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The unmanned aerial vehicles often suffer from insufficient computing power due to the limited 

onboard resources, resulting in task delays under heavy tasks. A system based on edge computing was 

constructed to solve this problem, which involved task allocation center, unmanned aerial vehicle 

group, data node, and power supply station. A mathematical optimization framework based on task, 

resource, and scheduling models was proposed, and the non-dominated sorting genetic algorithm III 

was used. The objective optimization was efficiently processed through genetic operations, 

non-dominated sorting, and reference point-based selection mechanisms. These results confirmed that 

the non-dominated sorting genetic algorithm III performed well in comprehensive performance 

evaluation, with an MS index of 0.881 in large-scale map tests and an AQ index of 0.133 in 

medium-sized maps. The calculation time was 58.9 seconds, 140.5 seconds, and 545.3 seconds in small, 

medium, and large map tests, respectively, leading other algorithms. Therefore, the designed model 

has excellent performance in task quality, time extension, and computational efficiency, which has 

application value. 

Povzetek: Študija uporablja sistem temelječ na robnem računalništvu, za načrtovanje večnivojskih 

nalog za brezpilotna letala z omejenimi viri je uveden sistem, temelječ na robnem računalništvu, ki 

dosega visoko točnost in učinkovitost pri razporejanju nalog.

1 Introduction 

In the era of highly developed technology, Unmanned 

Aerial Vehicle (UAV) has become an important research 

field, with applications ranging from military, 

investigation, daily delivery to ecological research, and 

more. The onboard resource management of the UAV 

operation becomes an important technical challenge. This 

includes many aspects of UAV power management, load 

scheduling, flight path design, etc. [1-3]. Especially, how 

to effectively carry out task scheduling to ensure optimal 

operational efficiency and task completion quality 

becomes an important research topic under limited 

airborne resource conditions. In task scheduling, UAV 

needs to ensure optimal allocation of system resources 

while executing tasks to achieve maximum work 

efficiency [4-6]. With the development of big data and 

cloud computing, edge computing becomes a hot research 

field in recent years. Edge computing can solve the high 

data transmission delay, data loss, and security in cloud 

computing. Edge computing is an important technical 

strategy to support efficient operation of UAV in 

complex environments. Previous studies have mostly 

focused on single task scheduling strategies, with less 

attention paid to multi-task scheduling problems under 

limited resource conditions [7-9]. Therefore, this study 

aims to analyze the edge computing-based multi-target 

task scheduling strategy under the condition of limited 

UAV airborne resources. It is hoped to provide new 

theoretical support and practical reference for the task 

scheduling strategy of UAV. The research mainly 

includes four parts. Firstly, the research objective is 

proposed. Then, a multi-objective task scheduling 

strategy for UAV is designed. Next, model validation is 

conducted. Finally, a conclusion is drawn. 

2 Research background 

As UAV continues to evolve, the task scheduling 

research gradually deepens. You W et al. designed an 

optimization model aimed at minimizing the total energy 

consumption of user UAV. Meanwhile, an iterative 

algorithm using block coordinate descent method was 

proposed, which had high efficiency [10]. Halder et al. 

proposed a novel clustering method that enabled UAV to 

achieve dynamic task scheduling. The throughput 

optimality of its scheduling algorithm was determined 

through the Lyapunov drift analysis framework. These 

experiments confirmed that the proposed method 

surpassed existing solutions in terms of energy 

consumption, cluster overhead, throughput, end-to-end 

latency, flow success rate, and packet loss rate [11]. Niu 

Z et al. discussed how to better utilize UAV for task 
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scheduling in disaster scenarios. They suggested using a 

decentralized computing network consisting of UAV and 

ground mobile devices. These results confirmed that their 

algorithm reduced the energy consumption of the entire 

system by more than 50% while ensuring queue stability 

[12]. Wang Y et al. proposed a mixed integer nonlinear 

programming model. Meanwhile, an alternating 

optimization algorithm was proposed based on 

differential evolution and greedy Hongya algorithm to 

obtain suboptimal solutions. These experiments 

confirmed that the total benefit of this scheme was 

approximately 50% higher than existing methods [13]. 

On the other hand, the application of Non-dominated 

Sorting Genetic Algorithm III (NSGA-III) gradually 

diversifies and deepens. Khettabi I et al. used the new 

dynamic Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) and the new NSGA-III for evaluation. The 

effectiveness of the proposed method was demonstrated 

through three measurement criteria. Finally, TOPSIS was 

used to assist decision-makers in evaluating and selecting 

the best process plan [14]. Awad M et al. aimed to use 

NSGA-II and its extended version to solve single 

objective and Multi-objective Optimization (MOO) 

problems and find Pareto optimal solutions in stock 

investment portfolio management. These experiments 

confirmed that NSGA-II was effective for portfolio 

problems with two objective functions, while NSGA-III 

was effective for problems with three objective functions 

[15]. Johnson N N et al. investigated the influence of 

welding parameters on solder joint quality and combined 

Kriging and the new NSGA-III for MOO of RSW. These 

experiments confirmed that optimized welding 

parameters effectively improved the welding quality. 

When using the optimized welding parameters, the 

concave diameter, tensile shear strength, and peel 

strength of the welded specimens increased by about 

9.21%, 4.95%, and 7.69%, respectively [16]. Harif S et al. 

proposed four conflicting optimization objectives using 

NSGA-III to improve the ideal position of sensors. These 

experiments confirmed that as the sensors increased, the 

Pareto front became more effective [17].  The literature 

summary is shown in Table 1. 

 

 
Table 1: Literature summary 

Author 
Research 

dimensions 
Research contents  Research conclusion 

Literatur

e 

You et 

al. 

UAV task 

scheduling 

Designed an optimization 

model aimed at minimizing 

the total energy consumption 

of user UAV 

This method has higher 

efficiency compared to 

existing solutions 

[10] 

Halder 

et al. 

Proposed a clustering method 

for UAV dynamic task 

scheduling 

This method performs 

excellently in terms of 

energy consumption, cluster 

overhead, throughput, 

end-to-end latency, and 

packet loss rate 

[11] 

Niu et 

al. 

Analyzed UAV task 

scheduling methods in 

disaster scenarios 

The model reduces the 

energy consumption of the 

entire computing system by 

more than 50% while 

ensuring queue stability 

[12] 

Wang et 

al. 

A mixed integer nonlinear 

programming model was 

proposed. 

The overall return of this 

plan is 50% higher than that 

of existing methods 

[13] 

Khettabi 

et al. 

Application of 

NSGA-III 

model 

Proposed evaluation methods 

for new dynamic NSGA-II 

and new NSGA-III 

The effectiveness of the 

method is demonstrated 

through three measurement 

standards 

[14] 



Edge Computing Based Multi-Objective Task Scheduling Strategy… Informatica 48 (2024) 255–268   257 

Awad et 

al. 

Expanded and applied the 

NSGA-II model to solve 

single objective and 

multi-objective optimization 

problems. 

Solved the combination 

problem of two objective 

functions and three 

objective functions 

[15] 

Johnson 

et al. 

Multi-objective optimization 

of RSW using Kriging and 

the new NSGA-III model 

After using optimized 

welding parameters, the 

concave diameter, tensile 

shear strength, and peel 

strength of the welded 

samples all increased. 

[16] 

Harif et 

al. 

Proposed four optimization 

objective functions based on 

NSGA-III to improve the 

placement of sensors 

Obtained better monitoring 

results 
[17] 

 

In conclusion, many researchers focus on the task 

scheduling strategy on UAV, mobile edge computing and 

solving optimization problems. Some researchers have 

designed optimization problems to reduce the total energy 

consumption of UAV by constructing layered systems. 

Some have explored how to use UAV for task scheduling 

in disaster scenarios. Some scholars have also 

emphasized the role of UAV in dynamic task scheduling, 

optimal UAV deployment, and mobile device location 

determination. Meanwhile, the application of NSGA-III 

has also been promoted in many fields, such as 

reconfigurable manufacturing systems, portfolio 

management, manufacturing, and so on. This study 

further considers the UAV task allocation that UAV may 

face under limited loads on the basis of the existing 

research mentioned above, providing a new approach for 

this field. This study not only solves the limited airborne 

problem, but also solves the task scheduling problem 

under limited computing power. A comprehensive model 

performance evaluation is conducted, providing a more  

efficient solution for real-time task scheduling under 

limited resources. 

 

3 Design of unmanned aerial vehicle 

multi-objective task scheduling 

strategy 
A MOO-UAV scheduling mathematical model is 

proposed to address the computational power shortage 

and task delay caused under limited airborne conditions. 

This model consists of tasks, resources, and scheduling 

models and is optimized and solved using NSGA-III. 

 

3.1 Architecture of task scheduling model 
The MOO-UAV system is built on the edge computing 

framework. This system mainly includes the following 

main components: task allocation center, UAV group, 

data node, and power supply station. The MOO-UAV 

system also includes some abstract elements, including 

the study of expected optimization goals, various 

constrainable conditions, and strategy algorithms for 

solving problems. Figure 1 shows this system. 
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Figure 1: System model 

 

 

The control center is responsible for supervising all 

UAV and assigning tasks to them in real-world physical 

elements. When a data node generates a request, the 

control center will analyze information such as node 

location and data size based on this. Then tasks are 

assigned to each UAV. The control center also serves as a 

power supply station, as well as takeoff and landing 

points. UAV is the carrier and processor of data tasks. 

Each UAV is equipped with a complete set of equipment 

such as flight control system, wireless communication 

system, navigation system, etc. The equipment is used for 

data processing and information transmission during 

navigation. The data node is responsible for providing 

data tasks and transmitting tasks to the UAV during 

hovering. The power supply station is responsible for 

supplying UAV energy. In non-physical elements, the 

optimization objective is to optimize multiple objectives. 

As a result, the total range of all UAV, the total 

completion time of data tasks, and the total duration of all 

overtime tasks can be minimized. Attention should be 

paid to constraints such as UAV flight speed, power 

consumption, and range during the solving process. It is 

crucial to choose the appropriate optimization algorithm 

for this issue. Figure 2 shows the complete workflow. 

 

Task reception and allocation

The dispatch center analyzes task information, 

such as data size, node distance, and available 

number of drones, and assigns different data 

nodes to each drone.

Data node traversal

Each drone flies to a designated data node in the 

assigned order. After arriving at each node, 

communicate with the data nodes, perform 

hovering and receive data tasks.

Edge computing processing

After the UAV leaves the node, on the way to the 

next node, it starts to process data through the 

edge computing device it carries.

Electricity management and re 

planning

The drone evaluates the battery condition at each 

data node and then decides whether to continue 

running or charging

Data task transmission

The drone re plans the data task processing 

sequence based on the task deadline and transmits 

the processing results to the cloud through 

wireless communication devices.

Task Return and Preparation

After completing all data tasks, the drone returns 

to the dispatch center for power replenishment 

and preparation for the next task

 

Figure 2: Workflow 

 

The dispatch center will allocate tasks based on 

various factors such as task information and the number 

of UAV after receiving a batch of pending data tasks. The 

UAV traverses’ nodes in the order assigned, hovers over 
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each node and receives tasks, and then processes data 

tasks while flying to the next node. If the battery is low, 

UAV needs to go to the power supply station to replace 

the battery before continuing the task. UAV returns to the 

dispatch center to prepare for the next task after 

completing the task. It is necessary to optimize the route 

of UAV to minimize the task completion time and voyage 

during this process, while completing as many tasks as 

possible. 

 

3.2 Construction of task scheduling 

operation model 
The biggest challenge when scheduling UAV is to find a 

solution that is suitable for assigning UAV to a large 

amount of data tasks. Therefore, the timely completion of 

all tasks can be ensured, and the scheduling cost of UAV 

can be reduced as much as possible. Therefore, a 

redesigned MOO-UAV scheduling mathematical model 

is adopted in this study. It mainly consists of tasks, 

resources, and scheduling models. 

Firstly, a task model is designed, and a scheduling 

hub is established as the initial stopping point for all 

UAV, with many data nodes. Each data node has its own 

unique task data volume. The data scale for each node is 

generated through normal distribution to simulate the 

real-world environment. Then, a resource model is 

established, including all UAV and edge computing 

devices. All UAV stay at the dispatch hub at the 

beginning. The flight speed, data transmission speed, 

processing speed, and total endurance time of UAV are 

all known. The endurance time is a key parameter as it 

determines the number of tasks that a UAV can perform 

at once. Then, a scheduling model is studied and 

constructed. Charging stations are set up in the data node 

area considering the endurance capability of UAV in this 

model. Meanwhile, UAV generates specific flight paths 

based on task sequences and base station positions. Then 

constraints are defined to ensure that the remaining 

endurance time of UAV at the data node cannot be 

negative. UAV must have sufficient energy to return to 

the dispatch center or transfer to the charging station. The 

optimization objective of this study is to minimize the 

completion time of data tasks, the total flight path of all 

UAV, and the total duration of all timeout tasks. Figure 3 

shows task scheduling assumptions and constraints. 

 

Assumptions 

in the process 

of drone task 

scheduling

Assume

Constraint 

The speed of the drone is constant and is not related to any external conditions.

The UAV's edge computing device acts as its own independent power supply and can 

continue to operate during battery replacement.

The drone needs to have enough battery to fly to the nearest charging base, or return to 

charging in a timely manner when the battery is low and reaches the next node.

The remaining power input or endurance of the drone shall not be negative, and sufficient 

power shall be retained to return to the dispatch center.

Drones must first process the received data before receiving new data, meaning that data 

transmission and processing tasks cannot be carried out simultaneously.

When there are multiple data tasks to be processed, no one has the opportunity to prioritize 

the task that can be completed on time and has the smallest amount of data.

 

Figure 3: Task scheduling assumptions and constraints 

 

It is assumed that formula (1) is the flight path of 

UAV. 

  ,1 ,1 ,, , ,j j j jL l l l =  (1) 

In formula (1),   refers to the number of 

destinations. The constraints of the model are represented 

by formula (2). 

 
( ), ,,

, ,

,j q j qr e
j j

D l B
t h

v
  +  (2) 

In formula (2), ,j ql  refers to the destination of the 

UAV. v  refers to the speed. j  refers to the number of 

UAV. ,j qB  refers to the nearest charging station. ,jh   

refers to the estimated electricity consumption from the 

node to the dispatch center. D  refers to the distance. 

Further, formula (3) can be obtained. 
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 (3) 

In formula (3), maxt  refers to the maximum 

endurance time. Formula (4) is used for constraints due to 

the fact that the ultimate destination of the UAV is a data 

node, which is not a charging station. 

 jN B  (4) 

In formula (4), B  refers to the charging station. 

The study adopts MOO methods suitable for three 

objectives and higher to evaluate the final benefits. 

Therefore, the flight path of UAV, dwell time at all nodes, 
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and other data processing time can be minimized after the 

end of the last data task. The completion time of UAV 

tasks is represented by formula (5). 

( )
, ,

, 1 ,

,2 1

,
j

j

j q j qNfin
j j q Nq

D l B
t h Z

v  

−

= =

 
 = + +
 
 

   (5) 

In formula (5), jN  refers to the total destinations. 

( ), 1 ,,j q j qD l B−  refers to the distance between different 

destinations. ,j qh  refers to the hover time. 
, ,jNZ
 

 

refers to the pending task for the last data point. The 

objective function is represented by formula (6). 

 ( ) ( ) ( ) ( )1 2 3min , ,
T

f x f x f x f x=     (6) 

In formula (6), ( )1f x  refers to the highest 

completion time. ( )2f x  refers to the total flight 

distance. ( )3f x  refers to the duration of task timeout. 

( )1f x  is represented by formula (7). 

 ( )1 1 2max , , ,fin fin fin
nf x t t t =

   (7) 

In formula (7), fin
nt  refers to the completion time of 

the task. ( )2f x  is represented by formula (8). 

 ( ) ( )2 , 1 ,1 2
,jn N

j q j qj q
f x D l l−= =

=   (8) 

( )3f x  is represented by formula (9). 

 ( )3 1

m out
ii

f x t
=

=  (9) 

In formula (9), out
it  refers to the timeout time. 

3.3 Design of multi-objective solving 

strategies 
The MOO algorithm demonstrates strong superiority in 

handling single objective and multi-objective problems. 

However, a more powerful MOO tool, namely NSGA-III, 

is required for increasingly common problems involving 

three objectives or MOO. NSGA-III is a multi-objective 

evolutionary algorithm based on reference points, which 

emphasizes non-dominant population members more than 

NSGA-II. This method also adds a set of individual 

related reference points to select the next population 

individual. As a result, better convergence and diversity 

can be achieved to find non-dominant solutions. Figure 4 

shows the process of the model. 

 

A+1<N
Y

Generate initial population A

Start

Genetic manipulation to form new populations B

Population merging

Generate non dominated solution set

Population merging

Place individual Pi into a new population

A+1=N

Generate new offspring 

population

i=i+1

Extract Pi from the 

new population

Generate reference 

points

Meet termination 

conditions?

End

N Y

N

Y

A=A+1

N

 

Figure 4: Model process 

 

The execution of NSGA-III requires generating an 

initial solution using the roulette wheel algorithm, which 

is the initial population P0 of size H. Then NSGA-III 

begins genetic operations on the initial solution 

population, including mutation, crossover, and individual 

selection, to generate an iterative population algebra 

gmax. Genetic operations, non-dominated sorting 

operations, reference point generation, and the 

association between individuals and reference points are 

important components of NSGA-III. Genetic 
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manipulation involves two types of mutations and one 

crossover approach. Genetic manipulation aims at 

maintaining genetic diversity while preserving excellent 

gene fragments. Figure 5 shows the mutation and 

crossover processes. 

 

Start

Randomly select task A from 

drone 1

Delete Task A from Drone 1 

Business Sequence

Randomly select drone 2

Insert Task A into the 

random location of Drone 2

Re plan the flight routes of 

two drones

End

Randomly select adjacent task 

sequence H from drone 1

Randomly insert task 

sequence H into drone 3

Re plan the flight routes of 

two drones

Start

Select generated individuals

Randomly select task A

Randomly select task B

Exchange the positions of 

task A and task B in their 

respective task sequences

Re plan the flight routes of 

two drones

End

(a) Mutation operator process
(b) Cross operator process

 

Figure 5: Variations and cross processes 

 

This step preserves certain UAV flight sequences of 

outstanding individuals and adds them to the sequences 

of other UAV. Meanwhile, it is crucial to determine the 

reference point in NSGA-III. The generated new 

population and parent population form a mixed 

population after mutation and crossover. All individuals 

are added to the offspring population after non-dominated 

sorting is performed on the mixed population to generate 

multiple non-dominated layers. This step stops until the 

offspring size exceeds half of the mixed population size. 

In this process, the study does not use congestion ranking 

in NSGA-II, but instead uses a reference point-based 

method for ranking. The association between individuals 

and reference points is a crucial step in forming a new 

population. This solution is to associate all individuals 

with a reference point, starting from the ideal point and 

extending infinitely to all reference points. Each line 

represents a reference line corresponding to a reference 

point. Figure 6 is a schematic diagram of the reference 

line. 

 

Normalized plane
Ideal point

Reference point

Perspectification

 

Figure 6: Reference line diagram 

 

Then the closest distance between each individual 

and all reference lines is calculated. The closest reference 

point is the individual's associated reference point. 

Sometimes, a reference point may be associated with one 

or more individuals, or there may be no individual 

associated with it. The total reference points in the target 

problem are represented by formula (10). 

 
1M p

H
p

+ − 
=  
 

 (10) 

In formula (10), M  represents the number of 

objective problems. If a three-objective problem is 

adopted, M  is 3. p  represents population. The 
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research prioritizes selecting reference points with fewer 

associated individuals to ensure the diversity of 

individual populations. Meanwhile, the associated 

individuals are added to the offspring population. The 

minimum value of the total duration is represented by 

formula (11). 

 

min
1

min
2

min
3

z

MIN z

z




= 



 (11) 

In formula (11), min
1z  represents the maximum and 

minimum completion time. min
2z  represents the shortest 

flight length. min
3z  represents the total timeout duration. 

Therefore, the reference plane zero point in formula (12) 

can be formed. 

 ( )min min min
0 1 2 3, ,Z z z z=  (12) 

When the population is adaptively normalized, the 

maximum objective value in the three objective problem 

is normalized and represented by formula (13). 

 ( ) ( ) ( )max/ , 1,2,3i i if x f x z i = =  (13) 

In formula (13), max
iz  represents the maximum 

target value. The individual target dimensions are fixed 

and the extremum is determined, represented by formula 

(14). 

( ) ( ) ( ) 6

1
, max / , , , , ,1, , , , 10

M

i i x
i

ASF x f x x S        −

=
=  = =  (14) 

After determining the maximum values of all target 

dimensions, the minimum value is selected as the 

extremum point, represented by formula (15). 

( ) ( ) ( ) max
1 2 3min , , , , ,i i i iZ ASF x w ASF x w ASF x w=  (15) 

The individuals are associated with the reference 

point after normalizing all individuals with the reference 

point. Priority is given to selecting reference points with 

fewer associated individuals in the set to add to the 

offspring population, thereby improving individual 

diversity of the population. 

 

4 Verification of the effectiveness of 

traffic flow prediction models 
The study first conducted parameter analysis when testing 

the effectiveness of traffic flow prediction models. 

Afterwards, an overall model efficiency analysis was 

conducted. Four multi-objective indicators: Average 

Quality (Aq), Maximum Spread (Ms), Maximum 

Distance (Md), and Average Distance (Ad) were used. 

 

4.1 Parameter analysis 
In this experiment, the UAV underwent three different 

configuration settings. Firstly, the study set constants 

such as UAV endurance time and flight speed. Table 2 

shows the experimental setup. 

 

Table 2: Experimental setup 

Drone 

settings 

Drone parameters Option 1 Option 2 Option 3 

Battery life (seconds) 800 1000 1200 

Flight speed (meters/second) 20 30 40 

Data transmission speed 

(minutes) 
Ɵ*0.20 Ɵ*0.15 Ɵ*0.10 

Data processing speed 

(minutes) 
Ɵ*0.50 Ɵ*0.33 Ɵ*0.25 

Map 

node 

settings 

Map type Aponym Number of nodes 

Small-sized att48 48 

Medium-sized bier127 127 

 Large-sized att532 532 

Map 

Type 

Settings 

Map type Describe 

Middle 
The logistics dispatch center is 

located in the center of the map 

Side 
The logistics dispatch center is 

located on the edge of the map 

Inside 
The logistics dispatch center is 

located at a random location within 
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the map 

 

 

 

 

In Table 2, three maps of different sizes and 

distinguishes map features were constructed. Figure 7 

shows the analysis of A-type and V-type parameters 

under Aq and Ms. 
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Figure 7: Analysis of A-type and V-type parameters under AQ and MS 

 

In Figure 7, the comparison models are NSGA-II 

and Improved Simulated Annealing Algorithm (SA), 

respectively. The study analyzed the effectiveness of 

UAV task allocation models based on the provided data. 

The study focused on comparing the performance of 

different algorithms under specific multi-objective 

indicators. The indicators considered include Aq and Ms, 

while the analyzed algorithms are NSGA-III, NSGA-II, 

and SA. When the nodes were 800, NSGA-III showed a 

high efficiency of 0.149 on Aq through the analysis of 

T-shaped parameters, which was better than NSGA-II's 

0.169 and SA's 0.253. Therefore, NSGA-III had better 

processing ability for UAV task allocation. On MS, 

NSGA-III was 0.976, leading NSGA-II at 0.871 and SA 

at 0.31. This trend was also maintained when the 

parameters increased to 1000, with AQ and MS of 

NSGA-III being 0.091 and 0.966, respectively, while 

NSGA-II and SA performed less well. In Table 3, the 

remaining indicators under Aq and Ms were compared. 

 
 

Table 3: Comparison of remaining indicators under AQ and MS 

Parameter 

types 
Nodes 

Aq Ms 

NSGA-III NSGA-II  SA NSGA-III NSGA-II  SA 

F-type 

parameter 

Middle 

piece 
0.1 0.146 0.307 0.974 0.813 0.263 

Broadside 0.089 0.135 0.299 0.964 0.938 0.314 

Internal 0.124 0.141 0.221 0.906 0.873 0.348 

Map 

parameters 

48 0.126 0.103 0.333 0.92 0.921 0.336 

127 0.133 0.096 0.411 0.902 0.937 0.303 

532 0.137 0.17 0.358 0.881 0.87 0.299 

T-trans 

0.2 0.082 0.166 0.41 0.925 0.93 0.224 

0.15 0.126 0.162 0.336 0.943 0.948 0.3 

0.1 0.105 0.126 0.28 0.848 0.925 0.326 

T-pro 

0.5 0.145 0.15 0.322 0.875 0.883 0.241 

0.33 0.131 0.116 0.312 0.9 0.888 0.191 

0.25 0.114 0.126 0.293 0.934 0.97 0.266 
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Merge average - 0.119 0.133 0.316 0.926 0.901 0.283 

 

 

 

 

In Table 3, NSGA-III performed better with an Aq 

of 0.1 and a MS of 0.974 for the F-type parameter at the 

middle node, which were higher than NSGA-II and SA. 

This indicated that NSGA-III was superior in balancing 

quality and scalability when dealing with intermediate 

node tasks. The analysis of side nodes and internal nodes 

also showed a similar trend, with the Aq of NSGA-III for 

side nodes being 0.089 and MS being 0.964, both in a 

leading position. In the evaluation of map parameters, an 

increase of nodes had a negative impact on the Aq of 

NSGA-II and SA. However, NSGA-III maintained 

relatively stable performance, with Aq values gradually 

increasing from 0.126 to 0.137. This indicated the better 

robustness of NSGA-II compared to other algorithms. 

The MS of NSGA-III was 0.881, especially when the 

nodes were 532, which was better than NSGA-II and SA. 

In addition, as the parameter values decreased from 0.2 to 

0.1, the Aq performance of NSGA-III remained stable, 

ranging from 0.082 to 0.105, while MS increased from 

0.41 to 0.848. This reflected the algorithmic adaptability 

to various task scheduling scenarios. When the parameter 

value decreased from 0.5 to 0.25, NSGA-III also 

exhibited more robust Aq performance compared to 

NSGA-II and SA for the T-pro parameter category, with 

a decrease from 0.145 to 0.114. NSGA-III also 

maintained an advantage in Ms, rising from 0.875 to 

0.934. NSGA-III exhibited overall better performance 

based on comprehensive analysis of all parameter 

categories. Its comprehensive average Aq was 0.119, 

which was significantly lower than NSGA-II's 0.133 and 

SA's 0.316. The comprehensive average of MS was 0.926, 

which was the highest among all algorithms. Table 4 

shows the comparison of indicators under Davg and 

Dmax. 

 

 
Table 4: Comparison of indicators under Davg and Dmax 

Parameter 

types 
Nodes 

Md Ad 

NSGA-III NSGA-II  SA NSGA-III NSGA-II  SA 

F-type 

parameter 

Middle 

piece 
0.018 0.015 0.539 0.099 0.066 0.654 

Broadside 0.009 0.016 0.72 0.104 0.083 0.663 

Internal 0.012 0.022 0.553 0.115 0.148 0.732 

T-trans 

0.21 0.01 0.021 0.688 0.138 0.078 0.857 

0.16 0.009 0.015 0.663 0.098 0.091 0.783 

0.11 0.012 0.018 0.585 0.089 0.123 0.834 

T-pro 

0.51 0.009 0.022 0.563 0.133 0.148 0.874 

0.34 0.009 0.015 0.611 0.106 0.132 0.866 

0.26 0.008 0.024 0.742 0.085 0.123 0.823 

V-shaped 

21 0.008 0.022 0.536 0.135 0.064 0.698 

31 0.013 0.015 0.672 0.117 0.089 0.713 

41 0.015 0.026 0.597 0.133 0.083 0.765 

T-shaped 

805 0.027 0.021 0.361 0.141 0.083 0.791 

1005 0.017 0.016 0.572 0.084 0.096 0.816 

1205 0.009 0.024 0.664 0.124 0.134 0.893 

Map 

parameters 

49 0.01 0.017 0.713 0.096 0.073 0.856 

128 0.015 0.021 0.627 0.133 0.138 0.71 

533 0.021 0.022 0.558 0.132 0.12 0.726 

Merge 

average 
- 0.013 0.02 0.609 0.115 0.104 0.781 

 

In Table 4, NSGA-III performed better for F-type 

parameters than the other two algorithms in terms of Ad 

index. The values of NSGA-III were 0.018, 0.009, and 

0.012, respectively, whether in the middle, side, or 

interior, which were much lower than SA's 0.539, 0.72, 

and 0.553. This indicated that the average delay of 

NSGA-III was lower, and the task allocation efficiency of 

UAV was higher under F-type parameters. NSGA-III  

performed for the T-trans parameter better on Ad than the  
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other two algorithms, whether the node was 0.21, 0.16, or 

0.11. The values of NSGA-III were 0.01, 0.009, 0.012, 

and the SA values were 0.021, 0.015, and 0.018, 

respectively. However, the performance of these three 

algorithms was almost the same in terms of Md, with 

only slightly higher SA, at 0.857, 0.783, and 0.834, 

respectively. The situation was different for T-pro. 

Although NSGA-III still outperformed the other two 

algorithms on Davg, the values of SA on Md were 0.874, 

0.866, and 0.823, all higher than those of NSGA-III. This 

indicated that SA had a higher maximum delay under 

T-pro, and the efficiency of UAV in executing tasks 

needed to be improved. NSGA-III still showed a leading 

advantage in Ad for the V-shaped parameter group, with 

values of 0.008, 0.013, 0.015, and SA values of 0.536, 

0.672, and 0.597. However, on Md, SA exhibited higher 

latency. Whether the node was 805, 1005, or 1205, 

NSGA-III had a better value on Ad than SA for the 

T-type parameter group. However, SA had a higher value 

than NSGA-III on Md. Finally, whether the node was 49, 

128 or 533, NSGA-III had better values on Ad than SA 

for the map parameter group. SA had higher values than 

NSGA-III on Md. The NSGA-III UAV multi-objective 

task allocation model performs better than the other two 

models in most scenarios and parameters through the 

above comparison, with particularly outstanding 

performance in average latency. 

 

4.2 Efficiency comparison of models 
Six different optimization models were compared, 

including Improved Ant Colony Optimization (IAC), 

Improved Genetic Algorithm (IGA), Improved Particle 

Swarm Optimization (IPSO), and Improved Deep 

Learning Optimization (IDLO). The difference in 

computation time for completing map data tasks of the 

same scale is shown in Figure 8. 
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Figure 8: Calculation time difference 

 

In Figure 8, NSGA-III showed a significant 

efficiency advantage among all algorithms, with the 

lowest average computation time across all map sizes, 

only 248.2 seconds. NSGA-III exhibited significant 

computational efficiency compared to other algorithms. 

The computation time of NSGA-III was 58.9 seconds on 

the minimum map size. The closest IAC and SA had a 

computation time of 70.2 and 85.3 seconds, respectively. 

The time for NSGA-III was 140.5 seconds on a medium 

map size, while the time for other algorithms ranged from 

158.9 to 252.5 seconds. NSGA-III maintained the 

shortest computation time of 545.3 seconds on the 

maximum map size. NSGA-III significantly reduced 

computation time by more than 40% compared to SA's 

950.5 seconds for the second shortest time. On average, 

NSGA-III was 192.6, 165.0, 230.3, and 254.8 seconds 

faster than IGA, SA, IPSO, and IDLO, respectively. This 

obvious time-saving effect revealed that NSGA-III's 

algorithm efficiency was higher when facing complex 

task scheduling with multiple objectives. Figure 9 shows 

a comparison of task execution times. 
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Figure 9: Comparison of task execution time 

 

In Figure 9 (a), the design method always had the 

shortest execution time under changes in task data 

volume. From Figure 9 (b), the research design method 

dynamically adjusted the execution time under changes in 

task volume. This method maintained a minimum and 

ultimately decreased, indicating optimization of task 

execution sequence. From Figure 9 (c), the faster the 

flight time, the faster the task completion speed. 

 
Table 5: Comparison of average operation time (s) 

Optimization 

model 

Minimum map 

size 

Medium map 

size  
Maximum map size  Average calculation time 

NSGA-III 55.0 130.4 500.0 228.4 

IDRLO 58.9 140.5 545.3 248.2 

ENNO 60.5 125.7 540.2 242.1 

 

From Table 5, the NSGA-III model had the shortest 

average computation time and was the most superior. The 

superiority of this computation time was reflected in large, 

medium, and small maps. 

5 Discussion 

This study is based on the NSGA-III algorithm and 

focuses on the task configuration and path planning 

problems of UAV under limited resource conditions. In 

the results, the processing efficiency and scheduling 

effect of multi-objective scheduling problems were 

significantly improved under limited airborne conditions 

of UAV. In similar fields, the Thomas T team solved the 

routing and scheduling problems of single truck 

multi-UAV delivery systems using mixed integer linear 

programming and RF-RRO heuristic methods, mainly 

optimizing delivery time and cost [18]. Sun F et al. 

applied the dragonfly algorithm for UAV task scheduling 

in agricultural plant protection environments, focusing on 

the timeliness of task execution [19]. The Ms index of 

this study reached 0.881 in large-scale map testing, and 

the performance of the model in practical applications 

was better than NSGA-II and SA. Meanwhile, the  

 

designed model had a shorter computation time, 

demonstrating higher computational efficiency. 

Meanwhile, the computational efficiency of the research 

model on large-scale maps is excellent. Therefore, this 

designed model had advantages in computational 

efficiency and MOO. This method not only improved the 

efficiency and quality of UAV scheduling systems, but 

also provided a new perspective for solving similar 

problems. 

This study provides effective solutions for the 

application of UAV systems in commercial logistics, 

disaster response and rescue, environmental monitoring, 

and agricultural management. Therefore, flight path 

planning, task allocation, and charging station 

management can be addressed. This study not only 

improves the efficiency of drone scheduling, but also 

significantly improves computational efficiency. 

Therefore, UVA can minimize resource consumption and 

flight risks while ensuring task execution under limited 

onboard conditions. This study can be used for UAV 

disaster assessment, wounded search, and emergency 

supplies transportation in natural disaster rescue 

operations. The research method can be used for 

environmental monitoring and precision agriculture 
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monitoring, allowing operators to reduce operating costs 

and collect data more efficiently. In UVA warfare, this 

method can improve the efficiency of drone military 

reconnaissance, surveillance, and strike. Then task 

execution speed and accuracy efficiency can be improved 

in complex and resource scarce environments. Meanwhile, 

the real-time response capability of combat units can be 

enhanced. In terms of scalability, in the future, injection 

task allocation, path planning, charging management, and 

other functions can be modularized. At the same time, 

more improvements can be made for special 

environments to enhance the overall flexibility of the 

system. 

6 Conclusion 

The study proposed an integrated mathematical model 

framework for more efficient planning of UAV flight 

paths, task allocation, and management of charging 

stations. This framework adopted NSGA-III to implement 

scheduling strategies based on factors such as task 

characteristics, UAV resource capabilities, map size, and 

flight parameters. These results confirmed that the 

designed model exhibited superiority in multiple key 

performance indicators. In large maps, NSGA-III 

achieved a Ms index of 0.881, higher than NSGA-II and 

SA. On a medium-sized map, its Aq index reached 0.133. 

In addition, the calculation time of this research model on 

small maps was 58.9 seconds, which was lower than 

other models. On a medium-sized map, its calculation 

time was only 140.5 seconds, compared to an IGA of 

158.9 seconds. Specifically, NSGA-III had a computation 

time of 545.3 seconds on large maps, which had an 

advantage in computational efficiency. In summary, the 

research model not only shows significant efficiency in 

dealing with UAV multi-objective task scheduling 

problems, but also performs equally well in scheduling 

quality and time management. 
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