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With the rapid progress of information technology, the Internet is saturated with copious amounts of 

data and visuals. However, with the widespread availability of different image editing software, 

counterfeit image content arises periodically. To tackle image content forgery, the research is founded 

on the Gaussian mixture distribution similarity measure image forgery detection algorithm. The image 

classifier underwent training through encoding its underlying features and utilizing the encoded data 

as inputs for the support vector machine. Optimization of the support vector machine was performed 

simultaneously using the improved particle swarm optimization algorithm. The results indicated that 

the SVM-based image content forgery detection model, which employed improved particle swarm 

optimization, achieved a detection rate of 94.89% and processed the images in 22.06 milliseconds. In 

summary, the study of an image content forgery detection model that combines improved particle 

swarm optimization and support vector machine in electronic data forensics has resulted in a high 

detection accuracy. 

Povzetek:  Model za zaznavanje ponaredb slik združuje PSO in SVM za forenziko elektronskih 

podatkov. Uporablja izboljšani algoritma rojev delcev in podpornih vektorjev.

1 Introduction 

The replication and forgery of image content, whether it 

be movement, regional replication, or otherwise, has 

become a serious social problem due to the rapid 

development of information technology [1]. To combat 

this illegal behavior effectively, electronic forensics' use 

for evidence acquisition and parsing appears paramount. 

Electronic data forensics (EDF) refers to the entire 

process of acquiring, preserving, validating, verifying, 

interpreting, analyzing, archiving, and presenting 

evidence related to computer intrusion, sabotage, fraud, 

attack, and other criminal acts in a manner that adheres to 

legal norms [2]. The determination of the legal validity of 

electronic evidence needs to follow the principles of 

authenticity, completeness, and legality [3]. This is 

achieved through the use of computer hardware and 

software technology. In today's internet, a vast amount of 

information and images fill the network. Images, being 

one of the most intuitive forms of communication in 

people's daily lives, hold a crucial role [4]. However, with 

the widespread popularity of various image editing 

software, the phenomenon of forgery of image content 

copying and movement or region copying and forgery 

also frequently occurs. This illicit conduct deceives 

others through tampering, counterfeiting, or 

manufacturing false images, which constitutes a serious 

violation of intellectual property rights and may lead to  

 

criminal activities such as fraud, thereby causing 

significant harm to both society and individuals [5]. The 

use of image forgery technology may raise ethical 

concerns related to privacy and abuse, as it can violate 

personal privacy and damage personal image without 

consent. For instance, reconstructing or tampering with 

public photos using this technology may put individuals 

in unfavorable or awkward situations without their 

consent, which violates their privacy rights. Moreover, 

the misuse of image forgery technology may result in 

confusion or dissemination of misleading information. In 

fields such as social media and news, manipulated images 

can be utilized to disseminate false information, leading 

to public deception and erosion of social trust. The 

Gaussian mixture distribution similarity measure 

algorithm is an effective method for image content 

forgery detection (ICFD). It encodes the image's 

underlying features and uses them as inputs for classifier 

training in a support vector machine (SVM) to identify 

image region replication forgery [6]. SVM is a supervised 

learning model used in classification and regression 

analysis, which can play an important role in forgery 

detection of image content copying and movement [7]. 

Due to the continuous updating and iteration of 

information technology, new image encryption methods 

are constantly being developed. This further increases the 

difficulty of recognizing and detecting forged image 

content. One such method is the secret sharing encryption 
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method, which uses polarization-assisted secret sharing 

phase encoding to hide forged secret information in 

orthogonal polarization channels. This improves the 

difficulty of decryption [8]. The encryption method 

encodes each pixel for sub-pixel sharing and combines 

the dual encryption polarization key to reconstruct the 

target image. This increases the difficulty of detecting 

image content area duplication and forgery [9]. Against 

this background, this study aims to improve the accuracy 

of ICFD and effectively combat image content forgery. 

To achieve this, SVM is innovatively utilized to learn the 

features of real and fake images and identify the 

differences between them during the training process. At 

the same time, in order to improve the accuracy of 

forgery detection, the study also uses the improved 

particle swarm optimization (PSO) algorithm to optimize 

SVM parameters, in order to improve the accuracy of 

ICFD in EDF. The contribution of the research lies in 

applying Gaussian mixture model (GMM) to ICFD, 

proposing an image forgery detection algorithm that 

combines local feature aggregation description encoding 

of SVM and GMM to improve the accuracy of color 

feature extraction and classification. At the same time, 

the PSO algorithm is applied to optimize SVM 

parameters to solve the problem of selecting parameters 

for detecting content forgery in SVM images. The study 

is divided into four primary segments, and in the second 

segment, a thorough evaluation of the existing domestic 

and international research on SVM and ICFD technology 

is conducted. The third section details the development of 

an image content forgery detection by support vector 

machine (ICFD-SVM) model to enhance PSO 

optimization for EDF. The first section investigates 

ICFD-SVM using Gaussian Mixture Distribution Local 

Feature Aggregation Description Coding. The second 

section implements ICFD-SVM utilizing enhanced PSO 

optimization. The fourth section validates the optimized 

PSO ICFD-SVM model for EDF. 

2 Related works 

ICFD technology is a crucial approach to guarantee the 

authenticity and integrity of images. It has attracted 

considerable attention from experts and scholars and has 

yielded fruitful findings through extensive research. To 

solve the issues of facial manipulation techniques in 

digital media forensics, Chen S and other researchers 

proposed a new method for face forgery detection 

through local relation learning, which utilizes a 

multi-scale patch similarity module for measuring the 

similarity between local area features. The findings 

shown that the approach, with robustness and 

interpretability, regularly outperforms the state-of-the-art 

methods in commonly used benchmark tests [10]. In 

order to address the impact of forged fingerprints in 

biometric-based security systems, Baskar M and other 

scholars proposed a region-centered detail propagation 

measurement-based method to detect forged fingerprints, 

which utilizes a multistage Gabor filter to remove the 

noise points, and then converts the enhanced image into a 

number of integral images. The results indicated that the 

method effectively improved the accuracy of forged 

fingerprint detection [11]. To design an effective method 

that can accurately detect in-depth forged images or 

videos, the research team of Arunkumar P M proposed to 

utilize deep learning techniques and introduced a fuzzy 

Fisher face model with capsule biplots to detect different 

types of fake images or videos. The results showed that 

the method achieved 89.32% accuracy in the dataset [12]. 

SVM plays an important role in ICFD techniques. 

To analyze negative and positive classes in movie review 

texts, Styawati S's research team used SVM in 

combination with Firefly algorithm to successfully 

construct a SVM-based sentiment classification model. 

This model is based on an optimized combination of 9 

parameters. The results showed that the model achieved 

up to 89% accuracy in sentiment classification, 

demonstrating its excellent performance [13]. 

Muthukrishnan et al. proposed a machine learning 

method for modeling and simulating heat exchangers in 

order to conduct virtual analysis of the performance of 

manufactured products before manufacturing simulation. 

This method simulated and analyzed heat exchangers, 

allowing engineers to analyze their performance before 

manufacturing. The results showed that this method is 

feasible [14]. Aldino A and other researchers proposed 

using SVM algorithm to classify specific data on the 

platform in order to classify specific standards. Then, 

they divided the data into two label categories and rated 

and tested the label data. The results showed that the 

classification accuracy of SVM reached 97% [15]. The 

summary table of related work is shown in Table 1. 

 

 

Table 1: Summary of related work 

Author Technology Method Result 

The gap in the 

current 

state-of-the-art 

(SOTA) 

methods 

Chen S et 

al. [10] 

Facial forgery 

detection based on 

local relationship 

learning 

Using a multi-scale patch similarity 

module to measure the similarity 

between local region features 

Robustness and 

interpretability in 

benchmark testing 

Not universal 
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Baskar M 

et al. [11] 

Measurement method 

based on regional 

center detail 

propagation 

Using multi-level Gabor filters to 

remove noise points, and then 

converting the enhanced image into 

several integrated images 

Effectively 

improving the 

accuracy of 

counterfeit 

fingerprint detection 

Low 

generalization 

ability 

Arunkuma

r P M et 

al. [12] 

Fuzzy Fisher face 

model detection 

method 

Utilizing deep learning techniques 

and introducing a fuzzy Fisher face 

model with capsule dual images 

The accuracy in the 

dataset reached 

89.32% 

Not universal 

Styawati S 

et al. [13] 

SVM based sentiment 

classification model 

A sentiment classification model 

based on SVM was constructed by 

combining support vector machine 

and Firefly algorithm. 

The highest 

accuracy in 

sentiment 

classification is 89% 

Not universal 

Muthukris

hnan S et 

al. [14] 

Machine learning 

methods for modeling 

and simulation of heat 

exchangers 

Simulate and analyze heat 

exchangers using machine learning 

before manufacturing simulation 

Feasible Low accuracy 

Aldino A 

A et al. 

[15] 

A specific standard 

classification method 

based on support 

vector machine 

algorithm 

Using support vector machine 

algorithm to classify specific data on 

the platform, and then dividing it 

into two label categories 

The classification 

accuracy reached 

97%. 

Low 

generalization 

ability 

 

In summary, while significant progress has been 

made in ICFD techniques and SVM, research on ICFD in 

the EDF field remains inadequate. Thus, investigating the 

combination of PSO with ICFD-SVM modeling in EDF 

is crucial to obtaining favorable outcomes in this area. 

 

3 Improved ICFD-SVM model 

design for PSO optimization for 

electronic data forensics 
In this chapter, ICFD using similarity measure based on 

GMM and combining SVM with local feature 

aggregation descriptive coding of GMM for more 

effective color feature extraction and classification. To 

raise the model's accuracy and performance, the SVM 

model's parameters are also tuned via the enhanced PSO 

algorithm. 

 

3.1 ICFD-SVM based on gaussian mixture 

distribution local feature aggregation 

description coding 

 

Expectation maximization (EM) is a technique used in 

clustering that is taught using the Gaussian distribution 

(GD) as a parametric model [16]. One of the most 

prevalent distribution types that may be observed in vast 

quantities in nature is the GD, sometimes known as the 

normal distribution [17]. In both natural and fake images, 

each pixel point can be considered as clustered data for 

GMM. Therefore, training using EM algorithm can 

effectively deal with the problem of adapting data to 

GMM in images. By adapting natural and forged images 

to GMM separately, similarity measurement and 

detection of image content forgery can be performed. The 

flow of ICFD algorithm for similarity measurement based 

on GMM is shown in Figure 1. 
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Figure 1: A similarity measurement image forgery detection algorithm based on GMM 

 

In Figure 1, the GMM-based ICFD algorithm for 

similarity measurement constructs the respective feature 

matrices by extracting pixel values from natural and fake 

images, respectively, and uses these feature matrices to fit 

a GMM model. The GMM model that fits the feature 

matrix of natural images is set to T1, and the GMM 

model that fits fake images is set to T2. During the fitting 

process, the algorithm first processes the parameters a 

priori to optimize the performance of the model. Next, the 

algorithm uses the EM algorithm to re-fit each pixel value 

of the input test image. The parameters obtained from 

fitting T1 and T2 are processed and refitted to obtain new 

GMM models, G1 and G2. This stage aims to improve 

the models' ability to fit the pixel data of both real and 

fake images, in order to better identify forged and real 

images. During the refitting process, the algorithm 

synthesizes new GMM models. Finally, the algorithm 

takes a computational measure of the similarity between 

the two new GMM models. The algorithm can identify 

whether or not the test image is a forged image by 

evaluating its similarity to either the forged or natural 

image. The mathematical expression of GMM is shown 

in equation (1). 

1
( ) ( , )

k

k k kk
T x N x 

=
=      (1) 

In equation (1), T  denotes GMM, x  denotes 

random pixel, ( , )k kN x    denotes the k th 

component in the GMM model, and k  denotes weight. 

The probability density function expression of GMM is 

shown in equation (2). 

( ) ( )
k

i i ii
P x a M x =       (2) 

In equation (2), P  denotes the probability density 

function of the GMM and   is the set of parameters of 

the GMM. ia  is the weight of the i th parameter and 

iM  is the i th GD of the GMM. i  is the set of 

parameters of the i th GD. The expression for the set of 

parameters corresponding to the GD in the image is 

shown in equation (3). 

 ( 1, 1, 1), ( 2, 2, 2), , ( , , )i i i         (3) 

In equation (3),   is the covariance matrix of the 

GD,   is the mean of the GD, and   is the weight of 

the GD. The calculation of the log-likelihood value using 

the EM algorithm is shown in equation (4). 

 
1

( ) ( , )
k

k i i ii
InP x In N x   

=
=   (4) 

In order to determine the convergence condition, the 

log-likelihood value is computed using equation (4). This 

step involves estimating the likelihood that each Gaussian 

component would provide the digital picture feature data. 

Equation (5) displays the probability produced by the 

k th Gaussian component. 

1

( , )
( , )

( , )

k i k k

k

i i i ii

N x
p i k

N x

  

  
=

=


     (5) 

In equation (5), p  denotes the probability of 

generating a Gaussian component. The equation for 

GMM similarity is shown in equation (6). 

1

( )1
( ) log

( )

N i

i
i

T x
S T G

N G x=
=      (6) 

In equation (6), S  denotes the similarity of the 

GMM, and T  and G  denote the first fitted GMM and 

the newly fitted GMM, respectively. Direct feature 

extraction from the dataset may lead to excessive feature 

dimensionality, which may trigger the problem of 

dimensionality catastrophe [18]. To solve this problem, 

feature extraction can be performed using GMM, while 

feature aggregation can be performed using local feature 

aggregation descriptive coding. The mathematical 

expression for local feature aggregation is shown in 

equation (7). 

( ) argmini j jV x x c= −        (7) 

In equation (7), V  denotes local feature 

aggregation and jc  denotes the j th center [19]. In 

local feature aggregation descriptive coding, the local 

features of each image or video frame are aggregated into 

a single vector which makes the representation of that 

frame more concise and efficient [20]. However, when 

multiple classes of images are mixed together, color 

features may not be accurately represented, thus affecting 

the subsequent detection results. To solve this problem, 

this study innovatively combines SVM into GMM local 

feature aggregation description coding for color feature 

extraction and classification. Principal component 

analysis is a statistical method used for dimensionality 

reduction in images. Local feature aggregation and 

description encoding can be used to aggregate the local 

descriptive features in an image into a separate vector, 

resulting in efficient and concise image expression. The 

study employs principal component analysis to perform 

vector statistics on color features in images. First, 

K-means clustering is used to learn the codebook that 

describes the coding, thereby obtaining the color-based 

local feature aggregation descriptor of the image. Next, 

each image local descriptor is assigned to the nearest 

center in the codebook to obtain a quantified index. After 

assigning descriptors of each image to a center, the vector 

of the difference between the descriptors and the center 

can be obtained, and clustering features can be extracted 

based on the normalized vector. SVM is a supervised 

learning model that can be used for classification and 
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regression analysis, and in ICFD, SVM can be used to 

train classifiers to distinguish real images from fake ones 

[21]. Figure 2 shows the ICFD-SVM process based on 

GMM local feature aggregation description coding. 

 

Forgery of images Classification

Extract color features

Local feature aggregation description 

encoding

SVM model
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Figure 2: SVM image content forgery detection process based on GMM local feature aggregation description encoding 

 

The two primary steps of the ICFD-SVM method 

based on GMM local feature aggregate description 

coding are feature extraction and feature classification 

(Figure 2). The process begins with identifying the forged 

image. During this process, the SVM model is trained to 

recognize the features that distinguish one image from 

another. Next, the color features are encoded using local 

feature aggregation description coding. This effectively 

aggregates the local color features in the image to form a 

global color description vector. In this way, each image 

can be represented as a unique color description vector. 

Finally, these coded features are used as inputs to SVM 

models for training. These attributes are taught to the 

SVM model so it can differentiate between authentic and 

fraudulent photos. By classifying the input features 

during the training phase, the model progressively gains 

the ability to differentiate between real and fraudulent 

images. 

 

3.2 ICFD-SVM based on improved PSO 

optimization 
In classification problems, SVMs can be categorized into 

linearly differentiable SVMs, linearly indivisible SVMs 

and nonlinear SVMs [22]. Among them, linearly 

differentiable SVM is the most commonly used type, 

which correctly separates samples of different classes by 

finding an optimal hyperplane. This optimal hyperplane 

is determined by the two samples closest to the separating 

hyperplane, which form two long bands parallel to the 

hyperplane. The hyperplane selection process of SVM is 

shown in Figure 3. 
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Figure 3: The process of selecting hyperplanes in SVM 

 

In Figure 3, the solid and hollow points represent 

different two types of samples, the dashed line represents 

the separation hyperplane, while the solid line represents 

the two long bands consisting of the two samples closest 

to the separation hyperplane. In the optimization process 

of SVM, it is necessary to find a hyperplane that 

minimizes the classification error of all samples. If there 

exists a hyperplane that can correctly classify all the 

samples, the problem is said to be linearly separable; 

otherwise, the problem is said to be linearly indivisible. 

The regression function expression for SVM is shown in 

equation (8). 

( ) bif x x= • +           (8) 

In equation (8),   denotes the weight coefficients 

and b  is the bias term. The minimum value of the 

regression function is optimized as shown in equation (9). 
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min

1

1 c
( ) min ( , ( ))

2

N

i i

i

f x L y f x
N


=

= +   (9) 

In equation (9), c  denotes the penalty coefficient 

and L  denotes the insensitive loss function. The 

mathematical expression of the insensitive loss function 

is shown in equation (10). 

( ) ,
( , ( ))

0, ( )

y f x otherwise
L y f x

y f x 

 −
= 

− 
 (10) 

In equation (10),   denotes the insensitive error 

and the insensitive loss function satisfies the obtained 

constraints as shown in equation (11). 

( )

0, 0

i i

i i

x b y

y x b

  

  

 

+ −  +


− +  +
  

     (11) 

In equation (11),   and   denote the relaxation 

variable outside the hyperplane and the relaxation 

variable inside the hyperplane, respectively. The 

mathematical expression of the linear SVM regression 

function is shown in equation (12). 

*

1

( ) ( )( )
N

i

i

y f x x x b 
=

= − • +    (12) 

In equation (12), *,   denotes the Lagrange 

multiplier. Nonlinear SVM can be applied to linearly 

indivisible datasets. Nonlinear SVM maps the data from 

the original space to a higher dimensional space by using 

a kernel function, which makes the originally linearly 

indivisible data linearly differentiable. The choice of 

kernel function affects the performance of SVM [23]. The 

study uses Gaussian kernel function for computation as 

shown in equation (13). 

2

2
( , ) exp

2

i j

i j

x x
K x x

g

−
= −      (13) 

In equation (13), K  denotes the Gaussian kernel 

function and g  is the kernel function width of the 

Gaussian kernel function. The parameters selected during 

SVM model training have a significant effect on the 

model's accuracy and performance. The revised PSO 

algorithm can be used to optimize the SVM and 

determine the ideal set of parameters. The pseudocode for 

improving the PSO algorithm is shown in Figure 4. 

 

procedure PSO

  for each particle i

     Initialize velocity Vi and position Xi 

for particle i

      Evaluate particle i and set Pbesti= Xi

    end for

    Gbest=min{Pbesti}

    while not stop

         for i=1toN

             Update the velocity and position 

of particle i

               Evaluate particle i

               if fit(Xi)<fit(Pbesti)

                       Pbesti=Xi

               if fit(Pbesti)<fit(Gbest)

                       Gbest=Pbesti

             end of

         end while

         print Gbest

End procedure

 

Figure 4: Pseudocode for improving PSO algorithm 

 

Figure 4 shows that the improved PSO algorithm 

incorporates the parameters of each particle into SVM 

and calculates the fitness of each particle through training 

and cross-validation. Therefore, when using the improved 

PSO algorithm to optimize SVM, the penalty parameters 

in SVM are selected. The improvement of the inertia 

weights of the PSO algorithm is shown in equation (14). 

max max min max
( )

z

Z

a
W W W W

a
= − −    (14) 

In equation (14), minW  and maxW  denote the 

minimum inertia weight and maximum inertia weight of 

the PSO algorithm, a denotes a constant, and 0 1a＜ ＜ , 

z  and maxz  denote the current iteration number and 

maximum iteration number, respectively. The position 

update improvement of PSO algorithm using random 

perturbation operator is shown in equation (15). 

3( 1) ( ( )) ( )iD g D Dx z r P h z h z+ = − +    (15) 

 

 

 

 

 

 

 

 

 

 

 



Image Content Forgery Detection Model Combining PSO… Informatica 48 (2024) 151–164 157 

In equation (15), 3r  denotes the random number, 

and ( )Dh z  denotes the position where the worst adapted 

particle is located at the z th iteration. The enhanced 

PSO algorithm overcomes the limitations of the 

traditional PSO algorithm, which tends to be premature 

and prone to local optima. It offers the benefits of a 

simple structure, easy implementation, and fast 

convergence speed. Figure 5 displays the ICFD-SVM 

flow optimized using the enhanced PSO technique. 
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Figure 5: Optimization of SVM image content forgery 

detection process based on improved PSO algorithm 

 

Initializing the particle swarm, including its quantity, 

locations, and velocities, is the first step in the 

ICFD-SVM process optimized using the enhanced PSO 

method in Figure 5. The particles' initial values can be set 

based on the problem domain knowledge or randomly 

generated. The fitness function of each particle is 

determined by calculating the classification accuracy of 

its corresponding SVM model. The velocity and position 

of each particle are then adjusted based on its fitness 

function value and the historical best position of the 

population. The global best position is updated for each 

particle whose fitness function value exceeds the current 

global best fitness function value. The algorithm 

terminates when a predetermined number of iterations or 

an error threshold are achieved. 

 

 

 

4 ICFD-SVM model validation for 

improved PSO optimization for 

electronic data forensics 
In this chapter, the specific environment of the 

experiment is configured, and then the various 

performances of the branch ICFD-SVM model optimized 

by the improved PSO algorithm are experimentally 

verified. 

4.1 Experimental environment configuration 
The datasets used for the experiments are obtained from 

ImageNet and COCO datasets, and the images are 

processed with region-copying forgeries and the 

processed dataset is divided into experimental training set 

and experimental testing set [24]. The dataset contains a 

total of 1400 sample images, with resolutions ranging 

from 320 x 240 to 800 x 600, with an average resolution 

of 384 x 256. The ImageNet and COCO datasets are both 

sourced from publicly available datasets. The ImageNet 

dataset is characterized by its large scale, rich diversity, 

and high-quality annotated images. Experiments using 

this dataset can verify the generalization ability of the 

model due to its diverse image content. The COCO 

dataset, on the other hand, features images with rich 

object detection, segmentation, and subtitle annotation. 

The COCO dataset's rich annotation information makes it 

valuable for tasks like image recognition and 

segmentation. Using this dataset for experiments can help 

verify the model's universality. The types of image 

forgery in the dataset include homologous stitching and 

heterologous stitching forgery operations. To increase the 

difficulty of detecting forged images and the diversity of 

the dataset, the study performed forgery operations such 

as multi-region tampering and geometric transformations 

on some of the images. The forged parts and contents of 

these images were randomly generated. To more 

precisely assess the model's performance, the 1400 

samples in the gathered and processed dataset are split 

into training and test sets at a ratio of 6:4. additionally, 

the study assembled 500 samples from the images that are 

manipulated geometrically and by multi-region tampering 

into a validation set. The example images of the data used 

in the test and training sets in the experiment are shown 

in Figure 6. 
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(a) Natural images (b) Natural images

(c) Regional replication forgery of images (d) Copying and moving forged images

 

Figure 6: Example images of data used in the test and training sets in the experiment 

 

The Python 3.7 programming language is used to 

conduct the trials, which are carried out on the Windows 

10 operating system. The study utilizes the Pytorch 

framework to build an experimental environment, and 

uses a high-performance NVIDIA TITAN BLACK GPU 

as the cloud host for model training. The CUDA 

framework is also used to perform efficient graphic 

calculations. At the same time, the experiment configures 

64GB of memory core and 6GB of graphic memory for 

Windows 10 system to support large-scale data 

processing. The experimental environment's precise 

configuration is displayed below: 

 

 

Table 2: Specific experimental environment configuration 

Experimental environment Configuration 

Operating system Windows10 

Memory 64GB 

GPU NVIDIA TITAN BLACK GPU 

Graphics memory 6G 

PyTorch framework PyTorch 1.8.1 

CUDA framework CUDA11.1 

Programming Language Python 3.7 

 

4.2 Improved PSO Optimized ICFD-SVM 

Model Performance Validation 
The SVM model is initially trained in order to verify the 

performance of the enhanced PSO optimized ICFD-SVM 

model. The model's bach_size value is set to 32, and the 

initial learning rate is set to 0.001. The training accuracy 

and training loss of the SVM model are shown in Figure 

7. In Figure 7(a), the training accuracy shows a steady 

increase. After 20 training batches, the training accuracy 

maintains a small oscillation in the range of 95% to 

100%.  

 

 

 

 

 

 

 

In Figure 7(b), the training loss of the model, although it  

oscillates substantially in the initial phase of training, 

gradually stabilizes as the training progresses as the 

model approaches 600 batches. Thereafter, the training 

loss value of the model stabilized within the range of 

10% without further large fluctuations.  

Comprehensively, it can be seen that the model has 

effectiveness and is suitable for ICFD. Meanwhile, the 

parameter values of learning rate and other parameters set 

in the experiment are reasonable and can be verified in 

subsequent experiments. 
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(a) The Training Accuracy of SVM Models
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(b) Training loss of SVM model
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Figure 7: The training accuracy and training loss of SVM 

models during the training process 

 

In Figure 8, the improved PSO-optimized 

ICFD-SVM model is compared with the unimproved 

PSO-optimized model on the dataset in terms of detection 

efficiency and accuracy to confirm its benefits in terms of 

detection performance. In Figure 8(a), when the samples 

is 1400, the detection accuracies of the improved PSO 

optimized pre- and post-optimized models at this time are 

89.36% and 94.89%, respectively. The detection accuracy 

of the model after improved PSO optimization is 

improved by 5.53% compared to the pre-optimization. In 

Figure 8(b), when the number of samples is 1400, the 

detection runtime of the improved PSO pre-optimization 

and post-optimization models are 22.64 ms and 22.06 ms, 

respectively. the runtime of the improved PSO-optimized 

model has been reduced by 2.56% compared with the 

pre-optimization. Comprehensively, the ICFD-SVM 

model after improved PSO optimization has effectively 

improved the detection accuracy as well as the detection 

efficiency. 
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(b) Comparison of efficiency between models 

before and after PSO optimization
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Figure 8: Comparison of detection accuracy and 

efficiency of models before and after PSO optimization 

 

To verify the application of local feature aggregation 

description coding in the model, the ICFD-SVM model 

based on the local feature aggregation description coding 

of GMM is compared with the clustering of the 

ICFD-SVM model that did not use local feature 

aggregation description coding, as shown in Figure 9. 

The GMM with local feature aggregation description 

coding has a clearly higher number of clusters than the 

GMM without it. This suggests that local feature 

aggregation description coding effectively improves the 

model's ability to extract features, which in turn improves 

the model's performance in terms of detection. 
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(b) Image Feature Clustering Map Based on GMM 
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Figure 9: Gaussian image clustering comparison chart 

 

 

The study compared the detection accuracy on the 

training and test sets, respectively, to confirm the 

improved PSO-optimized ICFD-SVM model's 

performance in terms of detection accuracy. The ROC 

plot of the improved PSO-optimized ICFD-SVM model 

is displayed in Figure 10. In Figure 10(a), the improved 

PSO-optimized SVM model exhibits a detection accuracy 

of up to 97.35% on the training set. This figure indicates 

that the model has excellent learning and generalization 

capabilities on the training dataset, and is able to 

accurately identify and classify both forged and real 

images. In Figure 10(b), the model achieved a detection 

accuracy of 96.71% in the test set. Taken together, the 

improved PSO-optimized ICFD-SVM model exhibits 

high detection accuracy. 
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Figure 10: ROC curve of image content forgery detection 

model optimized by PSO and SVM 

 

To further validate the effectiveness of improving the 

performance of the PSO-optimized ICFD-SVM model, 

the study compares and validates it with the commonly 

used image detection models such as learning to weight 

(LTW) based on weighted learning, adaptive 

manipulation traces extraction network (AMTEN) based 

on adaptive operation trace extraction network, forensic 

transfer network (FTNet) based on forensic transfer 

network, and Leveraging frequency analysis (LFA) based 

deep pseudo image recognition detection The study 

compared and validated commonly used image detection 

models.  
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The terms specificity and sensitivity mathematically 

describe the accuracy of a test in reporting the presence 

or absence of conditions, where those that meet the 

conditions are considered "positive" and those that do not 

meet the conditions are considered "negative". Sensitivity, 

also known as true positive rate, refers to the condition 

under which the detection result is "positive", while 

specificity, also known as true negative rate, refers to the 

condition under which the detection result is "negative". 

Therefore, using specificity and sensitivity, the 

performance of algorithms to determine whether an 

image has undergone regional replication and forgery can 

be evaluated. Domain wide face forgery detection based 

on weighted learning. The specificity and sensitivity 

comparison results of different ICFD models are shown 

in Table 3. In the training set, the model achieved a 

maximum value of 96.54% for specificity, which is an 

improvement of 15.9%, 16.90%, 23.38%, and 23.90% 

compared to the LTW, AMTEN, FTNet, and LFA models, 

respectively. And in the test set, the sensitivity of the 

model achieved a maximum value of 95.14%, which is 

improved by 3.10%, 5.53%, 4.46% and 3.45% compared 

with the LTW, AMTEN, FTNet and LFA models, 

respectively. Taken together, the improved 

PSO-optimized ICFD-SVM model shows a superior 

performance when comparing with other detection 

models. 

 

 
Table 3: Comparison of specificity and sensitivity of different image content forgery detection models 

Model 
Training set Test set 

Specificity/% Sensitiveness/% Specificity/% Sensitiveness/% 

LTW 80.64 91.54 79.16 92.04 

AMTEN 79.64 88.98 78.15 89.61 

FTNet 73.16 91.51 73.57 90.68 

LFA 72.64 81.14 70.61 91.69 

PSO-SVM 96.54 95.10 96.08 95.14 

 

To conduct a more comprehensive study of the 

model, a benchmark test analysis of existing models will 

be conducted. This model will be compared and analyzed 

with other advanced modeling methods such as LTW, 

AMTEN, FTNet, and LFA on public datasets. As 

illustrated in Figure 11, the detection accuracy of the 

improved PSO-optimized ICFD-SVM model is compared 

with that of the LTW, AMTEN, FTNet, and LFA models 

in the validation set in order to more intuitively evaluate 

the detection performance of this model. From Figure 11, 

the dots represent outliers and the crosses represent the 

mean. The confidence interval of the improved 

PSO-SVM model is (96.12 ±  2.13), while the 

confidence intervals of LTW, AMTEN, FTNet, and LFA 

models are (78.10 ± 2.59), (77.83 ± 1.36), (71.51 ± 

0.98), and (76.07 ± 11.09), respectively. It can be seen 

that the improved PSO-SVM model has the highest 

detection accuracy of 98.15%. In comparison, LTW, 

AMTEN The highest detection accuracy values of FTNet 

and LFA models are 80.69%, 79.19%, 72.49%, and 

87.16%, respectively. Therefore, the improved PSO-SVM 

model has improved detection accuracy by 17.46%, 

18.96%, 25.66%, and 10.99%, respectively. These data 

clearly demonstrate the superiority of the improved 

PSO-SVM model, further confirming its excellent 

performance in ICFD tasks. In summary, the PSO-SVM 

model addresses the limitations of traditional models that 

are prone to premature convergence and falling into local 

extremes. This demonstrates the potential of the 

PSO-SVM model in detecting image content forgery. 
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Figure 11: Comparison of detection accuracy of different 

model 

Experiments are carried out on the validation set to 

identify the localization of the model with various forgery 

techniques in order to validate the performance of the 

enhanced PSO-optimized ICFD-SVM model in practical 

applications. The results of image forgery region 

localization detection are shown in Table 4. The model's 

localization accuracy exceeds 92% on different forgery 

methods. On the image scale transformation forgery 

content, the model's detection and localization precision 

achieves the highest value of 94.06%, on the image 

splicing forgery method, the model's recall achieves the 

highest value of 92.68%, and on the forgery method of 

adding noise interference, the model's F1 value achieves 

the highest value of 96.34%. Comprehensively, in 

practical validation, the model has high localization 

performance for images forged by different forgery 

methods. 
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Table 4: Image forgery area localization detection results 

Forgery methods Precision/% Recall% F1 value% 

Multi region tampering 93.16 90.36 95.61 

Transform 92.15 91.64 96.18 

Mosaics 92.94 92.68 95.91 

Image scale transformation 94.06 90.67 96.15 

Add noise interference 93.39 89.19 96.34 

Sharpening 92.06 90.91 95.09 

 

5 Discussion 

The development of information technology has made 

image data a crucial tool for information dissemination. 

However, the rise of artificial intelligence technology has 

also led to an increase in image forgery, which has had a 

significant impact. To accurately identify forged images, 

PSO-SVM was proposed for image forgery recognition. 

The results indicated that the optimized model achieves a 

detection accuracy of 94.89% when the sample size 

reaches 1400, which is 5.53% higher than the 

pre-optimized model. This improvement was significant 

compared to similar models in other literature. For 

instance, Arunkumar P M's research team's fuzzy Fisher 

face model detection method achieved an accuracy of 

89.32% in the dataset [12]. Styawati S's research team 

achieved the highest accuracy of 89% in sentiment 

classification using an SVM-based model [13]. The 

model in this study is more accurate than the above 

methods. Additionally, the research successfully reduced 

the computational complexity of the model and improved 

detection speed by optimizing the algorithm and model 

structure. For a sample size of 1400, the post-optimized 

model's detection running time decreased by 2.56% 

compared to the pre-optimized model. The method's 

improvement enhances the model's ability to meet 

real-time and efficiency requirements in practical 

applications. Additionally, the study successfully 

optimized the parameters of the SVM model by 

improving the PSO algorithm, resulting in improved 

detection accuracy. The study aimed to verify the model's 

generalization ability and universality by conducting 

research on different datasets. To ensure stability and 

reliability, representative public datasets were selected 

and sufficient preprocessing and feature  extraction 

work was conducted. This allowed the model to better 

learn the inherent patterns and features of the data, 

resulting in improved detection performance. In summary, 

the study proposes the PSO-SVM model, which has not 

only achieved significant improvement in detection 

accuracy after optimizing the PSO algorithm but also 

demonstrated unique advantages in methods, dataset 

usage, and computational efficiency. These advantages 

make the model a valuable contribution to related fields 

with broad application prospects. 

6 Conclusion 

ICFD plays a critical role in the EDF industry. To 

enhance its accuracy, this study incorporates SVM with 

GMM local feature aggregation description coding based 

on the GMM model and optimizes the parameters of the 

SVM model using the improved PSO algorithm. When 

the number of samples reached 1400, the model 

optimized by the improved PSO was found to improve 

detection accuracy by 5.53% compared to the 

pre-optimized version, with a resultant detection accuracy 

of 94.89%. Additionally, the running time was observed 

to decrease slightly by 2.56% post-optimization. In the 

training set and test set, the model demonstrated detection 

accuracy of 97.35% and 96.71%, respectively. Moreover, 

the model attained a maximum specificity of 96.54% in 

the training set, surpassing the specificity of the LTW, 

AMTEN, FTNet, and LFA models by 15.9%, 16.90%, 

23.38%, and 23.90%, respectively. In the test set, this 

model achieved a maximum sensitivity value of 95.14%. 

This was higher by 3.10%, 5.53%, 4.46%, and 3.45% 

compared to the LTW, AMTEN, FTNet, and LFA models, 

correspondingly. In addition, the model achieved the 

highest precision for detection and localization of 94.06% 

for image scale transformation forgery, the highest recall 

value of 92.68% for image splicing forgery, and the 

highest F1 value of 96.34% for the forgery method with 

added noise interference. In summary, the results suggest 

that the combination of PSO with the ICFD-SVM model 

in EDF enhances the detection accuracy of forged images. 

However, the study was solely validated experimentally 

against six image forgery methods, and further 

improvements regarding comprehensive experimental 

results are necessary. 
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