Requirement and Role KAOS
Requirement Agent on the other hand. The Role Domain
Property is specialized by the Role Domain Hypothesis and
the Role Domain Invariant. Domain hypothesis represents
hypothesis on the state of the object model that must hold.
They are supposed to be enforced by the environment of the
application domain. For this purpose the Relator Hypoth-
esis Enforcement conceptualizes the relationship between
the Role Implicit Enforcer and the Role Domain Hypothe-
sis. The Kind Environment is modeled as a (shared) part of



672 Informatica 48 (2024) 663–684 M. Bettaz et al.

Figure 4: KAOS goal hierarchy ontology

the Kind Application Domain. The domain invariants rep-
resent invariants that must always hold in any state of the
application domain. The application domain must always
fulfil them. For this purpose, the Relator Fulfilment con-
ceptualizes this relationship between the Role As A State
and the Role Domain Invariant. Finally, Figure 5 includes
the Relator Obligation intended to represent the situation
where one or many sub-goals of an abstract goal are do-
main properties. In this case these properties must hold in
order to achieve such an abstract goal.

5.6.2 Responsibility model

Figure 1 shows two Relators intended to conceptualize the
reification of the Role KAOSEnvironmentAgent and the
Role KAOSRequirement Agent into respectively the stake-
holder RoleMixin IoT Application Stakeholder (defined in
Figure 2), and into the software agent RoleMixin KAO-
SIOTSoftwareAgent. This RoleMixin is a specialization of
the Category Agent (defined in Figure 1).

5.7 Object and operation models
5.7.1 Object model

In the context of IoT applications, a KAOS object model
represents relevant entities (passive objects) and agents be-
longing to a specific IoT domain and to an IoT application
domain. These two domains, represented by their respec-

tive Kind (specialization of the Category Object), are mod-
eled as components of the Kind KAOS Object Model.

5.7.2 Operation model

The operation model focuses on the satisfaction of the so-
called operational goals (requirements and expectations),
and more precisely on the means (operations) and ways
to achieve them. KAOS operations are fully described by
their trigger, their pre-conditions, their inputs, their outputs,
and their eventual generation of events. All these opera-
tion components should be modeled. OntoUML provides a
set of useful stereotypes intended for the conceptualization
of situations (state-like concept), events (action and non-
action events), and specific associations. We also reuse the
UFO concepts of Atomic and Complex Action.

6 KAOS business aspect
reinforcement

6.1 Preamble
Although business goals (high-level KAOS goals) are made
explicit in the goal model, they are mainly used for the
derivation of operational goals. KAOS models do not
carry explicit information on business processes attached to

Figure 5: Concrete goal sorts



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 673

high-level business goals. The (native) KAOS framework
did not give much consideration to the business dimen-
sion which is an important pillar for CIM modeling. Many
works related to goal-oriented business modeling have been
reported. Among these works, we mention GO4SoA [10],
where the concept of business goal is incorporated to the
SOA, a business architecture reputed centred around the
concept of service. GO4SoA specifies SoA applications
based on business goals. In this approach, as reported in
[10], the goals become part of the semantic services’ de-
scriptions.

6.2 Proposal
We adopt another alternative which consists in reinforcing
the business dimension of the KAOS modeling framework.
This is achieved by augmenting our proposed KAOS on-
tology with a fragment intended to incorporate the capabil-
ity modeling construct. We exploit the knowledge carried
on one hand by the KAOS goal (top-level goals, abstract
goals, concrete goals, and agents), and by the KAOS oper-
ations on the other hand. The main idea consists in identi-
fying an additional KAOS-based construct “semantically”
equivalent to the SoaML capability construct. This (added)
construct, built from a set of specific (native) KAOS con-
structs is then used to set up an (indirect) mapping between
KAOS and SoaML concepts. Firstly, top-level goals (ab-
stract goals positioned just at the first level under the tree
root), extracted from the KAOS goal model and represent-
ing strategic business goals, are considered as first class
elements. They are called Top Business Goals. The last
descendant goals (concrete goals) reachable from a given
top-level goal constitute the set of operational goals to be
achieved in order to satisfy the given top-goal. Secondly,
we introduce the notion of KAOS Agent Capability. This
notion is intended to represent the set of all KAOS atomic
operations that an agent is capable to perform in order to
achieve each of the concrete goals under its responsibility
(one KAOS operation for each concrete goal). Thirdly, we
extend and generalize the notion of KAOS Agent Capabil-
ity representing the set of capabilities required from a group
of KAOS agents to achieve a top-level KAOS goal: it is
called Group-Agent Capability.

6.3 Augmented KAOS modeling
Figure 6 depicts a piece of ontology intended to concep-
tualize the new introduced concepts (Role Top Business
Goal, Mode KAOS Agent Capability, and Mode KAOS
Group Agent Capability), and their relationships with na-
tive KAOS concepts (Agent, Goal, and Operation). The
diagram should be read as follows.

– The Role Top Business Goal is modeled as a spe-
cialization of the RoleMixin Abstract Goal (defined
in Figure 4). The association named Leads to is in-
tended to model that from a top business goal (Role

Figure 6: KAOS capabilities ontology

Top Business Goal) a set of concrete goals (Role Con-
crete Goal) are reachable.

– The Relator Achievement Responsibility is intended
to relate a top business goal (Role Top Business Goal)
with its corresponding group of KAOS agents (Role
Top Business Performer) which are together respon-
sible for the top business goal achievement. These
groups, named KAOS Group-Agent, are modeled as
a composition of KAOS agents (Kind KAOS Agent).

– A KAOS Agent is responsible for a set of KAOS Op-
erations. We define a KAOS Agent Capability as a
coherent subset of the set of atomic operations com-
posing a given KAOS operation; the choice of these
subsets and their consistency is the responsibility of
the relevant requirements’ engineer. In this way, a
KAOS Agent owns a set of capabilities. From the On-
toUML perspective, KAOS Atomic Operations (con-
sidered as events) are a manifestation of the Capabili-
ties of KAOS Agent.

– KAOS Agent Capability is modeled as a Mode class
depicting a feature of a KAOS Agent. A stereotyped
association (<<Characterization>>) links the Kind
KAOS Agent to the Mode KAOS Agent Capability.

– A KAOS Group Agent Capability is characterized by



674 Informatica 48 (2024) 663–684 M. Bettaz et al.

a feature intended to represent operational skills that
it can potentially perform. This feature is modeled
as a Mode class. Concretely it is modeled as a com-
position of the capabilities associated with all KAOS
agents composing the group.

– The Kind KAOS Agent can participate into several
KAOS operations. This is modeled by the associa-
tion stereotyped by <<participation>>. KAOS op-
erations are composed of a set of atomic operations
(Atomic Operation).

7 Our preliminary SoaML ontology

7.1 Approach

The scope of this (part of) work encompasses the core
SoaML business concepts and constructs. We are interested
only in the constructs related to themodeling of the business
aspect (CIM model). More precisely our SoaML ontology
framework includes entirely the models of service, capabil-
ity, participant, port, service interface, service architecture,
and service contract. Our proposal builds on and refines
specific UFO ontological elements to conceptualize con-
cepts relevant to the SoaML business models, according to
the SoaML universe of discourse. The SoaML metamodel
as well as published works aiming at developing ontolo-
gies for the Service-oriented Architecture (SOA) [37, 28]
are used as primary sources to capture this universe of dis-
course, augmenting by the way the degree of validity of our
ontology fragment.

7.2 SoaML capability

A capability represents the ability of a SoaML entity to
produce an outcome (business value) through a service. A
SoaML service is a mechanism allowing to access exposed
capabilities through an interface. Figure 7 depicts a piece
of ontology conceptualizing the notion of SoaML capabil-
ity and its relationship with the notion of a SoaML service.
The diagram includes the Kind Service, a specialization of
the Category Business Object, which is itself a refinement
the Category Social Object. The Role Enabled Service, a
specialization of the Kind Service, conceptualizes the fact
that when services are created, a stereotyped association
(<<Characterization>>) links the Category Business Ob-
ject to the Mode Value, expressing the fact that business
objects intrinsically carry values. The diagram shows two
Relators (Production and Exposure): the Relator Produc-
tion links the Mode SoaML Capability to the Mode Value,
expressing the fact that a capability produces a value. The
Relator Exposure links the Role Enabled Service, a special-
ization of the Kind Service, to the Mode SoaML Capabil-
ity.The Relator Exposure conceptualizes the fact that when
services are enabled, their capabilities become exposed to
the environment.

Figure 7: SoaML capability and service ontology

7.3 SoaML agent

According to the SoaML specification document [33], par-
ticipants are constructs intended to represent domain enti-
ties able to provide and/or consume services through ports.
In the business domain, participants may be business work-
ers and stakeholders, corporation units, and artefacts like
business architectures. In the computing domain partici-
pants may be software agents, and artefacts like software
components and architectures. Two sorts of domain en-
tities are identified in the SoaML metamodel: intentional
entities (agents) and unintentional ones. These domain en-
tities are abstracted by the concept of participants. (SoaML)
agents are seen as a special sort of participants. (SoaML)
ports are a kind of interaction points “anchored” to par-
ticipants. SoaML identifies two sorts of ports, named re-
spectively Request Port and Service Port: the first sort is
used by service consumers to submit their requests to ser-
vice providers, whilst the second one is used by service
providers to offer their services. Figure 8 depicts a piece
of ontology defining the concept of SoaML agent. The dia-
gram in Figure 8 should be read as follows. SoaML Agent
is conceptualized as a Kind that specializes the Category
Agent. It is characterized by two features: the Mode Busi-
ness Capability and the Mode Communication Capability.
The figure also includes the Kind KAOS Agent, special-
izing the Category Artificial Agent and characterized by
the Mode Communication Capability such as the SoaML
Agent.
Figure 9 depicts a piece of ontology conceptualizing

the participant, the ports’ constructs as well as their inter-
relationship.
The depicted diagram should be read as follows. The



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 675

Figure 8: SoaML capability

Figure 9: SoaML participant-port ontology

Category Social Object is specialized by two Categories.
The first one named Domain Entity is intended to concep-
tualize the business entities belonging to domains. The sec-
ond one named Interaction Entity is intended to model all
sorts of interaction entities. The Kind Participant, special-
izing the Category Domain Entity, conceptualizes the con-
cept of SoaML participant. The Role Provider and the Role
Consumer, specializing the Kind Participant, conceptual-
ize the fact that SoaML participants can play either the role
of service provider, the role of service consumer, or both.
We introduce a new Category, named Interaction Entity, in-
tended to conceptualize various kinds of abstract interaction
items such as interaction points, interaction protocols, inter-
faces, and connectors. The Kind Interaction Point, special-
izing the Category Interaction Entity, represents one sort of
interaction entities. The Subkind SoA Port, a specializa-
tion of the Kind Interaction Point, conceptualizes the SoA

Figure 10: SoaML participant-service ontology

notion of port. There are two sorts of ports: the Request
Port that represents the interaction point through which the
service is requested, and the Service Port that represents
the interaction point through which the service is offered.
The SoA Port is specialized into the Role Service Port and
the Role Request Port, thus emphasizing its specific roles,
namely Request and Service. Two Relators, named Gluing
Provider and Gluing Consumer, conceptualize the “glue”
relationships respectively between Role Provider and Role
Service ports, and between Role Consumer and Role Re-
quest ports.

7.4 SoaML participant and service

Figure 10 is intended to conceptualize the relationship
between the participant and the service concepts. The
Kind Participant is specialized by two Subkinds, namely P-
Participant and C-Participant. They are dummy classes in-
troduced to make the intended model more readable and se-
mantically correct. P-Participant is specialized by the Role
Provider, while C-Participant is refined into the Role Con-
sumer.
The SoaML Service is modeled as a SubKind of the Kind
Service. It is specialized by two Roles (P-SoaML Service,
and C-SoaML Service). The Relators Provision and Con-
sumption conceptualize the fact that SoaML services are
offered or consumed by SoaML participants.



676 Informatica 48 (2024) 663–684 M. Bettaz et al.

7.5 SoaML interfaces
As reported in [34], “service interfaces are used to de-
scribe provided and required operations to complete ser-
vices’ functionality”. SoaML provides three sorts of inter-
faces:

– Simple Interfaces that give access to very ba-
sic services requiring a “one-way” interaction (re-
quest/response pattern), where a service consumer
calls the (unique) operation offered by service
provider.

– Service Interfaces that give access to services requir-
ing bidirectional interactions (conversation pattern)
between a service provider and a service consumer. A
service interface types a service port belonging to the
provider. From the perspective of a service provider,
three elements completely define Service Interfaces:
the interface it realizes and those it uses in order to
offer and accomplish its provided service, the descrip-
tion of the (required) conversation between the service
provider and its consumer, and an enclosed part speci-
fying the specific role played by each of the connected
participants. This last element is not addressed in the
current work.

Figure 11 depicts a diagram intended to conceptualize the
SoaML interface notion. The diagram includes also useful
and required surrounding modeling elements. The model-
ing elements depicted in this figure are briefly described in
the following.

Figure 11: SoaML interfaces ontology

– Surrounding Modeling Elements
We define the Category Interaction Entity as a spe-
cialization of the Category Social Object. Two Kinds,
specializing the Category Interaction Entity, concep-
tualize respectively the general concepts of Interface
and Interaction Protocol. On the one hand, we de-
fine SoaML Interface as a special sort of Interface,
and on the other hand, two sorts of Interaction Pro-
tocol, namely Atomic Interaction Protocol intended to
represent a simple one-way interaction protocol and
Complex Interaction Protocol for bidirectional inter-
actions. Conversations (Complex Interaction proto-
cols) are modeled as ordered sequences of atomic in-
teractions.

– Interfacing
SoaML advocates the separation between the interface
giving access to a service (visible part) and the service
implementation (hidden part). The Role Access Gate,
a specialization of the SubKind SoaML Interface, rep-
resents the visible part of the SoaML service. The Role
Enabled Service, a specialization of the Kind Service,
represents the service hidden part.

– SoaML Interfaces
The subkinds SoaML Simple Interface and SoaML
Service Interface, specializing the Kind SoaML In-
terface, conceptualize the SoaML simple interface
and the SoaML service interfaces. The association
named proposes expresses the fact that a simple in-
terface offers a unique SoaML operation modeled as
<<event>> Action. an event Action is intended to
represent operations, tasks, and processes [21]).

– SoaML Service Interface
The SoaML Specification Document [33] specifies
two typing constraints: “the Service Interface is the
type of a “Service” port on a provider and the type of
a “Request” port on the consumer”.

7.6 Services’ architecture
This sub-section focuses on an important SoaML construct,
namely Services’ Architecture. It represents a high-level
SoaML business construct that describes how participants
work together for a purpose by providing and using services
expressed as service contracts [33]. They are mainly used
to define and specify compound services resulting from a
composition of services provided and consumed by a com-
munity of (two or more) participants. A Services’ archi-
tecture consists of a diagram linking services (instances) to
be composed, with both their corresponding providers (in-
stance) and consumers (instance). It can be derived from
appropriate instantiations of the piece of ontology depicted
in Figure 10. Because OntoUML does not provide means to
instantiate instances (UFO individuals), we cannot express
service architecture with OntoUML diagrams. However,
we can visualize a services’ architecture as a set of related



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 677

pairs, the first element of such pairs representing an instan-
tiation of the Relator Provision and its second element rep-
resenting an instantiation the Relator Consumption.

8 Merging KAOS and SoaML
ontologies

The merging operation between two source ontologies is
generally done through their potential shared (or over-
lapped) native concepts (if any), and/or through the elab-
oration of appropriate ontological bridges (pieces of inter-
mediate ontologies). In this work we use both approaches
in a complementary way. The first approach requires a prior
identification and deep analysis of such shared native con-
cepts, whilst the second requires a prior identification of
suitable anchoring points, in both source ontologies, where
the bridge may be attached. The ontology mapping opera-
tion is considered as a preliminary step along a process of
merging or integration of ontologies. It consists in the pre-
cise characterization of the semantic correspondence (se-
mantic similarity) relating potentially two ormore “similar”
concepts. Such correspondences between concepts may be
simple (one to one), or complex (via a transforming oper-
ation or a logical expression relating similar concepts). In
some situations, an appropriate intermediate piece of ontol-
ogy is used as a bridge between similar concepts of different
source ontologies. The analysis of both KAOS and SoaML
modeling languages reveals two sorts of situations: (1) both
languages share in an explicit way similar concepts (KAOS
domain object versus SoaML participant; KAOS agent ver-
sus SoaML agent; KAOS operation versus SoaML opera-
tion); (2) one of these languages provides a concept in an
explicit way, while a similar concept is hidden or implicit
in the other language (KAOS goal versus SoAML business
objective; KAOS capability versus SoaML capability).

– Explicit Similar Concepts

(a) Domain Object versus Participant
Both concepts refer to intentional (active) and
non-intentional (passive) entities. However
there are two slight differences: Participants pro-
vide /consume services, whilst the concept of
service is not an inherent feature of domain ob-
jects; participants communicate through mes-
sage exchanges, whilst the communication as-
pect between domain objects is left unspecified.
Although these two concepts are not semanti-
cally equivalent, we can say that they are sib-
ling concepts, because of their overlapping cor-
respondence. One way to put these two sibling
concepts together is to root them to a common
parent concept. In our ontology, the Object cat-
egory fills this need.

(b) KAOS Agent versus SoaML Agent
A priori, they are similar in the sense that both
are intentional entities, but KAOS agents can be

refined to distinguish two specific agents, which
is not the case for SoaML agents. Although these
two concepts are not semantically equivalent, we
can say that they are sibling concepts because of
their overlapping correspondence. This situation
is treated in the same way as in the previous case.

(c) KAOS Operation versus SoaML Operation
At first sight these concepts seem to be very sim-
ilar. However there are two differences between
them: in contrast to KAOS operations, which
generally are complex actions intended to satisfy
requirements, SoaML operations are atomic
actions, offered through specific interfaces, and
intended to provide services; SoaML opera-
tions can either be called (request/response)
or invoked through message exchanges, while
KAOS operations are triggered by events. It is
worth noting that message sending and receiving
are themselves sorts of non-action events.

– Implicit Similar Constructs

(a) SoaML Capability versus KAOS Capability
SoaML provides explicit constructs intended to
represent both the capability and service con-
cept, the service concept being built on the ca-
pability concept. The capability concept, though
mentioned in the reported KAOS literature, is
not perceived as an explicit KAOS construct. In
this situation, our approach consists in extending
KAOS in such a way to make explicit the notion
of KAOS capability, and to define it in such a
way to make possible a mapping to the SoaML
similar concept. Furthermore, the proposed ex-
tension ensures, through this mapping, a “natural
connection” with the notion of service.

(b) KAOS Goal versus SoaML Business Objective
KAOS deals in an explicit way with goals dis-
tinguishing between business (top level) and op-
erational goals (leaf level) thanks to their rela-
tive positions in the so-called KAOS goal model.
Regarding SoaML, it does not support an ex-
plicit goal construct. However, business goals
and processes are supposed to be (previously)
identified in an explicit way using an appropriate
business modeling language, and then SoaML
models (capabilities, service contracts, and ser-
vices’ architecture) may be derived from these
identified business goals and processes. Busi-
ness goals are considered only as implicit input
knowledge exploited by SoaML modelers. Thus
we may conclude that KAOS goals have no sim-
ilar SoaML construct.



678 Informatica 48 (2024) 663–684 M. Bettaz et al.

9 Instantiating OntoUML models

9.1 Transformation approach

The OntoUML models describing our proposed ontology,
once designed, edited and their syntax and semantics veri-
fied, are ready to be instantiated in concrete OWL classes
and populated with concrete individuals (lowest instance
level) related to specific IoT applications, thus leading to a
“query-able” Knowledge/Data graph. More precisely, On-
toUML models can be transformed (manually or automati-
cally) into appropriate gentle UFO (gUFO) classes. gUFO
is an extension of OWL supporting UFO theoretical frame-
work as well as the set of OntoUML stereotypes. To this
end, we use the following approach. First, we transform
(a selected subset of) our proposed ontology fragments into
their corresponding gUFO descriptions according to UFO
semantic rules. Second, we instantiate these gUFO descrip-
tions into specialized gUFO classes and concrete individu-
als corresponding to the needs expressed by stakeholders
(cf. Section 10).
The transformation is performed as follows. Our

OntoUML (stereotyped) classes (reflecting a real-
ity such as KAOS, and generic IoT concepts in-
dependent from a specific IoT application) are di-
rectly transformed into corresponding gUFO classes,
i.e., gUFO:Category, gUFO:Kind, gUFO:SubKind,
gUFO:Role, gUFO:RoleMixin, gUFO:Relator, and others.
This is performed, of course, according to the class
hierarchies and relationships belonging to our OntoUML
models. For this purpose we mainly use rdf and rdfs
sentences such as
:C rdf:type gufo:X.
:C rdfs:subClassOf gufo:D.
:C rdfs: superClassOf gufo:E.
The first sentence means that C, a stereotyped class
belonging to our model, is a class instance of the gUFO
class X, the second sentence means that C is a subclass of
D, and the third sentence means that D is a superclass of E.
These descriptions are useful to correctly describe the
hierarchy of the stereotyped classes belonging to our On-
toUML ontology fragments. Other specific rdf sentences
are used to express mediations linking OntoUML classes
and Relators.

9.2 Samples of queries on our populated
ontology fragments

This subsection presents samples of generic queries that
may be issued by relevant users to the ontology fragments
populated with instances related to IoT applications
under specification. The intended users of these ontology
fragments are the stakeholders engaged in the CIM devel-
opment of IoT applications. These samples are categorized
as follows.

Goal Hierarchy

1.1 What are the top goals? 1.2 What are the concrete
goals associated with a top goal? 1.3 What are the children
goals of a parent goal? 1.4 Which kind of composable goal
is a parent goal?

Goal-Agent-Stakeholder-Operation
2.1 List the requirement agents. 2.2 Which stakeholder is
responsible for a goal? 2.3 What are the domain properties
enforced by an environment agent? 2.4 What are the
domain properties required by an abstract goal? 2.5 Which
expectation is as- signed to an environment agent? 2.6
Which requirement agent is responsible for a requirement?
2.7 List the expectations. 2.8 List the domain invariants
2.9 Which stakeholder is reified by an environment agent?
2.10 Which software agent is reified by a requirement
agent? 2.11 List the input parameters of an operation. 2.12
List the output parameters of an operation. 2.13 Which
agent participates to an operation? 2.14 What are the
capabilities of an agent?

IoT
3.1 List the IoT sensors 3.2 List the IoT actuators 3.3 List
the software agents 3.4 Which software agent is embedded
into a IoT device? 3.5 Which software agent is hosted in a
computing device ? 4.1 List the participants. 4.2 List the
agents. 4.3 What is the business capability of a participant?
4.4 What is the communication capability of a participant?
4.5 List the services. 4.6 What are the capabilities exposed
by a service? 4.7 What is the value produced by a capabil-
ity? 4.8 What is the interface of a service? 4.9 What is the
provider participant of a service interface? 4.10 What are
the ports of a service interface? 4.11 What is the operation
provided by a simple interface?

10 An illustrative example
This section has two parts. A problem statement for our
illustrative IoT application, along with the needs elicited,
is first outlined, then followed by a gUFO instantiation of
selected OntoUML models represented in Figures 1, 2, 3
, 4, and 5.

10.1 Problem statement and needs’
elicitation

10.1.1 Problem statement

The chosen example scenario, inspired from the one de-
scribed in [11], is adapted and enriched in order to fulfil our
illustrative needs. A platform, equipped with various smart
sensors and actuators located inside the patient home, is in-
tended to monitor and control a set of patient vital param-
eters, of home-related parameters (temperature, humidity),
and of security-related parameters (face recognition). The
objective of this platform is to maintain patient health con-
dition and to provide patients with medical care in case of
emergency situations.



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 679

10.1.2 Elicitation

(a) Stakeholders
Corporation owning andmanaging the platform: Man-
ager, Remote Patient Followers, Health CareGiv-
ing Centers, Ambulance Supplying Centers, Security
Centers, Patients.

(b) Domain Entities

+ IoT devices: smart sensors (medical, temper-
ature, humidity, face recognition camera, win-
dows’ status monitor), smart actuators (dehu-
midifier, air conditioner, window opener/closer).

+ Health - vital parameters: heartbeat, blood pres-
sure, oxygen rate, and so on.

+ Home Infrastructure Hypothesis: automatic
(opening/closing) windows, Internet/IoT infras-
tructure, Health Platform installed.

(c) Goal Model

+ Functional Goals
– Root goal: Manage Patient.
– First-level goals (AND): Keep Patient
Healthy, Achieve Patient Authentication.

– Keep Patient Healthy (AND): Patient Con-
dition Monitoring, Corrective CounterMea-
sures.

– Patient ConditionMonitoring (AND): Med-
ical Parameters Monitoring, Home Parame-
ters Monitoring.

– Medical Parameters Monitoring (AND):
Heartbeat Measurement, Blood Pressure
Measurement, Oxygen Rate Measurement.

– Home Parameters Measurement(AND):
Temperature Measurement, Humidity Rate
Measurement.

– Corrective CounterMeasures (OR): Medi-
cal Care CounterMeasures, Home Counter-
Measures.

– Home CounterMeasures (AND): Control
Temperature, Control Humidity. Control
Temperature (OR): Device based Air Con-
ditioning, Natural Air Conditioning.

– Control Humidity (OR): Device
Based De-Humidification, Natural De-
Humidification.

– Medical Care CounterMeasures (OR):
Emergency Evacuation, At Home CareGiv-
ing.

– Achieve Patient Authentication (AND): Pa-
tient Registration, Patient Authentication
Checking.

– Patient Registration (AND): Platform
Prompting, Patient Information Filling.

– Patient Authentication Checking(AND):
Face Capturing, Face Checking.

+ Domain Properties
– Domain Invariants: Admitted ranges of vi-
tal and home parameters values.

– Domain Expectations: Specific Home Ap-
pliances installed and working, IoT Internet
available.

+ Listing and categorizing of the potential perti-
nent agents
– Users and Workers: Patient (IoT Ap-
plication User), HomePlatform Product
Responsible (manager), At-Home Care-
Giver (business worker), Remote Patient
Follower (business worker), Security
Checker (business worker).

– Corporation Units: Health CareGiving
centers, Ambulance supplying centers,
Security centers.

– Software
∙ Application Specific Software: Patient
Platform Manager.

∙ IoT Software: A specific Software
Agent for each smart sensor and actu-
ator engaged in the platform.

10.2 Transformation into gUFO and
instantiations

In this section we apply the two-steps’ approach stated in
Section 9.

10.2.1 Transformation into gUFO

We cover almost all sorts of stereotyped classes used in our
OntoUML models. The following shows the transforma-
tion of a set of significant classes belonging to some se-
lected figures.

+ KAOS Agent Ontology (cf. Figure 1) Category and
Kind :Agent rdf:type gufo:Category.
:KAOSAgent rdf:type gufo:Kind;
rdfs:subClassOf :Agent.
Role and RoleMixin
:KAOSEnvironmentAgent rdf:type gufo:Role;
rdfs:subClassOf :KAOSAgent.
:KAOSIoTSoftwareAgent rdf:type gufo:RoleMixin;
rdfs:subClassOf :Agent;
rdfs:superClassOf :IoTDeviceSoftwareAgent;
rdfs:superClassOf
:ApplicationSpecificSoftwareAgent.

+ IoT Software Ontology (cf. Figure 3)
RoleMixin and Role



680 Informatica 48 (2024) 663–684 M. Bettaz et al.

:KAOSIoTSoftwareAgent rdf:type gufo:RoleMixin;
rdfs:subClassOf :Agent;
rdfs:superClassOf :IoTDeviceSoftwareAgent;
rdfs:superClassOf
:ApplicationSpecificSoftwareAgent.
:IoTSensorSoftwareAgent rdf:type gufo:Role;
rdfs:subClassOf :IoTDeviceSoftwareAgent.
:IoTActuatorSoftwareAgent rdf:type gufo:Role;
rdfs:subClassOf :IoTDeviceSoftwareAgent.

+ KAOS Goal Hierarchy (cf. Figure 4)
Category and RoleMixin
:Goal rdf:type gufo:Category.
:RequirementEngineeringGoal rdf:type
gufo:Category;
rdfs:subClassOf :Goal.
:KAOSGoal rdf:type gufo:RoleMixin;
rdfs:subClassOf :RequirementEngineeringGoal.

+ Role and RoleMixin
:RetainedKAOSGoal rdf:type gufo:RoleMixin;
rdfs:subClassOf :KAOSGoal;
:rdfs:superClassOf :ConcreteGoal;
rdfs:superClassOf :AbstractGoal.
:AbstractGoal rdf:type gufo:RoleMixin;
rdfs:subClassOf :RetainedKAOSGoal;
rdfs:superClassOf :ORDecomposable;
rdfs:superClassOf :ANDDecomposable.
:ORDecomposable rdf:type gufo:Role;
rdfs:subClassOf :AbstractGoal.
:ANDDecomposable rdf:type gufo:Role;
rdfs:subClassOf :AbstractGoal.

+ Concrete Goal Sorts Ontology (cf. Figure 5)
Role and RoleMixin
:ConcreteGoal rdf:type gufo:RoleMixin;
rdfs:subClassOf :RetainedKAOSGoal;
rdfs:superClassOf :Requirement;
rdfs:superClassOf :Expectation;
rdfs: superClassOf :DomainProperty.
:Requirement rdf:type gufo:Role;
rdfs:subClassOf :ConcreteGoal.
:Expectation rdf:type gufo:Role;
rdfs:subClassOf :ConcreteGoal.
:DomainProperty rdf:type gufo:Role;
rdfs:subClassOf :ConcreteGoal.
:DomainHypothesis rdf:type gufo:Role;
rdfs:subClassOf :DomainProperty.
Relator and Mediation
:Assignment rdf:type gufo:Relator.
:AssignmentInvolves rdf:type owl:ObjectProperty;
rdfs:subPropertyOf gufo:mediate;
rdf:domain :Assignment;
rdf:range :Expectation;
rdf:range :KAOSEnvironmentAgent.

10.2.2 Instantiations of concrete individuals

The following shows samples of concrete individual
instantiations. These are either directly instantiated from
stereotyped classes of our OntoUML models or in an
indirect way through the specialization of stereotyped
classes of our OntoUML models.

(A) Direct concrete individuals instantiations

+ Abstract goals (samples)
Patient (:ag0), Keep Patient Healthy (:ag1), Achieve
Patient Authentication (:ag2), Patient Condition
Monitoring (:ag3).
:ag0 rdf:type :AbstractGoal, …

+ Concrete goals (samples)
Blood Pressure Measurement (crg2), Oxygen Rate
Measurement (crg3)
Temperature Measurement (crg4) are instances of
:Requirement Role
:crg2 rdf:type :Requirement
Patient Information Filling(ceg13) is an instance of
:Expectation Role
:ceg13 rdf:type :Expectation

+ IoT Devices (samples)
dhd: rdf:type IoTActuator; (dehumidifier device)
:wd rdf:type IoTActuator; (window actuator device)
:tempd rdf:type :IoTSensor; (temperature device)
:hbd rdf:type :IoTSensor. (heartbeat device)

+ Environment Agent
Only two instances can be instantiated from this Role
class
:asanappuser rdf:type :KAOSEnvironmentAgent;
:asacorpworker rdf:type :KAOSEnvironmentAgent.

(B) Indirect concrete individual instantiations

+ Patients: First we specialize the Role class IoT
Application User (cf. Figure 2) into the class Role
Patient, then we instantiate concrete individuals of the
class Patient
:Patient rdf:type gufo:Role
rdfs:subClassOf IoTApplicationUser
:patient1 rdf :Patient

+ Stakeholder: First we specialize the Role class
IoT Application Corporation Stakeholder (cf. Fig-
ure 2) into four Role classes :AtHomeCareGiver,
RemotePatientFollower, SecurityChecker, and Home-
PlatformProductResponsible.



Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 681

Then we instantiate concrete individuals of these four
Role Classes:
:atg rdf:type :AtHomeCareGiver;
:rpf rdf:type :RemotePatientFollower;
:sc rdf:type :SecurityChecker;
:hppr rdf:type :HomePlatformProductResponsible.

11 Concluding remarks, discussion,
and future research directions

11.1 Results
This work presents an ontological-based framework in-
tended to help CIM modelers in their preliminary analy-
sis of IoT applications under development. The use of on-
tologies is mainly motivated by their high aptitude to ad-
dress descriptive aspects inherent to CIMmodeling, and the
profusion of available domains’ ontologies making them
reusable in various IoT applications. The proposed frame-
work relies on a combination of KAOS (a good candidate
for the requirements and domain modeling) and SoaML
(for the business service modeling). The outcomes of this
work are fourfold. Preliminary ontologies for KAOS and
SoaML, addressing their respective key concepts, as well
as basic IoT elements, are built; a pragmatic merging of
these two ontologies is proposed; an implementation of our
ontology fragments in gUFO classes aimed at their com-
puterization is given; an illustrative example demonstrating
the applicability of our results to IoT applications is pre-
sented. It is worth mentioning, that OpenPonk [8] was used
to edit and verify the syntax and the semantics of our mod-
els before transforming them into gUFO. The semantics is
checked against well-defined anti-patterns.

11.2 Discussion
In this section, we first focus the discussion around the com-
parison of our work with (only) those mentioned in Table 1,
i.e., the works that are the closest to our work; then we com-
pare our proposed KAOS and SoaML ontologies with those
reported in the literature.

11.2.1 Comparison with works reported in Table 1

According to Table 1, [38] is (to the best of our knowl-
edge) the sole work combining KAOS and SoaML con-
cepts aimed at addressing IoT requirements. What pri-
marily distinguishes our work from[38] is our adoption of
ontological metamodeling rather than “traditional” UML
metamodeling. The advantage of this alternative approach
reported in [24] is based on the mapping of elements of
modeling languages to appropriate ontological concepts; it
lies mainly in the improvement of the semantic perspective
thanks to the use of well-defined and sound (OntoUML)
stereotypes. Our ontology fragments are built according
to top-level UFO goal and agent fragments on one side,

and KAOS and SoaML metamodels on the other side. Ad-
ditionally, the resulting OntoUML models, as conceptual
ontologies, are transformed into either operational ontolo-
gies (gUFO/OWL) or formal specifications (Alloy formal
specification language) for further analysis and simulation
purposes. [43] enriched KAOS/SysML (a combination of
KAOS and SysML) with an ontological approach. How-
ever, unlike our entirely ontological approach, the concept
of ontology used in [43] covers only the domain aspect.
Furthermore, our proposal, aimed at IoT applications, not
only explicitly addresses KAOS software agents specific
to the IoT context, but also addresses the application do-
main (KAOS Object Model) from an IoT perspective. [11]
provided a UFO ontological approach bringing together the
concepts of Goal, Agent, Task, and Service. Their ob-
jective differs from ours: first, their proposed ontology
serves as a “framework” for developing metamodels for
new domain-specific modeling languages, while ours rein-
forces the semantics of metamodels of an existing, well-
established modeling language (KAOS and SoaML); sec-
ondly, they consider the SoA principle, where services are
traditionally discovered and searched from the outside of
the “calling” application, while on our side we focus on
the SoaML modeling language rather than the mentioned
SoA principle. The novelty consists in an ontological bridg-
ing between our proposed KAOS ontology fragments and
SoaML fragments: bringing “semantically” closer KAOS
agents and SoaML participants, KAOS Goal and SoaML
Service through their “shared” capability concept which is
implicitly mentioned in the KAOS literature and explicitly
defined in the SoaML metamodel. This way facilitates a
shift from a KAOS goal model to a SoaML architecture. Fi-
nally, [13] proposes a goal oriented methodology intended
for AAL requirements (GoAAL), that is mixing ontology
fragments from diverse sources (such as IoT domain and
health domain). The work adopts a goal ontology fragment
based on a variant of i-star, rather than KAOS, for goals.
Although the concepts of task and operation are retained,
the service concept is not considered in [13].

11.2.2 KAOS and SoaML ontologies

The literature reported ontology proposal(s) for KAOS
[27], and for SoaML [30, 37, 29]. In [27], the authors used
on one hand a standard KAOS metamodel as a reference
to build their KAOS ontology, and on the other hand the
Unified Enterprise Modeling Language (UEML) as an on-
tological modeling language. UEML is usually intended
for enterprises and information systems’ modeling. Our
KAOS ontology not only refers to a standard KAOS meta-
model, but is also based on proposed refinements of model-
ing elements drawn from UFO-C (Agent and Goal) ontol-
ogy fragments [19, 23], and also on proposed refinements of
the Goal-oriented Requirement Ontology (GORO) [31, 23].
Regarding SoaML, [30] and [37, 29] are among the recent
works aiming at introducing ontology concepts for SoA and
SoaML. The authors of [30] have analyzed and evaluated



682 Informatica 48 (2024) 663–684 M. Bettaz et al.

the use of UFO-S, a UFO sub-ontology for services, in var-
ious approaches including the SoaML one; those of [37]
have proposed a set of ontologies covering the general as-
pects of the so-called Service Engineering (service-oriented
architecture, software service ontology, etc.) including on-
tologies for SoaML. Their work relies on the Open Group
Service Ontology, and also on the ISO/IEC SoA Refer-
ence Architecture. [29] provides a comparison between
the UFO-S service ontology and other similar service on-
tologies including the Open Group Service Ontology. Our
SoaML ontology is built using refinements and adaptations
of some modeling elements of UFO-A and UFO-B ontol-
ogy fragments. The suggested adaptations mainly rely on
relevant knowledge drawn from the OMG SoaML specifi-
cation document [33] as well as from [37, 29].

11.3 Limitations and future research
directions

This work consists in proposing an ontological conceptual-
ization of IoT CIMs initially modeled using a combination
of KAOS and SoaML, with KAOS addressing both require-
ments and domain aspects, while SoaML addressing the
business aspect through the service and service architecture
concepts. A set of preliminary related ontology fragments
illustrated by samples of instantiations constitutes our main
results. At this first and current stage of our work, we iden-
tified some limitations that deserve to be addressed in future
contributions. A first limitation concerns the use of struc-
tural models in general and OntoUML in particular to ad-
dress business process modeling. We envisage for a future
work to investigate a type of model more adapted to pro-
cess modeling such as BPMN (Business ProcessModel and
Notation) or a combination of BPMN and DEMO (Design
& Engineering Methodology for Organisations). A second
limitation comes from our (re)-use of the Agent and Goal
UFO-C fragments, while for the time being gUFO does not
support UFO-C, which prevents their potential instantiation
using gUFO. In order to make our fragments more reliable,
an extension of gUFO constitutes a future research direc-
tion. In our proposed fragments, we introduced some as-
pects related to the IoT world, particularly IoT Software
Agents and IoT devices. We also suggested that, in the
context of IoT, the KAOS Object Model encloses available
public ontologies related to the IoT domain as well as the
application domains. However, we adopted in our approach
a generic and general purpose SoaML service concept. A
future development of our work in this direction using a
combination of BPMN and DEMO seems to be a promis-
ing future work.
As other future works, we plan to:

– transform OntoUML based ontologies into Alloy for-
mal specifications for verification and simulation pur-
poses [7].

– Enrich the KAOS ontology by adding the conceptual-
ization of the obstacle and conflict concept.

Acknowledgement
The authors thank the anonymous reviewers for their valu-
able comments that helped improve this version of the pa-
per.

References
[1] S. Assar. Model driven requirements engineering

mapping the field and beyond. In Model Driven
Requirement Engineering Workshop MoDRE, 2014.
https://dx.doi.org/10.1109/MoDRE.2014.
6890820.

[2] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies,
meta-models and the model-driven paradigm. In On-
tologies for Software Engineering and Software Tech-
nology. Springer Berlin Heidelberg, 2010. https:
//dx.doi.org/10.1007/3-540-34518-3_9.

[3] S. Benkhaled, M. Hemam, M. Djezzar, and
M. Maimour. An ontology – based contextual
approach for cross-domain applications in In-
ternet of Things. Informatica An International
Journal of Computing and Informatics, 2022.
https://doi.org/10.31449/inf.v46i5.3627.

[4] C. H. Bernabe, V. E. S. Souza, R. de Almeida Falbo,
R. S. S. Guizzardi, and C. Silva. GORO 2.0:
Evolving an ontology for goal-oriented requirements
engineering. In Advances in Conceptual Mod-
eling ER, 2019. https://dx.doi.org/10.1007/
978-3-030-34146-6_15.

[5] M. Bettaz. Implementing OntoUML Models with
OntoObject- Z Specifications: A Proof of Concept
Relying on a Partial Ontology for VLANs. In 14th
International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications,
SIMULTECH 2024. SciTePRESS - Science and Tech-
nology Publications, Lda, 2024. https://dx.doi.
org/10.5220/0012854500003758.

[6] M. Bettaz and M. Maouche. Towards a New
Ontology-based Descriptive Language: OntoObject-
Z. In International Conference on Contemporary
Computing and Informatics (IC3I). IEEE, 2023.
https://dx.doi.org/10.1109/IC3I59117.
2023.10397921.

[7] B. F. B. Braga, J. P. A. Almeida, G. Guizzardi, and
A. B. Benevides. Transforming OntoUML into Al-
loy: towards conceptual model validation using a
lightweight formal method. Innovations in Systems
and Software Engineering, 2010. https://dx.doi.
org/10.1007/s11334-009-0120-5.

[8] CCMI. OpenPonk platform.
https://ccmi.fit.cvut.cz/tools/openponk/, 2023.

https://dx.doi.org/10.1109/MoDRE.2014.6890820
https://dx.doi.org/10.1109/MoDRE.2014.6890820
https://dx.doi.org/10.1007/3-540-34518-3_9
https://dx.doi.org/10.1007/3-540-34518-3_9
 https://doi.org/10.31449/inf.v46i5.3627
https://dx.doi.org/10.1007/978-3-030-34146-6_15
https://dx.doi.org/10.1007/978-3-030-34146-6_15
https://dx.doi.org/10.5220/0012854500003758
https://dx.doi.org/10.5220/0012854500003758
https://dx.doi.org/10.1109/IC3I59117.2023.10397921
https://dx.doi.org/10.1109/IC3I59117.2023.10397921
https://dx.doi.org/10.1007/s11334-009-0120-5
https://dx.doi.org/10.1007/s11334-009-0120-5


Towards an Ontological-Based CIM Modeling… Informatica 48 (2024) 663–684 683

CCMI Research Group, Faculty of Information
Technology, Czech Technical University in Prague.

[9] B. Costa, P. F. Pires, and F. C. Delicato. Modeling
SOA-based IoT Applications with SoaML4IoT. In
World Forum on Internet of Things (WF-IoT), 2019.
https://dx.doi.org/10.1109/WF-IoT.2019.
8767218.

[10] I. C. Costa and J. M. P. de Oliveira. GO4SOA:
Goal-oriented modeling for soa. In International
Conference on Web Information Systems and Tech-
nologies, 2016. https://dx.doi.org/10.5220/
0005800902470254.

[11] L. O. B. da Silva Santos, G. Guizzardi, and R. S. S.
Guizzardi. GSO: Designing a well-founded service
ontology to support dynamic service discovery and
composition. In Enterprise Distributed Object Com-
puting (EDOC), 2009. https://dx.doi.org/10.
1109/EDOCW.2009.5332016.

[12] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro,
S. Isotani, P. Brito, and A. Silva. Applications
of ontologies in requirements engineering: a sys-
tematic review of the literature. Requirements En-
gineering, 2016. https://dx.doi.org/10.1007/
s00766-015-0222-6.

[13] C. Diamantini, A. Freddi, S. Longhi, D. Potena, and
E. Storti. A goal-oriented, ontology-based methodol-
ogy to support the design of AAL environments. Ex-
pert Systems With Applications, 2016. https://dx.
doi.org/10.1016/j.eswa.2016.07.032.

[14] B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre,
S. G. Johnsen, and A. Solberg. Model-driven ser-
vice engineering with soaml. In Service Engineer-
ing Book. Springer, 2011. https://dx.doi.org/
10.1007/978-3-7091-0415-6_2.

[15] S. J. T. Fotso, M. Frappier, R. Laleau, A. Mam-
mar, and M. Leuschel. Formalisation of
SysML/KAOS Goal assignments with b sys-
tem component decompositions. In Inte-
grated Formal Methods (IFM), 2018. https:
//dx.doi.org/10.1007/978-3-7091-0415-6_
210.1007/978-3-319-98938-9_22.

[16] X. Franch, L. López, C. Cares, and D. Colomer. The
i* framework for goal-oriented modeling. InDomain-
Specific Conceptual Modeling: Concepts, Methods
and Tools. Springer, 2016. https://dx.doi.org/
10.1007/978-3-319-39417-6_22.

[17] G. Giancarlo, B. B. Alessander, F. Claudenir,
P. Daniele, A. J. Paulo, and P. S. Tiagoa. UFO: Uni-
fied foundational ontology. Applied Ontology, 2022.
https://dx.doi.org/10.3233/AO-210256.

[18] N. Guarino. Formal ontologies and information sys-
tems. In Formal Ontology in Information Systems
(FOIS). IOS Press, 1998.

[19] G. Guizzardi, R. de Almeida Falbo, and R. Guiz-
zardi. Grounding software domain ontologies in the
unified foundational ontology (UFO): The case of
the ODE software process ontology. In Conferencia
Iberoamericana de Software Engineering, 2008.

[20] G. Guizzardi and G. Wagner. Using the unified foun-
dational ontology (UFO) as a foundation for gen-
eral conceptual modeling languages. In Theory and
Applications of Ontology: Computer Applications.
Springer, 2010. https://dx.doi.org/10.1007/
978-90-481-8847-5_8.

[21] R. S. Guizzardi and G. Guizzardi. Applying the UFO
ontology to design an agent-oriented engineering lan-
guage. In Conceptual Modeling ER, 2013. https:
//doi.org/10.1007/978-3-642-15576-5_16.

[22] R. S. S. Guizzardi and G. Guizzardi. Applying the
UFO ontology to design an agent-oriented engineer-
ing language. In Advances in Databases and Infor-
mation Systems (ADBIS), 2014. https://doi.org/
10.1007/978-3-642-15576-5_16.

[23] R. S. S. Guizzardi, G. Guizzardi, A. Perini,
and J. Mylopoulos. Towards an ontological
account of agent-oriented goals. In Software
Engineering for Large-scale Multi-Agent Systems
(SELMAS), 2006. https://dx.doi.org/10.1007/
978-3-540-73131-3_9.

[24] K. Hinkelmann, E. Laurenzi, A. Martin, and
B. Thönssen. Ontology-based metamodeling. In
Business Information Systems and Technology 4.0.
Springer, 2018. https://dx.doi.org/10.1007/
978-3-319-74322-6_12.

[25] L. Kadakolmath and U. D. Ramu. Goal-oriented
modeling of an urban subway control system using
KAOS. Indonesian Journal of Computer Science
(IJCS), 2023. https://doi.org/10.33022/ijcs.
v12i3.3239.

[26] D. Man. Ontologies in computer science. DIDAC-
TICA MATHEMATICA, 31(1):43–46, 2013.

[27] R. Matulevicius, P. Heymans, and A. L. Op-
dahl. Ontological analysis of KAOS using sep-
aration of reference. In Contemporary Issues in
Database Design and Information Systems Devel-
opment. IGI Global, 2007. https://doi.org/10.
4018/978-1-59904-289-3.ch002.

[28] J. C. Nardi, J. P. A. Almeida, P. H. A. da Silva,
and G. Guizzardi. An ontology-based diagnosis of
mainstream service modeling languages. In Inter-
national Enterprise Distributed Object Computing

https://dx.doi.org/10.1109/WF-IoT.2019.8767218
https://dx.doi.org/10.1109/WF-IoT.2019.8767218
https://dx.doi.org/10.5220/0005800902470254
https://dx.doi.org/10.5220/0005800902470254
https://dx.doi.org/10.1109/EDOCW.2009.5332016
https://dx.doi.org/10.1109/EDOCW.2009.5332016
https://dx.doi.org/10.1007/s00766-015-0222-6
https://dx.doi.org/10.1007/s00766-015-0222-6
https://dx.doi.org/10.1016/j.eswa.2016.07.032
https://dx.doi.org/10.1016/j.eswa.2016.07.032
https://dx.doi.org/10.1007/978-3-7091-0415-6_2
https://dx.doi.org/10.1007/978-3-7091-0415-6_2
https://dx.doi.org/10.1007/978-3-7091-0415-6_210.1007/978-3-319-98938-9_22
https://dx.doi.org/10.1007/978-3-7091-0415-6_210.1007/978-3-319-98938-9_22
https://dx.doi.org/10.1007/978-3-7091-0415-6_210.1007/978-3-319-98938-9_22
https://dx.doi.org/10.1007/978-3-319-39417-6_22
https://dx.doi.org/10.1007/978-3-319-39417-6_22
https://dx.doi.org/10.3233/AO-210256
https://dx.doi.org/10.1007/978-90-481-8847-5_8
https://dx.doi.org/10.1007/978-90-481-8847-5_8
https://doi.org/10.1007/978-3-642-15576-5_16
https://doi.org/10.1007/978-3-642-15576-5_16
https://doi.org/10.1007/978-3-642-15576-5_16
https://doi.org/10.1007/978-3-642-15576-5_16
https://dx.doi.org/10.1007/978-3-540-73131-3_9
https://dx.doi.org/10.1007/978-3-540-73131-3_9
https://dx.doi.org/10.1007/978-3-319-74322-6_12
https://dx.doi.org/10.1007/978-3-319-74322-6_12
https://doi.org/10.33022/ijcs.v12i3.3239
https://doi.org/10.33022/ijcs.v12i3.3239
https://doi.org/10.4018/978-1-59904-289-3.ch002
https://doi.org/10.4018/978-1-59904-289-3.ch002


684 Informatica 48 (2024) 663–684 M. Bettaz et al.

Conference (EDOC), 2019. https://doi.org/10.
1109/EDOC.2019.00023.

[29] J. C. Nardi, R. de Almeida Falbo, J. P. A. Almeida,
G. Guizzardi, L. F. Pires, M. J. van Sinderen, and
N. Guarino. Towards a commitment-based reference
ontology for services. In Enterprise Distributed Ob-
ject Computing (EDOC), 2013. https://doi.org/
10.1109/EDOC.2013.28.

[30] J. C. Nardi, R. de Almeida Falbo, J. P. A. Almeida,
G. Guizzardi, L. F. Pires, M. J. van Sinderena,
N. Guarino, and C. M. Fonseca. A commitment-
based reference ontology for services. Information
Systems, 2015. https://doi.org/10.1016/j.is.
2015.01.012.

[31] NEMO. Goal oriented re-
quirements ontology (GORO).
https://dev.nemo.inf.ufes.br/seon/GORO.html.
Research Group.

[32] J. C. Nwokeji, T. Clark, and B. S. Barn. To-
wards a comprehensive meta-model for KAOS. In
Model-Driven Requirements Engineering (MoDRE),
2013. https://doi.org/10.1109/MoDRE.2013.
6597261.

[33] OMG. Service oriented architecture model-
ing language (soaml) specification, v 1.0.1.
https://www.omg.org/spec/SoaML/1.0.1/PDF. Object
Management Group.

[34] M. A. Orellana, J. R. Silva, and E. L. Pellini. A
model-based and goal-oriented approach for the con-
ceptual design of smart grid services.Machines, 2021.
https://doi.org/10.3390/machines9120370.

[35] I. Osman, S. B. Yahia, and G. Diallo. Ontology in-
tegration: Approaches and challenging issues. Infor-
mation Fusion, 2021. https://doi.org/10.1016/
j.inffus.2021.01.007.

[36] R. Pergl, T. P. Sales, and Z. Rybola. Towards On-
toUML for software engineering: From domain on-
tology to implementation model. In Model and Data
Engineering (MEDI), 2013. https://doi.org/10.
1007/978-3-642-41366-7_21.

[37] Y. Purnomo, R. Doss, N. B. Suhardi, and N. B. Kurni-
awan. Consolidating service engineering ontologies
building service ontology from SOA modeling lan-
guage (SoaML). International Journal of Computer
and Information Engineering, 2018. https://doi.
org/10.1109/ICITSI.2018.8695936.

[38] G. Reggio. A UML-based proposal for IoT system re-
quirements specification. In International Workshop
on Modelling in Software Engineering (MiSE), 2018.
https://doi.org/10.1145/3193954.3193956.

[39] C. Reginato, J. Salamon, and M. P. Barcellos. Ontol-
ogy integration approaches: A systematic mapping.
In CEUR Worshops. CEUR-WS.org, 2018.

[40] Z. Rybola and R. Pergl. Towards ontouml for soft-
ware engineering: Transformation of rigid sortal
types into relational databases. In Federated Confer-
ence on Computer Science and Information Systems
(FedCSIS), 2016. https://dx.doi.org/10.2298/
CSIS170109035R.

[41] F. M. Suchanek. OntoUML specification.
https://ontouml.readthedocs.io/en/latest/, 2018.

[42] M. Tabatabaie, F. A. C. Polack, and R. F. Paige.
KAOS-B A goal-oriented process model for EIS. In
International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Informa-
tion Systems (ICEIS), 2010. http://dx.doi.org/
10.5220/0003016000400049.

[43] S. Tueno, R. Laleau, A. Mammar, and M. Frap-
pier. Towards using ontologies for domain mod-
eling within the SysML/KAOS approach. In In-
ternational Requirements Engineering Conference
Workshops (REW), 2017. http://dx.doi.org/10.
1109/REW.2017.22.

[44] A. van Lamsweerde. The KAOS meta-model: Ten
years after. Technical report, Universite Catholique
de Louvain, 1993.

[45] V. Werneck, A. de Padua Oliveira, and J. C. S.
do Prado Leite. Comparing GORE frameworks: i-star
and KAOS. In Workshop on Requirement Engineer-
ing (WER), 2009.

[46] F. Zickert. Evaluation of the goal-oriented require-
ments engineering method kaos. In Americas Confer-
ence on |Information Systems (AMCIS), 2010.

https://doi.org/10.1109/EDOC.2019.00023
https://doi.org/10.1109/EDOC.2019.00023
https://doi.org/10.1109/EDOC.2013.28
https://doi.org/10.1109/EDOC.2013.28
https://doi.org/10.1016/j.is.2015.01.012
https://doi.org/10.1016/j.is.2015.01.012
https://doi.org/10.1109/MoDRE.2013.6597261
https://doi.org/10.1109/MoDRE.2013.6597261
 https://doi.org/10.3390/machines9120370
 https://doi.org/10.1016/j.inffus.2021.01.007
 https://doi.org/10.1016/j.inffus.2021.01.007
https://doi.org/10.1007/978-3-642-41366-7_21
https://doi.org/10.1007/978-3-642-41366-7_21
https://doi.org/10.1109/ICITSI.2018.8695936
https://doi.org/10.1109/ICITSI.2018.8695936
https://doi.org/10.1145/3193954.3193956
https://dx.doi.org/10.2298/CSIS170109035R
https://dx.doi.org/10.2298/CSIS170109035R
http://dx.doi.org/10.5220/0003016000400049
http://dx.doi.org/10.5220/0003016000400049
http://dx.doi.org/10.1109/REW.2017.22
http://dx.doi.org/10.1109/REW.2017.22

	Introduction
	Related works
	Ontologies for CIM modeling
	Ontologies for KAOS and SoaML

	Preliminary knowledge
	Ontologies
	RDF and RDFS
	GORO in a nutshell
	The KAOS modeling framework
	The SoaML modeling language

	Method
	Selection of appropriate CIM modeling languages 
	Building of our ontology fragments

	Ontology fragments for KAOS
	Choice of UFO and OntoUML
	Approach
	KAOS agent ontology
	Stakeholder ontology fragment
	IoT software agent ontology fragment
	KAOS goal model ontology
	Goal and hierarchical model
	Responsibility model

	Object and operation models
	Object model
	Operation model


	KAOS business aspect reinforcement
	Preamble
	Proposal
	Augmented KAOS modeling

	Our preliminary SoaML ontology
	Approach
	SoaML capability
	SoaML agent
	SoaML participant and service
	SoaML interfaces
	Services' architecture

	Merging KAOS and SoaML ontologies
	Instantiating OntoUML models
	Transformation approach
	Samples of queries on our populated ontology fragments

	An illustrative example
	Problem statement and needs' elicitation
	Problem statement
	Elicitation

	Transformation into gUFO and instantiations
	Transformation into gUFO
	Instantiations of concrete individuals


	Concluding remarks, discussion, and future research directions
	Results
	Discussion
	Comparison with works reported in Table 1
	KAOS and SoaML ontologies

	Limitations and future research directions


