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This study investigates the practical application of an enhanced point cloud filtering algorithm in 

mountainous terrain surveying and mapping. The author introduces a tailored algorithm specifically 

designed for such areas. The research begins with a critical analysis of the limitations of existing point 

cloud filtering algorithms, which often result in suboptimal ground-point cloud systems after filtering. The 

proposed methodology systematically examines non-ground points in point clouds and classifies surface 

cover types. The method effectively identifies and removes non-ground points by utilizing well-established 

algorithms, particularly for vegetation and building extraction, significantly improving the point cloud 

filtering process. Rigorous qualitative and quantitative analyses demonstrate substantial improvements, 

comparing the proposed algorithm with the progressive encryption triangulation filtering algorithm. The 

ground point cloud generated by the improved algorithm closely aligns with the measured profile, showing 

minimal deviation, with an average elevation difference of -0.06 m and a mean square error of 0.45 m. In 

contrast, the progressive encryption triangulation filtering algorithm shows a mean difference of -0.45 m 

and a mean square error of 0.71 m. This research concludes that the improved point cloud filtering 

method, based on surface coverage types, outperforms the gradually encrypted triangulation filtering 

algorithm in terms of accuracy. The proposed algorithm demonstrates approximately a 45% improvement 

in accuracy compared to traditional methods. Furthermore, the proposed approach offers superior 

applicability, increased automation, and enhanced extraction accuracy in mountainous terrains 

compared to conventional ground-point filtering methods. These findings provide innovative solutions for 

the complex challenge of point cloud filtering in rugged mountainous areas, advancing surveying and 

mapping methodologies. 

Povzetek: Članek predstavi izboljšan algoritem za filtriranje oblakov točk, prilagojen kartiranju goratih 

terenov, ki povečuje kvaliteto filtriranja, avtomatizacijo in zmogljivost pri obdelavi kompleksnih 

geografskih podatkov. 

 

1 Introduction 
In recent years, laser scanning has become one of the most 

common methods for obtaining 3D point clouds. Laser 

scanning has wide applications in 3D reconstruction, 

cultural relic protection, reverse engineering, and 

geographic surveying. Subsequent processing work, the 

accuracy of registration, and the quality of 3D 

reconstruction can be affected by noise in the 3D point 

cloud obtained through the scanner. Therefore, it is 

necessary to filter the point cloud model. Statistical 

filtering and bilateral filtering are the two main types of 

filtering algorithms used for 3D point clouds. Statistical 

filtering removes noise points, while bilateral filtering 

corrects the position of noise points. Surveying and 

mapping professionals widely apply 3D laser scanning 

technology in the field due to its fast, efficient, non-

contact, dynamic, and precise characteristics, as well as its 

ability to digitize, automate, and provide real-time data. In 

terms of work efficiency, labor intensity, cost control, 

personnel and equipment investment, and controllability  

 

of the construction period, both field data collection and 

indoor data processing have achieved significant results, 

and the measurement results meet the requirements of 

large-scale topographic map aerial photogrammetry 

specifications. 

Figure 1 depicts the application of an improved point 

cloud filtering algorithm in mountainous terrain surveying 

and mapping. The advantage of 3D laser scanning 

technology is that it avoids the drawbacks of traditional 

single-point measurement and combines the lightweight 

flexibility of drones with the maturity of laser scanning 

equipment technology, making the adaptability of drone 

airborne 3D laser scanning to the environment more 

extensive. It can achieve real-time and accurate batch 

collection of surface information data and has advantages 

that traditional manual measurement and aerial 

photogrammetry cannot compare. In recent years, through 

theoretical research and practical verification by domestic 

and foreign scholars, relevant theories related to radar data 

processing have become increasingly mature. We propose 
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a two-stage filtering strategy from coarse to fine to fill 

terrain in large areas of missing data.  

 

 
Figure 1: Application of improved point cloud filtering algorithm in mountainous terrain surveying and mapping 

 

This strategy starts with morphological filtering to address 

excessively corroded terrain and combines it with region 

growth. This box graph detection method takes point 

cloud attribute information and processes it. It speeds up 

point cloud filtering, cuts down on ground point cloud 

miss points, and quickly extracts non-ground points, 

which also cuts down on point cloud filtering miss points. 

We compared and studied the cloth simulation filtering 

algorithm, the progressive triangular network filtering 

algorithm, and the CSF algorithm. The results showed that 

the progressive triangular network filtering algorithm had 

the smallest error and completed the filtering process 

faster in areas with complex terrain undulations.  

Constructing point cloud adaptive filtering and directional 

intelligent precise editing software achieves reliable, 

efficient, and robust intelligent filtering and the DEM 

Poisson editing method for image-dense matching point 

cloud data. The triangle network progressive encryption 

filtering method based on multiple primitives has the best 

overall performance when compared to other point cloud 

filtering algorithms. With the increasing maturity of 

theoretical research and the rapid development of software 

and hardware equipment, the application of unmanned 

aerial vehicle (UAV) airborne 3D laser scanning 

technology in topographic mapping has been widely 

practiced [1, 2]. The application of 3D laser scanning 

technology for surveying and mapping purposes in 

mountainous regions presents a substantial obstacle 

attributable to the constraints of current point cloud 

filtering algorithms. Traditional approaches, which use the 

lowest point in the grid as the ground seed, inadequately 

extract ground points with precision, resulting in distorted 

terrain representations. The inadequacy of existing 

filtering algorithms hampers the accuracy and 

applicability of 3D laser scanning technology in 

mountainous regions, particularly in the context of 

surveying and mapping. An inventive methodology is 

urgently required to address the constraints of 

conventional methods and enable automated and more 

accurate point cloud filtering in difficult terrains. The 

present study presents an innovative point cloud filtering 

algorithm that utilizes surface coverage categories as its 

foundation. This algorithm deviates from traditional 

assumptions and capitalizes on well-established 

algorithms intended for extracting vegetation and 

buildings. By addressing the inherent difficulties of 

mountainous terrains, the proposed method provides a 

more precise and automated approach to filtering point 

clouds. The study adds to the body of research by showing 

that the new algorithm is more accurate and useful than 

existing progressive encryption triangulation filtering 

methods. It does this through both qualitative and 

quantitative analyses. The study’s objective is to establish 

a foundation for enhanced 3D laser scanning 

implementations in mountainous areas, thereby making a 

significant contribution to the progression of surveying 

and mapping technologies. The rest of the paper is 

organized as the most recent work is discussed in Section 

2, and the adopted methodology is discussed in Section 3. 

The experimental analysis is presented in Section 4, 

followed by the Conclusion in Section 5.  

2 Literature review 
As an active and non-contact Earth observation system, 

3D laser scanning has made a huge step forward from 

measuring a single point to measuring the whole surface. 

It can quickly and automatically get high-precision 3D 

geospatial data on targets. 3D laser pulses have strong 

penetrability and can penetrate gaps between vegetation to 

generate multiple echoes, obtaining true 3D point clouds 

on the surface. Point cloud filtering is the process of 

extracting ground points from laser point clouds, which is 

the foundation and key of point cloud processing and plays 

a crucial role in the production and application of 

subsequent digital 3D products. After more than ten years 

of development, scholars both domestically and 

internationally have proposed various classic filtering 

algorithms, such as mathematical morphology filtering 

algorithms, slope-based filtering algorithms, progressive 

encryption triangulation filtering methods, moving 

surface fitting filtering algorithms, robust interpolation 

filtering methods (linear least squares interpolation 

method), boundary clustering filtering methods, etc. 

However, most filtering algorithms mainly target flat 

terrain and sparse vegetation areas, which exhibit 

significant terrain fluctuations. The filtering effect of point 

clouds in mountainous areas with complex terrain is poor. 



Advanced Point Cloud Filtering Algorithm for Enhanced Accuracy… Informatica 49 (2025) 169-178     171                                                                                                                                        

For filtering complex terrain areas in mountainous areas, 

Wang et al. combined echo information to construct a 

multi-level filtering method, which improved the accuracy 

of point cloud filtering in mountainous areas. However, 

the algorithm design is complex, and the operational 

efficiency is low [3]. Chen et al. proposed a progressive 

encryption triangulation filtering algorithm that can 

handle various complex forest scenes, especially in areas 

with variable terrain and environments [4]. Its advantage 

lies in its ability to preserve mountain peaks, handle 

broken lines and steep slopes, and perform well in 

different forest areas. A motor drives the 3D laser scanner 

to rotate and emit laser pulses at high speed. Thick pseudo-

error point clouds often wrap around ground objects due 

to factors such as ranging error, angle measurement error, 

attitude error, etc. In practice, the above mountainous 

filtering algorithm significantly improves the filtering 

accuracy of point clouds in mountainous areas [5]. 

However, it has been found that when using the gradual 

encryption of triangular or square grids to extract ground 

points, multiple selections of the lowest point within the 

grid as the starting seed point can easily lead to mistakenly 

extracting the error point cloud as ground points in 

mountainous terrain with significant changes in micro 

terrain [6]. This results in the classified ground point cloud 

being lower than the true surface. 

The technology of using the 3D laser to obtain point 

clouds and extract regular objects such as buildings, power 

facilities, and vegetation is very mature. Researchers have 

widely published algorithms that extract vegetation on the 

surface using laser point clouds based on morphology, 

resulting in increasingly refined parameters [7, 8]. A large 

number of scholars have studied single tree extraction, 

estimation of forest tree biomass, centimeter-level height 

measurement of low vegetation, estimation of shrub 

grassland biomass, and extraction of growth parameters 

for typical crops such as sorghum, corn, rice, and sugar 

beet. Compared with the diversity of landforms, 

vegetation has a more significant spatial form recognition 

ability, and the extraction accuracy is better than that of 

point cloud filtering [9]. To explore a new filtering method 

suitable for point clouds in mountainous areas, the author 

first divides the area according to the type of surface 

coverage and retains the point cloud without processing 

for exposed surfaces. Existing mature nonground point 

cloud extraction algorithms are utilized to extract and 

eliminate nonground points for buildings and various 

types of vegetation surface cover types, thus achieving 

point cloud filtering [10, 11]. This effectively breaks 

through the theoretical assumption that the local lowest 

point is an accurate ground point in existing filtering 

algorithms, resulting in point clouds being pulled down 

and feature areas being missing after filtering in complex 

terrain areas, forming a unified filtering process and 

improving the degree of filtering automation, maximizing 

the preservation of characteristic terrain, and improving 

filtering accuracy.  

3 Methods 
In this section, the research introduces a two-fold 

methodology to address the limitations of traditional point 

cloud filtering in mountainous terrains. An algorithm 

improvement strategy is presented, leveraging surface 

coverage types to enhance non-ground point elimination. 

Next, we will detail the iterative operations of the 

improved algorithm, which include trend surface fitting 

and slope discrimination, to achieve optimal terrain point 

cloud extraction. 

3.1 Algorithm improvement 

While the relevant algorithms have shown promise in 

tests, they may not work well in real life because of things 

like different terrains and landforms, thick vegetation, and 

laser radar that doesn't go deep enough. Bad processing 

can cause a lot of small peaks to show up on the model's 

surface, making the results not good enough. The accuracy 

of point cloud data at the edge of the airstrip is often poor, 

which can lead to small elevation differences between the 

point clouds of two airstrips in overlapping areas. 

Improper processing can lead to uneven DEM models. 

Therefore, based on the trajectory file, the author uses 

TerraSolid software to eliminate redundant point cloud 

data. The author separated terrain points and object points, 

improved slope secondary discrimination, and made it 

possible to process terrain point cloud data more precisely 

by making the grid trend surface and elevation 

interpolation fitting algorithm better. This maximizes the 

elimination of small peaks on the DEM surface, reduces 

the workload of manual intervention, and makes the 

generated DEM model smoother. 

Carefully analyzing the filtering and classification 

processing mechanisms of point cloud data, based on 

relevant theoretical research results, and considering the 

terrain and vegetation coverage of the survey area, we 

construct an improved algorithm [12]. Interpolate, fit, and 

grid the redundant point cloud data to obtain the center 

point elevation of each grid, thus acquiring a relatively 

rough initial trend surface. The weight of elevation points 

within the grid relative to the grid center elevation is 

related to the plane distance of its center (specifically, the 

smaller the distance, the greater the weight), resulting in a 

trend of surface elevation between vegetation points and 

surface points when obtained through fitting. The 

threshold is related to the grid size; therefore, by setting a 

reasonable threshold, iterative algorithms can be used to 

effectively filter vegetation points. The point cloud data 

between continuously changing terrain and abrupt terrain 

has a positive or negative relative trend surface, which 

may lead to over-filtering or insufficient filtering of the 

point cloud in this area. Based on this, the author uses the 

linear interpolation method to fit the fitted elevation of the 

ground 3D point cloud in the trend surface and uses it as 

the reference elevation for height difference calculation. 

As the fitted trend surface is similar to the actual terrain, 

the fitted elevation does not differ significantly from the 

original elevation. The fitted trend surface effectively 

eliminates the adverse effects of continuously changing 
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terrain on filtering [13, 14] by ensuring that the elevation 

difference is not mistakenly filtered out due to sudden 

changes in terrain. The calculation formula is shown in 

Equation 1. 
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In the formula, 𝐻𝑖  is the fitting elevation of point 𝐼, 𝐿 is 

the size of the grid, 𝐷𝐼 is the plane distance from the point 

to the center of the grid, 𝐺𝑘 is the interpolation elevation 

of the grid, and 𝐾 is the number of grids. The degree of 

mixing between vegetation points and terrain points is 

greater for areas covered by low vegetation. Using only 

elevation difference for point cloud filtering and 

classification cannot completely separate terrain points 

from terrain points. Therefore, in this area, if the threshold 

of elevation difference is set too large, low vegetation 

points are easily recognized as terrain points; If the 

threshold of elevation difference is set too small, it will 

cause some terrain points to be filtered out. The size of the 

slope is one of the indicator factors for judging terrain 

changes. The author introduces secondary discrimination 

of slope as an additional condition to further improve the 

point cloud filtering and recognition ability of terrain 

points, thereby obtaining real terrain point cloud data in 

low vegetation areas, to meet the requirements of large-

scale terrain production. The author uses the slope 

algorithm to re-judge the point cloud data filtered by the 

trend surface elevation, which can further avoid the 

problem of identifying terrain points as terrain points and 

reduce the problem of over-filtering terrain points. In 

slope filtering, it is necessary to ensure that the filtered 3D 

point cloud data does not participate in the next 

calculation. The detailed calculation formula for the 

secondary discrimination of slope is shown in Equation 2. 
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3.2 Iterative operation of improved 

algorithms 

The trend surface fitting, linear interpolation, and slope 

discrimination involved in the above-improved algorithms 

need to be achieved through iterative algorithms. This 

article uses MATLAB programming to achieve the 

iterative operation of the algorithm. In iterative operations, 

the key parameters involved include grid size and 

empirical threshold. The size of the grid changes 

continuously with iterative operations. In the initial 

calculation, a relatively large grid size is used to obtain a 

relatively rough trend surface. As the number of iterations 

increases, the grid size is gradually adjusted until a fine-

trend surface model that is closer to the real ground is 

obtained. During this period, the upper and lower limits of 

grid size are crucial and need to be determined based on 

the terrain of the experimental area and the density of 3D 

point cloud data. Since the testing area is located in a 

mountainous area and the terrain is relatively complex, to 

ensure that some terrain filtering is not eliminated, the 

upper limit of the grid size cannot be set too large. The 

lower limit of the grid size is related to the point cloud data 

density of the testing area, and the setting requirement is 

to ensure that there is at least one point in each grid.  

The empirical threshold is the threshold for the difference 

between the fitted elevation of 3D ground points and the 

measured elevation. The determination of its value is 

related to the size of the grid, and the larger the grid, the 

greater the threshold. Each input of empirical threshold 

data is the result of the previous iterative filtering. To 

effectively achieve slope discrimination, the trend 

elevation of 3D points is subtracted from the actual 

elevation in iterative operations. If the elevation difference 

is not within the threshold range, it indicates that the point 

is a non-ground point; If the elevation difference is within 

the threshold range, further calculate the slope. When the 

slope is greater than the threshold, it indicates that the 

point is nonground; When the slope is less than the 

threshold, it indicates that the point meets the size 

requirements set by the grid window and is recognized as 

a ground point. By repeatedly calculating and 

continuously adjusting the size of the grid, it is ensured 

that the filtered points no longer participate in the next 

iteration calculation. The detailed iteration steps are as 

follows:  

i. Set the initial grid window size. Interpolate the 

point cloud data, and obtain the elevation of each 

grid by weighted linear interpolation of the 

distance between points in Equation 1, thereby 

obtaining a relatively rough initial trend surface.  

ii. Linearly interpolate 3D point cloud data into the 

initial trend surface to obtain its trend surface 

elevation, and subtract the point cloud trend 

surface elevation from the true elevation. If the 

difference is greater than the threshold, it is 

considered a nonground point; If the difference is 

much lower than the threshold, the point is 

considered a gross error and is removed; If the 

difference is within the set threshold range, 

proceed to the next slope calculation [15].  

iii. Calculate the slope of the grid center where the 

point cloud is located. When the slope is greater 

than the threshold, it indicates that the point is 

nonground; When the slope is within the threshold 

range, it is classified as an unclassified point cloud; 

If the point reaches the size set by the grid window, 

it is recognized as a ground point; If not achieved, 

adjust the window size again for iterative 

operations [16, 17].  

iv. Perform steps ii) and iii) on all point cloud data 

until there are no classifiable point cloud data.  

v. As the iteration progresses, perform steps i) and ii) 

on the unclassified point clouds, gradually 

adjusting the grid size until it meets the set size 

requirements.  

vi. After reaching the set grid size, stop iteration and 

identify the remaining unclassified point cloud data 

as on-site terrain points. 
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3.3 Point cloud filtering algorithm based on 

improved surface coverage type 

3.3.1 Technical route 

3D laser scanning equipment can not only obtain point 

clouds but also digital image data. The main idea of the 

point cloud filtering algorithm based on improved surface 

coverage types is to classify surface cover in a region 

based on digital images [18]. For exposed surfaces, no 

filtering is performed; for buildings, classify and remove 

building point clouds; and for high, medium, and low 

vegetation, classify and remove vegetation point clouds. 

Then, we manually classify and inspect the point clouds 

with the assistance of images. After measuring the 

accuracy of the profile detection, we complete the point 

cloud filtering process. The technical route is shown in 

Figure 2. 

 

 
Figure 2: Technical roadmap of point cloud filtering 

algorithm based on improved surface coverage type 

3.3.2 Classification of surface cover types 

According to the type of surface coverage, the extraction 

of non-ground points is shown in Figure 3. 

 

 
Figure 3: Removing Non-Ground points 

 

4 Experiments 
The experiments aim to validate the efficacy of the 

proposed point cloud filtering algorithm in mountainous 

terrain. The study uses a chosen area to compare the 

results of the new algorithm with those of older methods. 

It focuses on checking the accuracy of profile overlay and 

elevation. These experiments serve to affirm the 

algorithm’s performance and its potential applications in 

complex topographies. 

4.1 Accuracy evaluation 

The improved point cloud filtering accuracy is more 

intuitive through profile comparison and meets the needs 

of engineering applications. 

4.1.1 Comparison of profile overlay  

Select a typical area and compare it with the measured 

profile and the gradually encrypted triangulation filtering 

algorithm, as well as the point cloud filtering algorithm 

based on the improved surface coverage type, as shown in 

Figure 4. 

 

 
Figure 4: Plot of point cloud filtering algorithm 

 

 

 



174   Informatica 49 (2025) 169-178                                                                                                                                      S. Yu et al.

  

From Figure 4, it can be seen that the progressive 

encryption triangulation filtering algorithm is significantly 

lower than the measured ground line, while the point cloud 

filtering algorithm based on the improved surface 

coverage type is located in the middle of the ground line 

[19].  

4.2 Evaluation of profile elevation accuracy 

Select typical profiles, and compare the elevation of the 

profiles intercepted by the progressive encryption 

triangulation filtering algorithm and the point cloud 

filtering algorithm based on improved surface coverage 

types with the measured ground profiles at the same 

distance [20]. The distribution of their differences is 

shown in Figure 5, and the statistical results of elevation 

accuracy are shown in Table 1. 

 

 

 
Figure 5: Distribution of profile elevation difference of point cloud filtering algorithm

 

Table 1: Statistics of profile elevation accuracy 

Method 
Check the 

Number 
Mean value/m Mean square error/m 

Gradually encrypted triangular 

network filtering 
10863 -0.45 0.71 

A Point Cloud Filtering 

Algorithm Based on Improved 

Surface Coverage Types 

10863 -0.06 0.45 

Table 2: Comparative analysis of point cloud filtering algorithms 

Parameter Improved Algorithm Conventional Algorithm 

Ground Point Cloud Deviation Minimal Significant 

Average Elevation Difference (m) -0.06 -0.45 

Mean Square Error (m2) 0.45 0.71 

Applicability in Mountainous Terrain High Limited 

Automation Level High Moderate 

Extraction Accuracy Superior Lower 

From Figure 5 and Table 1, it can be seen that the average 

difference in profile elevation of the progressive 

encryption triangulation filtering algorithm is -0.45 m, 

which is significantly negative; The average elevation 

difference of the point cloud filtering algorithm based on 

improved surface coverage type is -0.06 m, which is close 

to zero. The mean square error in elevation is 0.71 m and 

0.45 m respectively. The accuracy of the point cloud 

filtering algorithm based on improved surface coverage 

type is better than that of the progressive encryption 

triangulation filtering algorithm. 

Table 2 compares the results between the proposed 

improved algorithm and a conventional algorithm in the 

context of mountainous terrain surveying. The improved 

algorithm demonstrates minimal deviation from the 

measured ground profile, yielding an average elevation 
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difference of -0.06m and a mean square error of 0.45m. In 

contrast, the conventional algorithm exhibits significant 

deviations, with an average elevation difference of -0.45m 

and a mean square error of 0.71m. The Improved 

Algorithm showcases superior applicability, high 

automation, and enhanced extraction accuracy for 

complex mountainous landscapes. 

 

 
Figure 6: Profile elevation difference distribution 

 
Figure 7: Elevation accuracy vs Terrain slope 

 

 
Figure 8: Performance comparison 

 

Figure 7 compares the elevation differences between the 

proposed improved algorithm and the conventional 

algorithm [12] across 20 sample points. The line for the 

improved algorithm fluctuates within a much smaller 

range, between approximately -0.1 and 0.1 meters, 

indicating that it closely aligns with the real ground 

profile, with minimal deviations. In contrast, the 

conventional algorithm exhibits a wider range of 

deviations, spanning from -0.5 to 0.5 meters, indicating 

that it is less accurate and more prone to over- or under-

estimation of ground points. It is observed from this 

analysis that the improved algorithm provides more 

consistent and reliable results in terms of filtering ground 

points in mountainous terrains, as it maintains lower 

elevation deviations compared to the conventional 

approach. Figure 8 illustrates the relationship between 

terrain slope (in degrees) and the accuracy of both the 

improved algorithm and the conventional algorithm. The 

plot shows that the improved algorithm maintains high 

accuracy (above 80%) even as the terrain slope increases, 

which is critical in mountainous regions where slope 

variability is common. The conventional algorithm, on the 

other hand, shows a noticeable drop in accuracy as the 

slope increases, with accuracy values declining below 

70% in steeper terrains. This suggests that the improved 

algorithm is better equipped to handle varying terrain 

slopes, maintaining higher levels of accuracy even in more 

challenging, steep areas. In contrast, the conventional 

algorithm struggles with higher slopes, reducing its 

overall reliability. Figure 9 compares the performance of 

three algorithms—Improved Algorithm, Cloth Simulation 

Filtering (CSF), and Adaptive TIN (ATIN)—using four 

metrics: Average Elevation Difference, Mean Square 

Error (MSE), Precision, and Recall. The improved 

algorithm has the lowest average elevation difference (-

0.06 m) and MSE (0.45 m²), indicating that it is the most 

accurate and least error-prone method. CSF and ATIN 

have higher elevation differences and MSE values, which 

shows that while they are effective, they don’t perform as 

well as the improved method in complex terrains. In terms 

of precision and recall, the Improved Algorithm again 

outperforms, with values of 92% and 88%, respectively. 

These high values indicate that it can identify ground 

points with both high accuracy and completeness. CSF 

and ATIN, while still performing well, show lower 

precision and recall, making them slightly less reliable. 

5 Conclusion 
The maturation and widespread adoption of 3D laser 

scanning technology have significantly impacted various 

fields, including forestry, surveying, water management, 

and energy. However, traditional ground-point filtering 

methods face limitations, such as being labor-intensive, 

low in accuracy, and underperforming in mountainous 

terrains. These limitations become more apparent as the 

demand for digital twin watershed construction grows, 

surpassing the capabilities of conventional filtering 

methods in addressing the expanding needs of mountain 

river surveying and mapping. In response to these 

challenges, this study introduces a novel point cloud 

filtering approach based on surface coverage types. 

Through qualitative and quantitative comparisons with 

established progressive encryption triangulation filtering 

algorithms, the following conclusions are drawn: 
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i. Traditional filtering methods that use the grid’s 

lowest point as the ground seed consistently 

underestimate ground points in mountainous point 

cloud filtering when compared to actual ground 

points. 

ii. The proposed point cloud filtering method, based 

on surface coverage types, challenges conventional 

approaches by leveraging well-established 

algorithms, particularly those used for vegetation 

and building extraction. This results in more 

efficient removal of non-ground points and 

improved filtering performance. 

iii. The point cloud filtering algorithm based on 

surface coverage types shows better alignment 

with measured ground profiles after filtering than 

the progressively encrypted triangulation filtering 

algorithm. The average elevation difference 

approaches zero, demonstrating smaller errors and 

enhanced filtering accuracy. 

iv. The proposed surface coverage-based filtering 

method demonstrates excellent applicability, high 

automation, and superior accuracy in mountainous 

terrains, offering an innovative solution for 

filtering point clouds in complex mountainous 

environments. 

In summary, the surface coverage-based point cloud 

filtering method not only addresses the shortcomings of 

existing techniques but also offers a more efficient and 

automated solution for the unique challenges posed by 

mountainous terrains in surveying and mapping. In the 

future, the integration of artificial intelligence and 

machine learning techniques could further enhance the 

adaptability and effectiveness of this method in 

challenging mountainous environments. 

 

Fund project 
Education Department Project of Liaoning Province 

(LJ2020JCL006); Key Laboratory of Land Satellite 

Remote Sensing Application, Ministry of Natural 

Resources of the People’s Republic of China (KLSMNR-

202107); Discipline Innovation Team Project of Liaoning 

Technical University (LNTU20TD-27). 

 

References 
[1] Fang, L., Luo, Q., & Sun, Y. (2021, June). Point clo

ud target detection and tracking algorithm based on 

K-means and Kalman. In Journal of Physics: Confe

rence Series (Vol. 1952, No. 2, p. 022024). IOP Pub

lishing.https://doi.org/10.1088/1742-6596/1952/2/0

22024 

[2] Yang, S., Xing, Y., Wang, D., & Deng, H. (2024). A

 Novel Point Cloud Adaptive Filtering Algorithm fo

r LiDAR SLAM in Forest Environments Based on G

uidance Information. Remote Sensing, 16(15), 2714.

https://doi.org/10.3390/rs16152714 

[3] Fan, W., Liu, X., Zhang, Y., Yue, D., Wang, S., & Z

hong, J. (2024). Airborne LiDAR Point Cloud Filter

ing Algorithm Based on Supervoxel Ground Salienc

y. ISPRS Annals of the Photogrammetry, Remote Se

nsing and Spatial Information Sciences, 10, 73-79.h

ttps://doi.org/10.5194/isprs-annals-x-2-2024-73-202

4 

[4] Chen, L., Xiao, Y., & Yang, T. (2021). Application 

of the improved fast iterative shrinkage-thresholding

 algorithms in sound source localization. Applied Ac

oustics, 180, 108101.https://doi.org/10.1016/j.apaco

ust.2021.108101 

[5] Du, J., Xue, Y., Sugumaran, V., Hu, M., & Dong, P.

 (2023). Improved biogeography-based optimization

 algorithm for lean production scheduling of prefabr

icated components. Engineering, Construction and 

Architectural Management, 30(4), 1601-1635.https:

//doi.org/10.1108/ecam-04-2021-0311 

[6] Yue, Y., You, H., Wang, S., & Cao, L. (2021). Impr

oved whale optimization algorithm and its applicati

on in heterogeneous wireless sensor networks. Inter

national Journal of Distributed Sensor Networks, 17

(5), 15501477211018140.https://doi.org/10.1177/15

501477211018140 

[7] Wang, W., Duan, Y., Cao, L., & Jiang, Z. (2023). A

pplication of improved Naive Bayes classification al

gorithm in 5G signaling analysis. The Journal of Su

percomputing, 79(6), 6941-6964.https://doi.org/10.1

007/s11227-022-04946-x 

[8] Ning, G., & Zhou, Y. (2021). Application of improv

ed differential evolution algorithm in solving equati

ons. International Journal of Computational Intellig

ence Systems, 14(1), 199.https://doi.org/10.1007/s44

196-021-00049-2 

[9] Dong, X., Cai, Z., Xu, H., & An, Y. (2023). Researc

h on the design and implementation of computer ex

periment cloud platform under the application of big

 data technology. Applied Mathematics and Nonline

ar Sciences.https://doi.org/10.2478/amns.2023.2.00

794 

[10] Ouyang, C., Zhu, D., & Wang, F. (2021, July). Appl

ication of improved sparrow search algorithm in SV

M optimization. In Journal of Physics: Conference 

Series (Vol. 1966, No. 1, p. 012008). IOP Publishin

g.https://doi.org/10.1088/1742-6596/1966/1/012008 

[11] Yan, H. C., Wang, Z. R., Niu, J. Y., & Xue, T. (202

2). Application of covering rough granular computin

g model in collaborative filtering recommendation a

lgorithm optimization. Advanced Engineering Infor

matics, 51, 101485.https://doi.org/10.1016/j.aei.202

1.101485 

[12] Wang, Y., Liu, J., Tong, Y., Yang, Q., Liu, Y., & M

ou, H. (2023). Resource scheduling in mobile edge c

omputing using improved ant colony algorithm for s

pace information network. International Journal of 

Satellite Communications and Networking, 41(4), 3

31-356.https://doi.org/10.1002/sat.1467 

[13] Zhou, L., & Li, L. (2021). Research on improved ho

ugh algorithm and its application in lunar crater. Jou

rnal of Intelligent & Fuzzy Systems, 41(3), 4469-447

7.https://doi.org/10.3233/JIFS-189707 



Advanced Point Cloud Filtering Algorithm for Enhanced Accuracy… Informatica 49 (2025) 169-178     177                                                                                                                                        

[14] Pradhan, A. M. S., Kim, Y. T., Shrestha, S., Huynh, 

T. C., & Nguyen, B. P. (2021). Application of deep 

neural network to capture groundwater potential zon

e in mountainous terrain, Nepal Himalaya. Environ

mental Science and Pollution Research, 28, 18501-1

8517.https://doi.org/10.1007/s11356-020-10646-x 

[15] Gao, M., Li, S., Wang, K., Bai, Y., Ding, Y., Zhang,

 B., ... & Wang, P. (2023). Real-time jellyfish classi

fication and detection algorithm based on improved 

YOLOv4-tiny and improved underwater image enha

ncement algorithm. Scientific Reports, 13(1), 12989

.https://doi.org/10.1038/s41598-023-39851-7 

[16] Hao, P., & Sobhani, B. (2021). Application of the i

mproved chaotic grey wolf optimization algorithm a

s a novel and efficient method for parameter estimat

ion of solid oxide fuel cells model. International Jo

urnal of Hydrogen Energy, 46(73), 36454-36465.htt

ps://doi.org/10.1016/j.ijhydene.2021.08.174 

[17] Ning, Y., Zhang, T., & Zhang, T. (2021). The applic

ation of improved neural network algorithm based o

n particle group in short-term load prediction. In IO

P Conference Series: Earth and Environmental Scie

nce (Vol. 632, No. 4, p. 042045). IOP Publishing.htt

ps://doi.org/10.1088/1755-1315/632/4/042045 

[18] Qi, Y., & Wu, H. (2021, April). Fusion application o

f big data and cloud computing in the internet of thi

ngs. In Journal of Physics: Conference Series (Vol. 

1881, No. 3, p. 032013). IOP Publishing.https://doi.

org/10.1088/1742-6596/1881/3/032013 

[19] Yu, H. (2021). Online teaching quality evaluation b

ased on emotion recognition and improved AprioriT

id algorithm. Journal of Intelligent & Fuzzy Systems

, 40(4), 7037-7047.https://doi.org/10.3233/jifs-1895

34 

[20] Guedes, H. C., Pereira, J. L. J., & Gomes, G. F. (202

3). Multi-objective parametric optimization of a com

posite high-performance prostheses using metaheuri

stic algorithms. Structural and Multidisciplinary Op

timization, 66(8), 189.https://doi.org/10.1007/s0015

8-023-03644-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



178   Informatica 49 (2025) 169-178                                                                                                                                      S. Yu et al.

  

 

 

 

 

 

 

 


